用户名: 密码: 验证码:
量子点编码微球分析技术的构建及其在生物分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多元化与微型化是目前分析技术的发展趋势,他们能够在极短的时间内实现对大量候选物的分析,筛选出特定的目标分子如抗体、抗原、短肽等,而且所需要的样品体积很少,因此在药物开发和疾病诊断等领域具有重要应用前景。在各种新型的分析方法中,悬浮芯片无疑是这些技术中的代表。本文的主要工作是基于量子点(QDs)编码聚苯乙烯微球构建新型的悬浮芯片,完成的工作主要包括以下几个方面:
     通过磺化接枝制备表面羧基修饰的尺寸在100μm左右的微球,其含量约为2.1 mmol/g;而且此微球表面多孔性大大提高。该羧基化聚苯乙烯微球用不同比例的、发射峰分别在576 nm和628 nm处的两种量子点进行了准确编码;然后,该编码微球通过硅包被,在微球的表面形成了一层硅颗粒外壳,以“封”住掺入多孔中的量子点,从而克服泄漏的问题使之形成稳定的编码。系统地研究了硅包被对编码微球抗漂白性能的影响,结果表明硅包被处理4小时后微球抗光漂白性能为未经硅包被处理的微球的7倍。
     利用Sulfo-NHS和EDC共价偶联不同序列的DNA探针到不同的编码微球上,其探针密度可以达到2.0 mmol/g。利用此载有探针的编码微球对复杂DNA体系中的靶DNA序列进行杂交检测,结果表明单个微球的荧光光谱可以显著地区分出QDs编码信号和靶信号,并能对复杂体系中的靶DNA进行有效的检测,其检测的最低浓度可以达到0.2μg/mL。DNA探针实验证实基于该种微球的多元化分析是可行的。
     采用Layer-by-Layer技术,研究了包被完整、结构致密、稳定性好的纳米金包被μm级聚苯乙烯微球(Au@PS)的制备方法。实验中首先合成了柠檬酸稳定的电负性的20 nm左右金颗粒,又通过接枝使作为内核的微球带上与纳米金颗粒相反的电性,通过控制包被时间和金胶体的量实现对微球包被程度的准确控制。
     研究了一种基于金纳米颗粒包被聚苯乙烯微球的免疫分析方法。人IgG被固定于金包被微球上,其固定量可以达到每克微球160μg;荧光成像证实,基于Au@PS微球的免疫反应具有很好的特异性;进一步实验表明,通过单微球水平的荧光光谱分析可以检测出目标分子最低浓度达到0.01μg/mL,其线性范围为0.05μg/mL~15μg/mL。通过与酶联免疫分析方法比较证实,该分析方法具有良好的可靠性。
     研究了基于金包被聚苯乙烯微球的QDs编码性能。实验证明金包被微球多孔性表面对QDs的吸附固定量可达到1.0182×10-4 mmol/g,是金包被前的7倍多;能够显著降低QDs的泄漏程度;金包被编码微球的抗漂白性也得到一定程度的提高;通过比较游离QDs和固定QDs的光谱发现,掺入的QDs保持原有的光学性质。多色QDs编码实验证实,金包被微球的编码光谱重叠少,荧光稳定,不同编码信号能够被很好的识别。
     采用量子点编码微球制备基于微通道的探针阵列,并研究该阵列在免疫学分析中的应用。试验证明该方法所需样品体积小,具有简便、快捷等特点;微球上固定的探针能够很好的保持其生物活性;其编码信号能够被准确地识别。该方法可以通过增加编码微球种类实现同时对微量样品的多元化检测。
     综上所述,该论文主要研究了基于QDs编码微球分析系统的构建及其在生物分析中的若干应用,其内容主要包括微球表面的改性、探针偶联、QDs荧光编码、分析系统构建等。该论文的研究成果拓宽了基于微球分析系统在化学和生物学领域作为更广泛的检测平台的适用范围,为未来微型化分析技术的发展奠定了基础。
Multiplexing and miniaturization are becoming pervasive themes in bioanalysis. Drug discovery, drug screening and diagnostics commonly involve carrying out assays on large numbers of molecules and screening for particular target molecules, such as antigens, antibodies, nucleotides and peptides, in test samples. Promising tools for this purpose are the‘multiplex technologies’, which allow multiple discrete assays to be carried out simultaneously in the same micro-volume sample. The push to measure ever-increasing numbers of species from smaller and smaller sample volumes has led to innovative devices for sample manipulation and ingenious approaches to simultaneous measurement capabilities, and in these approaches, one of the outstanding is suspendant chips. This thesis mainly discusses the construction of quantum dots (QDs) based encoding suspendant microarrays. The main results are as follow:
     Carboxyl modified 100μm polystyrene (PS) beads were prepared by sulfonation grafting. The surface area and pore volume are greatly improved, and the corresponding carboxyl content is about 2.1 mmol/g. Carboxyl grafted polystyrene beads were precisely encoded by the various ratios of two types QDs whose emission wavelength are 576 nm and 628 nm respectively. The leakage of QDs was greatly decreased and the barcode stability improved greatly by the deposited silica particles on the surface of PS. The anti-photo bleaching of silica-coated beads was systemically studied, which is 7 times longer than the uncoated ones.
     Then the different encoded beads were covalently immobilized with different human IgG probes and the probe density could reach to 2.0 mmol/g. These probe-linked encoded beads were used to detect the target DNA sequences in complex DNA solution by hybridization. The results show that the QDs and target signals can be obviously identified from single-bead-level spectrum. This strategy can be used to detect DNA targets effectively with a detection limit of 0.2μg/mL in complex solution. DNA probe hybridization experiments indicate that it is feasible to use this kind of beads for multiplex analysis.
     By Layer-by-Layer assembly technology, well-covered, high-density and stability Au nanoparticles coated PS (Au@PS) was prepared. First, citrate-stabilized and negative charged 20 nm Au nanoparticles were synthesized, then different charged PS were prepared by grafting, and the deposition and assembly of Au nanoparticles on the charged PS core were studied. The coverage degree and shell thickness can be controlled by the assembly time and Au colloids quantity.
