用户名: 密码: 验证码:
Abl酪氨酸激酶抑制剂对小鼠梗阻性肾病肾间质纤维化的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢性肾脏疾病(chronic kidney disease,CKD)的进展是一个不可逆转的过程,最终导致终末期肾病(end stage renal disease,ESRD)。肾间质纤维化(renal interstitial fibrosis,RIF)几乎是所有肾脏疾病进展到终末期肾功能衰竭的共同病理途径。大量动物和临床试验表明,肾功能的恶化趋势取决于肾小管间质损伤的程度和范围。肾小管间质病变程度是反映肾功能下降严重程度和判断预后最重要的指标。目前全世界罹患终末期肾功能衰竭的患者以每年7%的速度递增,给家庭及社会带来了沉重的经济负担。进一步研究肾间质纤维化的分子机制,探索有效的防治措施,对延缓ESRD的进程意义重大。
     肾间质纤维化是以肾小管萎缩,间质成纤维细胞增生及细胞外基质(extracellular matrix,ECM)过度积聚为特征的病理改变。在肾脏疾病时,肾间质内浸润的炎症细胞特别是单核细胞及活化的肾小管上皮细胞合成分泌的促纤维化因子,如TGF-β1、内皮素及血小板衍生生长因子(PDGF)等,以旁分泌方式作用于成纤维细胞,使之活化增殖,不仅数量增加,还会转分化为肌成纤维细胞(MyoF),表达标志性蛋白α-SMA,同时分泌大量的细胞外基质(ECM),包括Ⅲ型胶原及FN等。因此抑制肾成纤维细胞的活化增殖,降低ECM的分泌,在阻止甚至逆转肾间质纤维化过程中起至关重要的作用。
     甲磺酸伊马替尼是一种Abl酪氨酸激酶抑制剂,它能特异性抑制BCR-ABL+细胞酪氨酸激酶的活性,能与三磷酸腺苷(ATP)或底物竞争位于激酶催化中心的结合位点,使之因无ATP而失去磷酸的来源,阻止磷酸基团向酪氨酸残基转移,从而抑制酪氨酸激酶的磷酸化,造成信号传导抑制。除p210BCR-ABL外,它也能抑制p185BCL-ABL、V-ABL、C-ABL以及血小板源性生长因子(PDGF),干细胞因子(c-kit)受体的酪氨酸激酶的活性。初步观察显示,甲磺酸伊马替尼(Imatinib mesylate)在骨髓和肺纤维化防治方面显示出良好的效果,有可能为CML以外的其他酪氨酸激酶相关疾病带来新的治疗前景。
     甲磺酸伊马替尼对肾间质纤维化的作用如何目前并不清楚。因此,我们以小鼠单侧输尿管梗阻(UUO)动物模型为研究对象,观察甲磺酸伊马替尼对梗阻侧肾脏的病理改变影响,用酸水解-比色法测定肾组织胶原的含量;用免疫组化法观察肾组织TGF-β、α-SMA、PAI-1、PCNA和FN的表达,用RT-PCR法测定梗阻侧肾组织α-SMA、Vimentin、FN和ColⅢmRNA的表达水平,用Western杂交分析法检测α-SMA和Vimentin蛋白表达情况。另外,本研究还以体外培养的小鼠swiss-3T3细胞为研究对象,观察STI571对TGF-β1诱导小鼠成纤维细胞活化增殖及细胞外基质表达的影响,以探讨甲磺酸伊马替尼对肾间质纤维化的影响及可能机制,为临床防治肾间质纤维化寻找新的途径。
     第一部分Abl酪氨酸激酶抑制剂对单侧输尿管梗阻小鼠肾脏间质纤维化的影响
     目的:研究甲磺酸伊马替尼STI571对单侧输尿管梗阻(UUO)小鼠肾间质纤维化的防治作用。
     方法: 48只雄性清洁级昆明种小鼠随机分为4组:假手术组,模型组,小剂量治疗组(80mg/kg/d),大剂量治疗组(160mg/kg/d)。假手术组仅游离左侧输尿管后即缝合皮肤, UUO组和STI571治疗组进行左侧输尿管双结扎,治疗组在UUO的基础上每天以STI571 80、160mg/Kg灌胃。假手术组, UUO组和甲磺酸伊马替尼治疗组于术后第8,11天分别处死6只小鼠。肾组织行PAS及Masson染色,光镜下观察肾脏病理改变。采用百分比评分法评估肾间质纤维化程度,计算400×HP下炎性细胞计数;用酸水解-比色法测定肾组织胶原的含量;用免疫组化技术检测肾脏纤维连结蛋白(FN)的沉积。利用逆转录-聚合酶链反应(RT-PCR)观察FN和Ⅲ型胶原(ColⅢ) mRNA表达。
     结果:从外观上看,与UUO组相比较,甲磺酸伊马替尼治疗组在对应时间点上梗阻侧肾脏的肿大及积水程度较轻,色泽较红润。STI571治疗组的肾间质纤维化定量分析在术后11天显著低于UUO组(P<0.05),且不同剂量组之间存在显著差异(P<0.05)。随着梗阻时间延长,UUO组和STI571治疗组炎性细胞浸润逐渐增多,但两组无明显差异。UUO组和STI571治疗组梗阻肾FN染色随梗阻时间延长而逐渐增加,术后11天STI571治疗组的表达较UUO组明显减低,统计学上有显著性差异(p<0.05),且不同剂量组之间存在显著差异(P<0.05)。UUO组和STI571治疗组FN和ColⅢA1mRNA表达随梗阻时间延长而逐渐增加,在对应时间点上FN和ColⅢA1mRNA表达较UUO组明显减低,统计学上有显著性差异(p<0.05),且不同剂量组之间存在显著差异(P<0.05)。