     A novel immunoassay method based on Au@PS was studied. Human IgG was immobilized at the concentration of 16μg/g. The fluorescence imagining experiments indicated the FITC signal could be detected even when the target antibody concentration was as low as 0.01μg/mL on single-bead level spectra and the linear range was 0.05~15μg/mL. The assay results were compared with the ELISA and showed a relatively good reliability.
     The optical encoding property of QDs based Au@PS beads was also studied. The experiment results showed that the QDs loaded into the porous Au@PS beads reached 1.0182×10~(-4) mmol/g, which is 7 times more than before the Au coating; the leakage of the doped QDs was remarkably reduced and the anti-photo bleaching ability of the QDs encoded Au@PS beads was also improved; comparing the spectra of free QDs and the doped QDs, it indicated that the doped QDs kept the initial optical property. Mult-color QDs encoding experiments showed that the coded spectra of Au@PS beads had little over-lap; the encoding signals were easy distinguishable on single bead level.
     The micro-channel based probe-array was fabricated using the QDs-encoded Au@PS beads and its application in immunoassay was studied. The experiments indicated that the assay approach has theμ-volume sample, simple and convenient properties; the encoding could be well identified.
     Accordingly, several fabrications and applications of QDs encoding PS based bioassay technology were studied in this dissertation. It mainly includes the surface grafting, probe immobilization, QDs fluorescent encoding and fabrication of bioassay systems. The results expand the application fields of the bead-based assay system in chemistry and biology, and establish the bedrock of micro-analysis technologies for future.
引文
[1] Burbaum, J.J.; Sigal, N.H. New technologies for high-throughput screening. Curr. Opin. Chem. Biol., 1997, 1:72-78
    [2] Hill, D.C. Novel screen methodologies for identification of new microbial metabolites with pharmacological activity. Adv. Biochem. Eng. Biotechnol., 1998, 59:73-121
    [3] Burbaum, J.J. Miniaturization technologies in HTS: how fast, how small, how soon? Drug Discov. Today, 1998, 3(7): 313-322
    [4] Eggeling, C.; Brand, L.; Ullmann, D.; et al. Highly sensitive fluorescence detection technology currently available for HTS. Drug Discov. Today, 2003, 8: 632–641
    [5] Haber, C.; Boillat, M. and Schoot, B.V.D. Precise nanoliter fluid handling system with integrated high-speed flow sensor. Assay Drug Dev. Technol., 2005, 3:203–212
    [6] Bandyopadhyay, S., Ni, J.; Ruggiero, A.; et al. High-throughput drug screen targeted to the 5’untranslated region of Alzheimer amyloid precursor protein mRNA. J. Biomol. Screen, 2006, 11 (5): 469-480
    [7]Gribbon, P.; Chambers, C.; Palo, K.; et al. A novel method for analyzing [Ca2+] flux kinetics in high-throughput screening. J. Biomol. Screen., 2006, 11 (5): 511-518
    [8] Cai, S.X.; Drewe, J.; Kasibhatla, S. A chemical genetics approach for the discovery of apoptosis inducers: From phenotypic cell based HTS assay and structure-activity relationship studies, to identification of potential targets. Curr.Med.Chem., 2006, 13 (22): 2627-2644
    [9] Wu, G.; Doberstein, S.K. HTS technologies in biopharmaceutical discovery. Drug Discov. Today, 2006, 11 (15-16): 718-724
    [10] Kaganman, I.; Evanko, D. In praise of manual high-throughput screening. Nature Method, 2006, 3(9): 662-663
    [11] Sundberg, S.A.; Chow, A.; Nikiforov, T.; Wada, H.G. Microchip-based systems for target validation and HTS. Drug Discov. Today (Suppl.12), 2000, 5: S92-S103
    [12] Johnston, P.A.; Johnston, P.A. Cellular platforms for HTS: three case studies. Drug Discov. Today, 2002, 7(6): 353-363
    [13] Kapp, U.;Yeh, W.C.; Patterson, B.; et al. Interleukin 13 is secreted by and atimulates the growth of Hodgkin and Reed-Sternberg cells. J. Exp. Med., 1999, 189(12): 1939-1946
    [14] Lipshutz, D.; Morris, D.; Chee, M.; et al. Using oligonucleotide pribe array to access genetic diversity. Biotechniques, 1995, 19(3): 422-447
    [15] Ravyn, V.; Bostwick, J.R. Functional coupling of the G alpha variant XLG alpha with the human adenosine A (2A) receptor. J. Recept. Signal Transduct., 2006, 26 (4): 241-258
    [16] Do, E.U.; Piao, L.Z.; Choi, G.; et al. The high throughput screening of neuropeptide FF2 receptor ligands from Korean herbal plant extracts. Peptides, 2006, 27 (5): 997-1004
    [17] Holenz, J.; Pauwels, P.J.; Diaz, J.L.; et al. Medicinal chemistry strategies to 5-HT6 receptor ligands as potential cognitive enhancers and antiobesity agents. Drug Discov. Today, 2006, 11 (7-8): 283-299
    [18] Wolsky, A.M. The status and prospects for flywheels and SMES that incorporate HTS. Physica C, 2002, 372:1495-1499
    [19] Hornfeldt, S.P. HTS in electric power applications, transformers Physica C, 2000, 341:2531-2533
    [20] Macarron, R. Critical review of the role of HTS in drug discovery. Drug Discov. Today, 2006, 11(7-8): 277-279
    [21] Lockhart, D.J. and Winzeler, E.A. Genomics, gene expression and DNA arrays. Nature, 2000, 405:827–836
    [22] Brown, P.O. and Botstein, D. Exploring the new world of the genome with DNA microarrays. Nature Genet.(Suppl. 1), 1999, 21:33–37
    [23] Nifli, A.P.; Notas, G.; Mamoulaki, M.; et al. Comparison of a multiplex, bead-based fluorescent assay and immunofluorescence methods for the detection of ANA and ANCA autoantibodies in human serum. J. Immun. Method, 2006, 311 (1-2): 189-197
    [24] Zeineldin, R.; Piyasena, M.E.; Bergstedt, T.S.; et al. Superquenching as a detector for microsphere-based flow cytometric assays. Cytometry Part A, 2006, 69A (5): 335-341
    [25] Campàs, M.; Katakis, I. DNA biochip arraying, detection and amplification strategies. Trends Anal. Chem., 2004, 23(1): 49-62
    [26] Frost and Sullivan. World biochip market. New York, USA, 1997.
    [27] Jares, P. DNA microarray applications in functional genomics. Ultrastruct. Pathol., 2006, 30 (3): 209-219
    [28] Haas, C.S.; Creighton, C.J.; Pi, X.J.; et al. Identification of genes modulated in rheumatoid arthritis using complementary DNA microarray analysis of lymphoblastoid B cell lines from disease-discordant monozygotic twins. Arthritis Rheum., 54 (7): 2047-2060
    [29] Bulyk, M.L. DNA microarray technologies for measuring protein-DNA interactions. Curr. Opin. Biotechnol. 2006, 17 (4): 422-430
    [30] Tanaka, T.; Hatakeyama, K.; Sawaguchi, M.; et al. Oligonucleotide-arrayed TFT photosensor applicable for DNA chip technology. Biotech.Bioengin., 2006, 95 (1): 22-28
    [31] Aki, T. Identification and characterization of positive regulatory elements in the human glyceraldehyde 3-phosphate dehydrogenase gene promoter. J. Biochem. (Tokyo), 1997, 122: 271–278
    [32] Li, Z.; Martin, L.D.; Minnicozzi, M.; et al. A mitogen-activated protein IIb3. J. Biol.Chem., 2001, 276: 42226-42232
    [33] Thomas, O.J.; Dieter S. and Markus, F.T. Miniaturised multiplexed immunoassays. Curr. Opin. Chem. Biol., 2001, 6:76–80
    [34] Mahairas, G.G. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol., 1996, 178:1274–1282
    [35] Michaud, G.A. Analyzing antibody specificity with whole proteome microarrays. Nat. Biotechnol., 2003, 21: 1509–1512
    [36] Kung, L.A.; Snyder, M. Proteome chips for whole-organism assays. Nat. Rev. Mol. Cell Biol., 2006, 7 (8): 617-622
    [37] Lu, X.S.; Zhang, X.G. The effect of GeneChip gene definitions on the microarray study of cancers. Bioassays, 2006, 28 (7): 739-746
    [38] Gasca, S.; Assou, S.; Anahory, T.; et al. Gene expression profile of human cumulus-oocyte complex: an oligonucleotide array chips approach. Hum. Reprod. (Suppl.1), 2006, 21: I190-I190
    [39] Nagino, K.; Nomura, O.; Takii, Y.; et al. Ultrasensitive DNA chip: Gene expression profile analysis without RNA amplification. J. Biochem., 2006, 139 (4): 697-703
    [40] Nijdam, A.J.; Monica, A.H.; Gadre, A.P.; et al. Fluidic encapsulation in SU-8 mu-reservoirs with mu-fluidic through-chip channels. Sensors and Actuators-A 2005, 120 (1): 172-183
    [41] Lao, A.I.K.; Hsing, I.M. Flow-based and sieving matrix-free DNA differentiation by a miniaturized field flow fractionation device. Lab-on-Chip, 2005, 5 (6): 687-690
    [42] Viskari, P.J.; Landers, J.P. Unconventional detection methods for microfluidic devices. Electrophoresis, 2006, 27 (9): 1797-1810
    [43] Sharma, S.; Buchholz, K.; Luber, S.M.; et al. Silicon-on-insulator microfluidic device with monolithic sensor integration for mu TAS applications. J. Microelectromech. Syst., 2006, 15 (2): 308-313
    [44] Rabner, A.; Shacham, Y. A concept for a sensitive micro total analysis system for high throughput fluorescence imaging. Sensors, 2006, 6 (4): 341-348
    [45] Yu, H.; Balogun, O.; Li, B.; et al. Fabrication of three-dimensional microstructures based on singled-layered SU-8 for lab-on-chip applications. Sensors and Actuators-A, 2006, 127 (2): 228-234
    [46] Audic, S.; Claverie, J. The significance of digital gene expression profiles. Genome Res., 1997, 7, 986–995
    [47] Wittes, J.; Friedman, H.P. Searching for evidence of altered gene expression: a comment on statistical analysis of microarray data. J. Natl. Cancer Inst., 1999, 91, 400–401
    [48] Richmond, C.S. et al. Genome-wide expression profiling in Escherichia Coli K-12. Nucleic Acids Res., 1999, 27: 3821–3835
    [49] Bronwyn, J.B.; Gwendolyn, A.L.; Matt, T. Optical encoding of microbeads for gene screening alternatives to microarrays. Drug Discov. Today, 2001, 6(1212):19-26
    [50] Meza, M.B. Bead-based HTS applications in drug discovery. DrugDiscov.Today (Suppl.), 2000, 5: 38–41
    [51] Battersby, B.J.; Bryant, D.; Meutermans, W.; et al. Toward larger chemical libraries: encoding with fluorescent colloids in combinatorial chemistry. J. Am. Chem. Soc., 2000, 122: 2138–2139
    [52] Grondahl, L.B.; Bronwyn, J.; Bryant, D.; et al. Encoding combinatorial libraries: anovel application of fluorescent silica colloids. Langmuir, 2000, 16:9709–9715
    [53] Brown,W. Microparticle-capture membranes: Application to TestPack hCG-urine. Clin. Chem., 1987, 33:1567–1568
    [54] Deleo, D.T. Particle-enhanced turbidimetric immunoassay of sex-hormone-binding globulin in serum. Clin. Chem., 1991, 37:527–531
    [55] Bangs, L.B.; Meza, M.B. Microspheres. IVD Technol., 1995, 17:18–26
    [56] Bellisario, R.; Colinas, R.J.; Pass, K.A. Simultaneous measurement of thyroxine and thyrotropin from newborn dried blood-spot specimens using a multiplexed fluorescent microsphere immunoassay. Clin. Chem., 2000, 46: 1422–1424
    [57] Pantano, P. and Walt, D.R. Ordered nanowell arrays. Chem. Mater., 1996, 8: 2832–2835
    [58] Walt, D.R. Bead-based fiber-optic arrays. Science, 2000, 287:451–452
    [59] Karri, L.M.; Laura, C.T.; Sandra, L.S.; and Walt, D.R. Randomly ordered addressable high-density optical sensor arrays. Anal. Chem., 1998, 70: 1242-1248
    [60] Peterson, M. The use of b,g-methyleneadenosine 59-triphosphate to determine ATP competition in a scintillation proximity kinase assay. Anal. Biochem. 1999, 271: 131–136