     结论:甲磺酸伊马替尼可显著减轻UUO小鼠梗阻侧肾脏间质纤维化,下调纤维连结蛋白(FN)和Ⅲ型胶原(ColⅢ)的表达,减少肾间质细胞外基质的沉积,对UUO小鼠肾间质纤维化有一定防治作用。
     第二部分STI571缓解小鼠梗阻性肾病肾间质纤维化的机制研究
     目的:对甲磺酸伊马替尼STI571减轻UUO小鼠肾间质纤维化的机理进行初步探讨。方法: 48只雄性清洁级昆明种小鼠随机分为4组:假手术组,模型组,小剂量治疗组(80mg/kg/d),大剂量治疗组(160mg/kg/d)。假手术组仅游离左侧输尿管后即缝合皮肤, UUO组和STI571治疗组进行左侧输尿管双结扎,治疗组在UUO的基础上每天以STI571 80、160mg/Kg灌胃。假手术组, UUO组和甲磺酸伊马替尼治疗组于术后第8,11天分别处死6只小鼠。用免疫组化技术检测TGF-β1、PAI-1、α-SMA和间质PCNA的表达。利用逆转录-聚合酶链反应(RT-PCR)观察α-SMA、Vimentin mRNA表达。利用Western Blot方法观察α-SMA和Vimentin蛋白表达情况。
     结果:1)假手术组TGF-β1、PAI-1仅有少量表达,随着梗阻时间延长,UUO组和STI571治疗组TGF-β1、PAI-1的表达逐渐增多,术后8~11天STI571治疗组TGF-β1、PAI-1的表达虽低于对应时间点的UUO组,但均无显著差异(P>0.05)。
     2)假手术组α-SMA仅有微量表达,随着梗阻时间延长,UUO组和STI571治疗组α-SMA的表达逐渐增多,术后8~11天STI571治疗组α-SMA的表达显著低于对应时间点的UUO组(P<0.05),且术后11天大剂量治疗组α-SMA的表达显著低于小剂量组(P<0.05)。
     3)假手术组肾小管上皮细胞、肾间质细胞胞核内有部分细胞核表达PCNA,随着梗阻时间延长,模型组表达PCNA的细胞核数明显增加(P<0.01)。用药组表达较模型组明显减少(P<0.05)。
     4)RT-PCR和Western-blot检测结果显示测定随着梗阻时间的延长,UUO组和STI571治疗组α-SMA、Vimentin在mRNA和蛋白表达水平上逐渐上升,STI571治疗组两者的表达显著低于对应时间点的UUO组(P<0.05),两剂量组间差异显著(P<0.05)。
     结论:甲磺酸伊马替尼STI571可能通过抑制肾间质成纤维细胞增殖活化,从而下调肾组织α-SMA表达水平,减少肌成纤维细胞的聚集,减少肾间质细胞外基质的沉积,并最终改善肾间质纤维化。同时该作用独立于TGF-β1和纤溶系统的变化。
     第三部分Abl酪氨酸激酶抑制剂STI571对TGF-β1激活小鼠成纤维细胞及诱导细胞外基质表达的影响
     目的:研究Abl酪氨酸激酶抑制剂(PKI)STI571对转化生长因子TGF-β1致组织纤维化作用的影响,探讨其抗纤维化的潜在作用机制。
     方法:体外培养小鼠成纤维细胞株(3T3-swiss)。用MTT法测定PKI STI571对TGFβ1诱导的3T3细胞增殖效应的影响。利用逆转录-聚合酶链反应(RT-PCR)观察PKI STI571对TGFβ1诱导的α-平滑肌肌动蛋白(α-SMA)、纤维连结蛋白(FN)和Ⅲ型胶原(ColⅢ) mRNA表达的影响。利用Western Blot方法观察PKI STI571对TGFβ1诱导的α-SMA蛋白表达的影响。
     结果:TGF-β1明显诱导3T3细胞增殖,而PKI STI571可以阻断该效应。TGF-β1能显著增加3T3细胞α-SMA、FN和ColⅢmRNA表达;与TGF-β1刺激组相比, PKI STI571处理组α-SMA、FN和ColⅢmRNA表达量显著减少,而α-SMA mRNA、α-SMA蛋白表达量无显著下降。
     结论:Abl酪氨酸激酶抑制剂STI571可抑制TGF-β1诱导的成纤维细胞活化增殖和细胞外基质(ECM)合成,但不能阻断TGF-β1诱导的α-SMA表达增加。
Section one The effects of Abl protein tyrosine kinase on renal interstitial fibrosis lesions in UUO mice
     OBJECTIVE: To evaluate the effect of Imatinib mesylate (ST571) on the process of renal interstitial fibrosis following unilateral ureteral obstruction in mice.