    [61] Wu, J. Measurement of Cdk4 kinase activity using an affinity peptide-tagging technology. Com. Chem. High. T. Scr., 2000, 3:27–36
    [62] Zimmermann, J. Microarray technology advances for therapeutic target discovery. Gen. Eng. News, 1999, 19(1):1–34
    [63] Carson, R.T. and Vignali, D.A.A. Simultaneous quantitation of 15cytokines using a multiplexed flow cytometric assay. J. Immunol. Methods, 1999, 227:41–52
    [64] Chen, R.; Lowe, L.; Wilson, J.D.; et al. Simultaneous quantification of six human cytokines in a single sample using microparticle-based flow cytometric technology. Clin. Chem., 1999, 45:1693–1694
    [65] Nolan, J.P.; Lauer, S.; Prossnitz, E.R. and Sklar, L.A. Flow cytometry: a versatile tool for all phases of drug discovery. Drug Discovery Today, 1999, 4:173–180
    [66] Furka, A. and Bennett, W.D. Combinatorial libraries by portioning and mixing. Com. Chem. High. T. Scr., 1999, 2:105–122
    [67] Ellman, J., Stoddard, B. and Wells, J. Combinatorial thinking in chemistry and biology.Proc. Natl Acad. Sci. USA, 1997, 94: 2779–2782
    [68] Cargill, J.F. and Lebl, M. New methods in combinatorial chemistry-robotics and parallel synthesis. Curr. Opin. Chem. Biol., 1997, 1: 67–71
    [69] Look, G.C.; Holmes, C.P.; Chinn, J.P. and Gallop, M.A. Methods for combinatorial organic synthesis: the use of fast 13C NMR analysis for gel phase reaction monitoring. J. Org. Chem., 1994, 59:7588–7590
    [70] Neilly, J.P. and Hochlowski, J.E. Elemental analysis of individual combinatorial chemistry library members by energy-dispersive X-ray spectroscopy. Appl. Spectrosc., 1999, 53:74–81
    [71] Rahman, S.S.; Busby, D.J. and Lee, D.C. Infrared and Raman spectra of a single resin bead for analysis of solidphase reactions and use in encoding combinatorial libraries. J. Org. Chem., 1998, 63: 6196–6199
    [72] Prabhakar, U.; Eirikis, E. and Davis, H.M. Simultaneous quantification of proinflammatory cytokines in human plasma using the LabMAP (TM) assay. J. Immunol. Methods, 2002, 260:207–218
    [73] Martins, T.B. Development of internal controls for the Luminex instrument as part of a multiplex seven-analyte viral respiratory antibody profile. Clin. Diagn. Lab. Immun., 2002, 9: 41–45
    [74] Briley, D.; Nguyen, Q.; Long, K.; et al. Flow cytometric platform for highthroughput single nucleotide polymorphism analysis. Biotechniques, 2001, 30: 661–675
    [75] Battersby, B.J.; Bryant, D.; Meutermans, W.; et al. Toward larger chemical libraries: encoding with fluorescent colloids in combinatorial chemistry. J. Am. Chem. Soc., 2000, 122: 2138–2139
    [76] Trau, M. and Battersby, B.J. Novel colloidal materials for high-throughput screening applications in drug discovery and genomics. Adv. Mater., 2001, 13: 975–979
    [77] Lawrie, G.; Grondahl, L.; Battersby, B.; et al. Tailoring surface properties to build colloidal diagnostic devices: controlling interparticle associations. Langmuir, 2006, 22(1); 497-505
    [78] Han, M.Y.; Gao, X.H.; Jack, Z.S.; Nie, S.M. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol., 2001, 19: 631-635
    [79] Gao, X.H.; Nie, S.M. Doping mesoporous materials with multicolor quantum dots. J. Phys. Chem. B, 2003, 107:11575-11578
    [80] Gao, X.H.; Chan, W.C.W.; Nie, S.M. Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J. Biomed. Opt., 2002, 7: 532-537
    [81] Chan, W.C.W; Nie, S.M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281: 2016-2018
    [82] Gao, X.H.; Nie, S.M. Quantum dot-encoded mesoporous beads with high brightness and uniformity rapid readout using flow cytometry. Anal. Chem., 2004, 76: 2406-2410
    [83] De Smedt, S.C.; Leblans, M.; Siepmann, F. et al. A new generation of encoded microcarriers. Drug Discov. Tech., 12–17 Aug 2001, Boston
    [84] De Smedt, S. C.; Pauwels, R.W.J.; Demeester, J. and Roelant, C.H.S. Encoding of microcarriers. WO Patent 00/63695, 2000
    [85] Moran, E.J. Radio frequency tag encoded combinatorial library method for the discovery of tripeptide-substituted cinnamic acid inhibitors of the protein tyrosine phosphatase PTP1B. J. Am. Chem. Soc., 1995, 117: 10787–10788
    [86] Nicolaou, K.C.; Xiao, X.Y.; Parandoosh, Z.; Senyei, A. and Nova, M.P. Radiofrequency encoded combinatorial chemistry. Angew. Chem. Int. Edn Engl., 1995, 34: 2289–2291
    [87] Service, R.F. Radio tags speed compound synthesis. Science, 1995, 270, 577
    [88] Houghten, R.A. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen–antibody interaction at the level of individual amino acids. Proc. Natl Acad. Sci. USA, 1985, 82:5131–5135
    [89] Xiao, X.; Zhao, C.; Potash, H. and Nova, M.P. Combinatorial chemistry with laser optical encoding. Angew. Chem. Int. Edn Engl., 1997, 36: 780–782
    [90] Zhou, H.H., Roy, S., Schulman, H. and Natan, M.J. Solution and chips arrays in protein profiling. Trends Biotechnol. (Suppl.), 2001, 19: 34–39
    [91] Martin, B.R.; Dermody, D.J.; Reiss, B.D.; et al. Orthogonal self-assembly on colloidal gold–platinum nanorods. Adv. Matter., 1999, 11: 1021–1025
    [92] Nicewarner-Pe?a, S.R. Submicrometer metallic barcodes. Science, 2001, 294:137–141
    [93] McHugh, T.M.; Miner, R.C.; Logan, L.H. and Stites, D.P. Simultaneous detection ofantibodies to cytomegalo-virus and herpes-simplex virus by using flow-cytometry and a microsphere-based fluorescence immunoassay. J. Clin. Microbiol., 1988, 26:1957–1961
    [94] Scillian, J.J.; Scillian, J.J.; McHugh, T.M.; Busch, M.P.; et al. Early detection of antibodies against rDNA-produced HIV proteins with a flow cytometric assay. Blood, 1989, 73:2041–2048
    [95] Geysen, M. Encoding scheme for solid phase chemical libraries. WO Patent 00/61281, 2000
    [96] Wang, M.S. and Li, L. Rapid screening assay methods and devices. US Patent 1999, 5,922,617
    [97] Fenniri, H.; Ding, L.H.; Ribbe, A.E.; Zyrianov, Y. Barcoded resins: a new concept for polymer-supported combinatorial library self-deconvolution. J. Am. Chem. Soc., 2001, 123:8151–8152
    [98] Trau, M. and Battersby, B.J. Novel colloidal materials for high-throughput screening applications in drug discovery and genomics. Adv. Mater., 2001, 13: 975–979
    [99] Jane, A.; Ferguson, F.J. and Walt, D.R. High-density fiber-optic DNA random microsphere array. Anal. Chem. 2000, 72:5618-5624
    [100] Mehnaaz, F.A.; Romy, K.; Adrian, P.G.; et al. DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays. Anal. Chem., 2003, 75:4732-4739
    [101] Taniguchi,T.; Duracher, D.; Delair, T.; et al. Adsorption/desorption behavior and covalent grafting antibody onto cationic amino-functionalized poly (styrene-nisopropylacrylamide) core-shell latex particles. Colloids and Surfaces B: Biointerfaces, 2003, 29: 53-65
    [102] Zhou, X.; Xue, B.; Bai, S.; Sun, Y. Macroporous polymeric ion exchanger of high capacity for protein adsorption. Biochem. Eng. J., 2002, 11:13–17
    [103] Leonard, M.; Fournier, C.; Dellacherie, E. Polyvinyl alcohol-coated macroporous polystyrene particles as stationary phases for the chromatography of proteins. Journal of Chromatorgraphy B., 1995, 664: 39-46
    [104] Senkal, B.F.; Bicak, N. Grafting on crosslinked polymer beads by ATRP frompolymer supported N-chlorosulfonamides. European Polymer Journal, 2003, 39: 327–331
    [105] Walsh, M.K.; Wang, X.W.; Weimer, B.C. Optimizing the immobilization of single-stranded DNA onto glass beads. J. Biochem. Biophys. Method, 2001, 47:221-231
    [106] Mahapatro, A.; Johnson, D.M.; Patel, D. N.; et al. Surface modification of functional self-assembled monolayers on 316L stainless steel via lipase catalysis. Lngmuir, 2006, 22 (3): 901-905
    [107] Jeong, J.; Ha, T.H.; Chung, B.H. Enhanced reusability of hexa-arginine-tagged esterase immobilized on gold-coated magnetic nanoparticles. Anal. Chimic Acta, 2006, 569 (1-2): 203-209
    [108] Lee, C.Y.; Gong, P.; Harbers, G.M.; et al. Surface coverage and structure of mixed DNA/alkylthiol monolayers on gold: Characterization by XPS, NEXAFS, and fluorescence intensity measurements. Anal.Chem., 2006, 78 (10): 3316-3325
    [109] David, A.E.; Wang, N.S.; Yang, V.C.; et al. Chemically surface modified gel (CSMG): An excellent enzyme-immobilization matrix for industrial processes. J. Biotech., 2006, 125 (3): 395-407
    [110] Wu, X.J.; An, W.; Zeng, X.C. Chemical functionalization of boron-nitride nanotubes with NH3 and amino functional groups. J. Am. Soc., 2006, 128 (36): 12001-12006
    [111] Choi, J.; Lee, J.I.; Lee, Y.B.; et al. Immobilization of biomolecules on biotinylated magnetic ferrite nanoparticles. Chem. Phys. Lett., 2006, 428 (1-3): 125-129
    [112] Ludden, M.J.W.; Peter, M.; Reinhoudt, D.N.; et al. Attachment of streptavidin to beta-cyclodextrin molecutar printboards via orthogonal, host-guest and protein-ligand interactions. Small, 2006, 2 (10): 1192-1202
    [113] Patel, A.R.; Frank, C.W. Quantitative analysis of tethered vesicle assemblies by quartz crystal microbalance with dissipation monitoring: Binding dynamics and bound water content. Langmuir, 2006, 22 (18): 7587-7599
    [114] Meyer, S.C.; Gaj, T.; Ghosh, I. Highly selective cyclic peptide ligands for NeutrAvidin and avidin identified by phage display. Chem. Biology & Drug Design, 2006, 68 (1): 3-10
    [115] Ge, C.W.; Miao, W.J.; Ji, M.J.; et al. Glutaraldehyde-modified electrode fornonlabeling voltammetric detection of p16(INK4A) gene. Anal.Bioanal.Chem., 2005, 383 (4): 651-659
    [116] Calvo-Munoz, M.L.; Bile, B.E.A.; Billon, M.; et al. Electrochemical study by a redox probe of the chemical post-functionalization of N-substituted polypyrrole films: Application of a new approach to immobilization of biotinylated molecules. J. Electroanal. Chem., 2005, 578 (2): 301-313
    [117] Cha, T.; Guo, A.; Jun, Y.; et al. Immobilization of oriented protein molecules on poly(ethylene glycol)-coated Si(111). Proteosomics, 2004, 4 (7): 1965-1976
    [118] Fuentes, M.; Mateo, C.; Garcia, L.; et al. Directed covalent immobilization of aminated DNA probes on aminated plates. Biomacromolecules, 2004, 5 (3): 883-888
    [119] Magdalena, G.C.; Marcin, L.; Anders, H.; et al. Detection of bacteriophage infection and prophage induction in bacterial cultures by means of electric DNA chips. Anal. Biochem., 2004, 324: 84–91
    [120] Bronwyn, J.B.; Gwendolyn, A. L.; Matt, T. Optical encoding of microbeads for gene screening: alternatives to microarrays. Drug Discov. Today (HTS Suppl.), 2001, 6: 19-26