     METHODS: 48 male mice were randomly assigned to four groups: Shame operation group, UUO group, and UUO receiving STI571 treatment daily. The mice of treatment group were treated with ST571 (80、160mg/Kg/d) after operation through intragastric administration. The mice of shame operation group were just separated left ureter while the mice of UUO group and treatment group were performed operation by left ureter double ligature. Mice of each group were killed at 8,11 days after operation respectively. Morphological changes of renal tissue were observed by PAS and Masson stain and were investigated through light microscope. The method of percentage evaluation was used to evaluate the degree of renal fibrosis. The number of the inflammatory cells which accumulate in renal interstitial was calculated. The content of total collagen from each group was examined by acidolysis and shade selection. Immunohistochemistry method was performed to investigate the protein expression of fibronectin(FN) in kidney. Reverse transcription polymerase chain reaction (RT-PCR) was used to examine the expression of FN and ColⅢmRNA.
     RESULTS:
     1 Compared with UUO group, the degree of swelling and hydrocele of the obstructive renal in the treatment group was milder. The color of latter was redder.
     2 The degree of renal fibrosis in treatment group was much lower than that in UUO group at 11 days after surgery (p<0.05). There was significant difference between the two treatment group. (p<0.05)
     3 In both UUO and treatment groups, the number of the inflammatory cells which accumulated in renal interstitial increased markedly in time-dependent manner from 8 to 11 days after operation. There was no significant difference between UUO group and treatment group.
     4 The expression of FN and ColⅢincreased in time-dependent manner in both UUO group and treatment group, while, it was significantly lower in treatment group at 11 days after surgery (p<0.05). There was significant difference between the two treatment groups. (p<0.05)
     CONCLUTION: Compared to UUO group, Imatinib mesylate significantly ameliorated the histological changes of the UUO renal tissue. The expression of FN were decreased significantly in treatment group.It could reduce the deposition of extracellular matrix in the interstitium.It played a protective role in the renal interstitial fibrosis.