    [121] Edward, M.; Rudi, V.; Homero, S.; et al. Cytometric bead array: a multiplexed assay platform with applications in various areas of biology. Clinical Immunology, 2004, 110: 252– 266
    [122] Senkal, B.F.; Bicak, N. Grafting on crosslinked polymer beads by ATRP from polymer supported N-chlorosulfonamides. Eur. Polym. J. 2003, 39: 327-331
    [123] Walsh, M.K.; Wang, X.W.; Weimer, B.C. Optimizing the immobilization of single-stranded DNA onto glass beads. J. Biochem. Biophys. Meth., 2001, 47: 221–231
    [124] Du, H.W.; Lu, Y.; Yang, W.P.; et al. Preparation of steroid antibodies and parallel detection of multianabolic steroid abuse with conjugated hapten microarray. Anal. Chem., 2004, 76: 6166-6171
    [125] Rao, R.S.; Visuri, S.R.; Mary, T.M.; et al. Comparion of multiplexed techniques for detection of bacterial and viral proteins. J. Proteome Res., 2004, 3: 736-742
    [126] Mary, T.M. Multiplexed liquid arrays for simultaneous detection of simulants of biological warfare agents. Anal. Chem., 2003, 75: 1924-1930
    [127] Goldman, E.R.; Clapp, A.R.; Anderson, G.P.; et al. Multiplexed Toxin AnalysisUsing Four Colors of Quantum Dot Fluororeagents. Anal. Chem., 2004, 76: 684-688
    [128] Xu, H.X.; Sha, M.Y.; Wong, E.Y.; et al. Multiplexed SNP genotyping using the QbeadTM system: a quantum dot-encoded microsphere-based assay. Nucleic Acids Res., 2003, 31(8), e43
    [129] Kamal, M.S.; Khalil, A.A.; Mohamed, S.E. Formation and characterization of high surface area thermally stabilized Titania/Silica composite materials via hydrolysis of Titanium(IV) tetra-isopropoxide in sols of spherical silica particles. J. Colloid Interf. Sci., 2002, 249: 359–365
    [130] Bogush, G.H.; Zukoski, C.F. Uniform silica particle precipitation: an aggregative growth mode. J. Colloid Interf. Sci., 1991, 142: 19-34
    [131] Klotz, M.; Ayral, A. ; Guizard, C.; et al. Silica coating on colloidal maghemite particles. J. Colloid Interf. Sci., 1999, 220: 357–361
    [132] Rogach, A.L.; Nagesha, D.; Ostrander, J.W.; et al. "Raisin Bun"-type composite spheres of silica and semiconductor nanocrystals. Chem. Mater., 2000, 12: 2676-2685
    [133] Gerion, D.; Pinaud, F.; Williams, S.C.; et al. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots J. Phys. Chem. B, 2001, 105: 8861-8871
    [134] Peng, Z.A.; Peng, X.G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc., 2001, 123: 183-184
    [135] Dabbousi, B.O. (CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B, 1997, 101: 9463-9475
    [136] Ahmed, M.; Muhammad, A.M.; Shahid, P.; et al. Effect of porosity on sulfonation of macroporous styrene-divinylbenzene beads. European Polymer Journal, 2004, 40: 1609–1613
    [137] Graf, C.; Vossen, D.L.J.; Imhof, A.; et al. A general method to coat colloidal particles with silica. Langmuir, 2003, 19: 6693-6700
    [138] Krista, L.; Witte, S.N. Recent applications of protein arrays in target identification and disease monitoring. Drug Discovery Today: Technologies, 2004, 1: 35-40
    [139] Lockhart, D.J.; Winzeler, E.A. Genomics, gene expression and DNA arrays. Nature,2000, 405: 827-836
    [140] Mortuaire, G.; Marchetti, P.; Formstecher, P. Micro-array based technologies to study the proteome: technological progress and applications. Annales de Biologie Clinique, 2004, 62:139-148
    [141] Lander, E.S. The new genomics: Global views of biology. Science, 1996, 274: 536-538
    [142] Wang, J.; Chatrathi, M.P. Microfabricated electrophoresis chip for bioassay of renal markers. Anal. Chem., 2003, 75: 525-529
    [143] Service, R.F. Microchip arrays put DNA on the spot, Science, 1998, 282: 396-401
    [144] Hakala, H.; Heinonen, P.; Iitia, A.; Lonnberg, H. Detection of oligonucleotide hybridization on a single microparticle by time-resolved fluorometry: hybridization assays on polymer particles obtained by direct solid phase assembly of the oligonucleotide probes. Bioconjugate Chem., 1997, 8: 378-384
    [145] Ness, J V.; Kalbfleisch, S.; Petrie, C.R.; et al. A versatile solid support system for oligodeoxynucleotide probe-based hybridization assays. Nucleic Acids Res., 1991, 19: 3345 - 3350
    [146] Storhoff, J.J.; Elghanian, R.; Mucic, R.C.; et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc., 1998, 120: 1959-1964
    [147] Needels, M.C.; Jones, D.G.; Tate, E.H.; et al. Neration and screening of an oligonucleotide-encoded synthetic peptide library. Proc. Natl. Acad. Sci., 1993, 90: 10700-10704
    [148] Fulton, R.J.; McDada, R.L.; Smith, P.L.; et al. Advanced multiplexed analysis with the FlowMetrix(TM) system. Clinical Chemistry, 1997, 43: 1749-1756
    [149] Egner, B.J.; Rana, S.; Smith, H.; et al. Tagging in combinatorial chemistry: the use of colored and fluorescent beads. Chemical Communications, 1997, 8: 735-736
    [150] Czarnik, A.W. Encoding methods for combinatorial chemistry. Curr. Opin. Chem. Biol., 1997, 1: 60-66
    [151] Taylor, J.D., Briley, D.; Nguyen, Q.; et al. Flow cytometric platform for high-throughput single nucleotide polymorphism analysis. Biotechniques, 2001, 30:661-669
    [152] Zimmermann, J. Microarray technology advances for therapeutic target discovery. Gen. Eng. News, 1999, 19: 1–34