     Section two The mechanisms of STI571 to ameliorate the degree of renal interstitial fibrosis in experimental obstructive nephropathy in mice
     Objective: To explore the mechanism of Abl protein tyrosine kinase inhibitor to ameliorate the degree of renal interstitial fibrosis.
     METHODS: 48 male mice were randomly assigned to four groups: Shame operation group, UUO group, and UUO receiving STI571 treatment daily. The mice of treatment group were treated with STI571 (80、160mg/Kg/d) after operation through intragastric administration. The mice of shame operation group were just separated left ureter while the mice of UUO group and treatment group were performed operation by left ureter double ligature. Mice of each group were killed at 8,11 days after operation respectively. Immunohistochemistry method was performed to investigate the protein expression of TGF-β1、PAI-1、α-SMAand PCNA in the interstitium. Reverse transcription polymerase chain reaction (RT-PCR) was used to examine the expression ofα-SMA and Vimentin mRNA. Western-blot was performed to examine the expression ofα-SMA and Vimentin protein.
     RESULTS:
     1 The results of immunohistochemistry showed that there was little expression of TGF-β1、PAI-1 in shame operation group .The expression of TGF-β1、PAI-1 increased in time-dependent manner in both UUO and treatment group. But there was no significant difference between UUO group and treatment group. (p>0.05).
     2 There was little expression ofα-SMA in shame operation group .The expression ofα-SMA increased in time-dependent manner in both UUO and treatment group while it was significantly less in the latter (p<0.05). There was significant difference between the two treatment group at 11 days after surgery. (p<0.05)
     3 The expression of PCNA increased in time-dependent manner in both UUO and treatment group while they were significantly less in the latter (p<0.05).
     4 The results of RT-PCR and Western-blot showed that the expression ofα-SMA and vimentin mRNA or protein increased since operation. The expression ofα-SMA and vimentin mRNA or protein in treatment group markedly lower than UUO group (p<0.05 ).
     Conclusion: Imatinib mesylate could suppress the activation and proliferation of fibroblasts in the interstitium, downregulate the expression ofα-SMA in the interstitium, reduce the accumulation of myofibroblast and deposition of ECM, ameliorate renal interstitial fibrosis. Meanwhile it did not accompany with the change of expression of TGFβ1 and the fibronolysis system.
     Section three Effects of protein tyrosine kinase inhibitor STI571 on TGF-β1 induced activation and extracellular matrix expression in mouse fibroblasts
     Objective: To study the effects of protein tyrosine kinase inhibitor STI571 on TGF-β1 induced fibrotic response in the mouse fibroblasts, so as to investigate its effects on preventing tubulointerstitial fibrosis.
     Methodology: In cultured mouse fibroblasts cell line (3T3-swiss),the effects of PKI STI571 on activation and proliferation induced by TGF-β1 were observed by MTT assay. The effects of PTKI STI571 on the level of TGF-β1 inducedα-smooth muscle actin (α-SMA), fibronectin (FN), and collagen type III m RNA expression was observed by reverse trancriptase–polymerase chain reaction (RT-PCR).the effects of PKI STI571 on the level ofα-SMA protein expression induced by TGF-β1 was observed by Western Blot.
     Results:TGF-β1 stimulated the NIH/3T3 cells proliferation and it can be blocked by STI571. In NIH/3T3 cells, TGF-β1 enhancedα-SMA, FN and ColⅢmRNA expression. The level of FN and ColⅢmRNA expression in STI571 treated groups were significantly decreased compared with TGF-β1 stimulated group. But level ofα-SMA mRNA andα-SMA protein expression in STI571 treated groups were not significantly decreased.
     Conclusion: Protein tyrosine kinase inhibitor STI571 may inhibit TGF-β1-induced cell proliferation and extracellular matrix sythesis in the mouse fibroblasts, but it can not block theα-SMA expression induced by TGF-β1.
引文
1. Owen WF Jr. Patterns of care of patients with chronic kidney disease in the United S tates; Dying for improvement. J Am Soc Nephrol 14;S76-S80,2003.