    [153] Carson, R.T.; Vignali, D.A.A. Simultaneous quantitation of 15 cytokines using a multiplexed flow cytometric assays. J. Immunol. Methods., 1999, 227: 41–52
    [154] Cao, Y.C.; Huang, Z.L.; Liu, T.C.; et al. Preparation of silica encapsulated QDs encoded bead for multiplex assay and it’s properties. Anal. Biochem., 2006, 351: 193–200
    [155] Buranda, T.; Huang, J.; Perez-Luna, V. H.; et al. Biomolecular recognition on well-characterized beads packed in microfluidic channels. Anal. Chem., 2002, 74: 1149-1156
    [156] Seong, G. H.; Crooks, R.M. Efficient mixing and reactions within microfluidic channels using microbead-supported catalysts. J. Am. Chem. Soc., 2002, 124: 13360-13361
    [157] Yingyongnarongkul, B.E.; How, S.E.; Diaz-Mochon, J.J. Parallel and multiplexed bead-based assays and encoding strategies. Comb. Chem. High Throughput Screen, 2003, 6: 577-587
    [158] Nolan, J.P.; Sklar, L.A. Suspension array technology: evolution of the flat-array paradigm. Trends in Biotechnology, 2002, 20: 9-12
    [159] Henke, L.; Piunno, P.A.E.; McClure, A.C.; Krull, U.J. Covalent immobilization of single-stranded DNA onto optical fibers using various linkers. Analytica Chimica Acta, 1997, 344: 201-213
    [160] Chen, D.H.; Yan, Z.G.; Cole, D.L.; Srivatsa, G. S. Analysis of internal (n-1) mer deletion sequences in synthetic oligodeoxyribonucleotides by hybridization to an immobilized probe array. Nucleic Acids Res., 1999, 27: 389 - 395
    [161] Caruso, F.; Caruso, R. A.; M?hwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science, 1998, 282: 1111-1114
    [162] Grabar, K.C.; Smith, P.C.; Musick, M.D.; et al. Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture. J. Am. Chem. Soc., 1996, 118(5): 1148-1153
    [163] Wong, M.S.; Cha, J.N.; Choi, K.; et al. Assembly of nanoparticles into hollow spheres using block copolypeptides. Nano Lett., 2002, 2(6): 583-587
    [164] Cassagneau, T.; Caruso, F. Oligosilsesquioxanes as versatile building blocks for the preparation of self-assembled thin films. J. Am. Chem. Soc., 2002, 124(27): 8172-8180
    [165] Gittins, D.I.; Susha, A.S.; Schoeler, B.; Caruso, F. Dense nanoparticulate thin films via gold nanoparticle self-assembly. Adv. Mater., 2002, 14(7): 508-512
    [166] Caruso, F.; Spasova, M.; Salgaueirino-Maceira, V.; Liz-Marzan, L.M. Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. Adv. Mater., 2001, 13(14): 1090-1094
    [167] Dokoutchaev, A.; James, J.T.; Koene, S.C.; et al. Colloidal metal deposition onto functionalized polystyrene microspheres. Chem. Mater., 1999, 11(9): 2389-2399
    [168] Caruso, F.; and M?hwald, H. Preparation and characterization of ordered nanoparticle and polymer composite multilayers on colloids. Langmuir, 1999, 15: 8276-8281
    [169] Ge, Z.B.; Kang, Y.J.; Taton, T. A.; et al. Thermal transport in Au-core polymer-shell nanoparticles. Nano letters, 2005, 5: 531-535
    [170] Zhong, Z.Y.; Patskovskyy, S.; Bouvrette, P.; et al. The surface chemistry of Au colloids and their interactions with functional amino acids. J. Phys. Chem. B, 2004, 108: 4046-4052
    [171] Hayat, M.A. Colloidal gold: principles, methods, and applications. Academic Press: San Diego, CA, 1989.
    [172] Mayer, A.B.R.; Grebner, W.; Wannemacher, W. Preparation of silver-latex composites. J. Phys. Chem. B., 2000, 104: 7278-7285
    [173] Zhong, Z.; Mastai, Y.; Koltypin, Y.; Zhao, Y.; Gedanken, A. Sonochemical Coating of Nanosized Nickel on Alumina Submicrospheres and the Interaction between the Nickel and Nickel Oxide with the Substrate. Chem. Mater., 1999, 11: 2350-2359
    [174] Nicholas, A.K.; Imre, D.C.; Janos, H.F. Layer-by-Layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite films. J. Phys. Chem., 1995, 99: 13065-13069
    [175] Thierry, C.; Thomas, E.M.; Janos, H.F. Layer-by-Layer assembly of thin film Zener diodes from conducting polymers and CdSe nanoparticles. J. Am. Chem. Soc., 1998, 120: 7848-7859
    [176] Malikova, N.; Pastoriza-Santos, I.; Schierhorn, M.; et alLayer-by-Layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactions. Langmuir, 2002, 18: 3694-3697
    [177] Schmitt, J.; Decher, G.; Dressick, W.J.; et al. Metal nanoparticle/polymer superlattice films: Fabrication and control of layer structure. Adv. Mater., 1997, 9(1): 61-65
    [178] Westcott, S. L.; Oldenburg, S. J.; Lee, T. R.; Halas, N. J. Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces, Langmuir, 1998, 14: 5396-5401
    [179] Lim, Y.T.; Park, O.O.; Jung, H.T. Gold nanolayer-encapsulated silica particles synthesized by surface seeding and shell growing method: near infrared responsive materials. J. Colloid Interface Sci., 2003, 263: 449–453
    [180] Chen, C.W.; Serizawa, T.; Akashi, M. Preparation of platinum colloids on polystyrene nanospheres and their catalytic properties in hydrogenation. Chem. Mater., 1999, 11: 1381-1389
    [181] Cassagneau, T.; Caruso, F. Contiguous silver nanoparticle coatings on dielectric spheres. Adv. Mater., 2002, 14(24): 732-736
    [182] Kim, S.; Kim, M.; Lee, W.; Hyeon, T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions. J. Am. Chem. Soc., 2002, 124: 7642-7643
    [183] Ji, T.; Lirtsman, V.G.; Avny, Y.; Davidov, D. Preparation, characterization, and application of Au-shell/polystyrene beads and Au-shell/magnetic beads. Adv. Mater., 2001, 13(16): 1254-1256
    [184] Salgueiri?o-Maceira, V.; Caruso, F.; Liz-Marzán, L.M. Coated colloids with tailored optical properties. J. Phys. Chem. B, 2003, 107: 10990-10994
    [185] Dhas, N.A.; Zaban, A.; Gedanken, A. Surface synthesis of Zinc sulfide nanoparticles on silica microspheres: sonochemical preparation, characterization, and optical properties. Chem. Mater., 1999, 11: 806-813
    [186] Sherine, O.O.; Nikhil, R.J.; Catherine, J.M. Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes. Nano letters, 2001, 1: 601-603
    [187] Ramesh, S.; Cohen, Y.; Prosorov, R.; et al. Organized silica microspheres carryingferromagnetic cobalt nanoparticles as a basis for tip arrays in magnetic force microscopy. J. Phys. Chem. B., 1998, 102: 10234-10242
    [188] Kobayashi, Y.; Salgueirino-Maceira, V.; Liz-Marzan, L.M. Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating. Chem. Mater., 2001, 13: 1630-1633
    [189] Caruso, F. Nanoengineering of particle surfaces. Adv. Mater., 2001, 13: 11-22
    [190] Dokoutchaev, A.; James, J.T.; Koene, S.C.; et al. Colloidal metal deposition onto functionalized polystyrene microspheres. Chem. Mater., 1999, 11: 2389-2399
    [191] Lu, Y.; McLellan, J.; Xia, Y.N. Synthesis and crystallization of hybrid spherical colloids composed of polystyrene cores and silica shells. Langmuir, 2004, 20: 3464-3470
    [192] Mann, S.; Shenton, W.; Li, M.; Connolly, S.; Fitzmaurice, D. Biologically Programmed Nanoparticle Assembly. Adv. Mater., 2000, 12: 147-150
    [193] Caruntu, D.; Cushing, BL; Caruntu, G.; O'Connor, C.J. Attachment of gold nanograins onto colloidal magnetite nanocrystals. Chem. Mater., 2005, 17: 3398-3402
    [194] Cuenya, B. R.; Sung-Hyeon, B.; Thomas, F.J.; Eric, W.M. Size-and support-dependent electronic and catalytic properties of Au0-Au3+ nanoparticles synthesized from block copolymer micelles. J. Am. Chem. Soc., 2003, 125: 12928-12934
    [195] Hakala, H.; Heinonen, P.; Iitia, A.; Lonnberg, H.; Detection of oligonucleotide hybridization on a single microparticle by time-resolved fluorometry: hybridization assays on polymer particles obtained by direct solid phase assembly of the oligonucleotide probes. Bioconjugate Chem., 1997, 8: 378-384
    [196] Ness, J.V.; Kalbfleisch, S.; Petrie, C.R.; et al. A versatile solid support system for oligodeoxynucleotide probe-based hybridization assays. Nucleic Acids Res., 1991, 19: 3345-3350
    [197] Storhoff, J. J.; Elghanian, R.; Mucic, R.C.; et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc., 1998, 120: 1959-1964
    [198] Oldfield, G.; Ung, T.; Mulvaney, P. Au@SnO2 core-shell nanocapacitors. Adv. Mater., 2000, 12(20):1519-1522
    [199] Delcorte, A.; Médard, N.; Bertrand, P. Organic secondary ion mass spectrometrysensitivity enhancement by gold deposition. Anal. Chem., 2002, 74: 4955-4968
    [200] Liang, Z.J.; Susha, A.; Caruso, F.; Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof. Chem. Mater., 2003, 15: 3176-3183
    [201] Colvin, V.L.; Schlamp, M.C.; Alivisatos, A.P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 1994, 370: 354-357
    [202] Grabar, K.C.; Smith, P.C.; Musick, M.D.; et al. Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture. J. Am. Chem. Soc., 1996, 118: 1148-1153
    [203] Grabar, K.C.; Allison, K.J.; Baker, B.E.; et al. Template-directed semiconductor size quantization at monolayer-water interfaces and between the headgroups of Langmuir-Blodgett films. Langmuir, 1996, 6: 1519-1521
    [204] Nicewarner-Pe?a, S.R,; Freeman, R.G.; Reiss, B.D.; et al. Submicrometer metallic barcodes, Science 2001, 294: 137-141
    [205] Manz, A.; Harrison, D. J.; Verpoorte, E.; Widmer, H. M. Advances in Chromatography; Marcel Dekker: New York, 1993
    [206] Albala, J. S. Array-based proteomics: the latest chip challenge. Expert Rev. Mol. Diagn. 2001, 1:145-152
    [207] Askari, M. D.; Miller, G. H.; Vo-Dinh, T. Simultaneous detection of the tumor suppressor FHIT gene and protein using the multifunctional biochip. Cancer Detect. Prev., 2002, 26:331-342
    [208] Yeatman, T. J. The future of clinical cancer management: one tumor, one chip. Am. Surg., 2003, 639:41-44
    [209] Brown, P. O.; Botstein, D. Exploring the new world of the genome with DNA microarrays. Nat. Genet. 1999, 21 (1 Suppl.):33-37
    [210] Walt, D. R. Bead-based fiber-optic arrays. Science, 2000, 287:451-452
    [211] Case-Green, S. C.; Mir, K. U.; Pritchard, C. E.; Southern, E. M. Analysing genetic information with DNA arrays. Curr. Opin. Chem. Biol. 1998, 2, 404–410
    [212] Furka, A. and Bennett, W. D. Combinatorial libraries by portioning and mixing. Com. Chem. High. T. Scr. 1999, 2:105–122
    [213] Ellman, J., Stoddard, B.; Wells, J.; Combinatorial thinking in chemistry and biology. Proc. Natl Acad. Sci. USA, 1997, 94:2779–2782
    [214] Cargill, J. F.; Lebl, M. New methods in combinatorial chemistry -robotics and parallel synthesis. Curr. Opin. Chem. Biol. 1997, 1:67–71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700