    2. Yang J,Liu Y. Blockage of tubular epithelial to myofibroblast transition by hepotocyte growth factor prevents renal interstitial fibrosis. J Am Soc Nephrol.2001,13:96-107
    3. Cheng S,Lovett DH. Gelatinase A, MMP-2 is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Am J Pathol,2003,162:1937-1949.
    4. Yang J, Dai C, LiuY. Hepatocyte growth factor gene therapy and angiotensin II blockade synergistically attenuate renal interstitial fibrosis in mice. J Am Soc Nephrol,2002,13 (10):2464-2477.
    5. Fan JM, Huang XR, NgY Y, et al. Interleukin-1induces tubular epithelial-myofibroblast transdifferentiation through a transforming growth factor-beta1-dependent mechanism in vitro. Am J Kidney Dis,2001,37:820-831
    6. Muller GA, Zeisberg M, Strutz F. The importance of tubulointerstitial damage in progressive renal disease. Nephrol Dial Transplant,2000,15 (suppl) :76-77.
    7. Johnson DW, Saunders HJ, Baxter RC, et al. Paracrine stimulation of human renal fibroblasts by proximal tubule cells. Kidney Int,1998,54:747-757.
    8. Riser BL, Cortes P, YeeJ. Modelling the effects of vascular stress in mesangial cells. Curr Opin Nephrol Hypertens,2000,9:43-47.
    9. Zeisberg M, Hanai J, Sugimoto H, et al. BMP-7 counteracts TGF-beta1 induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med,2003, 9:964-968.
    10. Zavadi l J, Bottinger EP. Transforming growth factor-beta and epithelial- myofibroblast transdifferentiation. Oncogen.2005 Aug 29;24 (37) :5764-74
    11. Kirchberg K, Lange TS, Klein KC, et al. Induction ofβ1 integrin synthesis by recombinant platelet一derivedgrowth factor (PDGF一AB) correlates with an en-hanced migratory response of human demal fibroblasts to various extracellular matrix proteins. Exp Cell Res,1995; 220:29
    12. Wang SN, Hirschberg R. Growth factor ultrafiltration in experimental diabeticnephropathy contributes to interstitial fibrosis. American Journal of Physiology Renal Electrolyte Physiology,2000,278(4),554~560
    13 Kingsley K, Rust WL,etal. PDGF-BB enhances expression of,and reduce adhesion to, laminin-5 in vascular smooth muscle cells. Biochem Biophy Res Commun, 2002,294 (5), 1017~1022
    14.Schindler T,Bornmann W,PellicenaP,et al. Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science,2000,289:1938-1942.
    15. Druker BJ,Talpaz M,Resta DJ,et al.Efficacy and safety of a specific inibitor of ythe Bcr-Abl tyrosine in chronc myeloid leukemia. N Engl jJ Med,2001,344:1031-1037
    16.Ciardiello F. Epidermal growth factor receptor tyrosine kinase inhibitors as anticancer agents. Drugs,2000,60:Suppl 1:25-32
    17. Takahari D, Matsunaga T, Fujimi A, etal. Treatment of chronic myeogenous leukemia with imatinib mesylate resulting in hematological remission and marked regression of myelofibrosis[J].RinshoKetsuek2002,43(10):924-930.
    18. Aono Y,NishiokaY,InayamaM,etal.Imatinib as a novel anti-fibrotic agent in bleomycin-induced pulmonary fibrosis in mice[J].Am J Respir Crit Care Med,2005,171(11):1279-1285.
    19.Lassila M, Jandeleit- Dahm K, Seah KK, et al Imatinib attenuates diabetic nephropathy in apolipoprote in E-knock out mice J Am Soc Nephrol 2005, 16( 2): 363-73
    1. Zavadi l J, Bottinger EP. Transforming growth factor-beta and epithelial- myofibroblast transdifferentiation. Oncogen.2005 Aug 29;24 (37) :5764-74
    2. NgY Y, Huang TP, Yang WC,et al.Tubular epithelial-myofibroblasttrans differentiation in progressive tubular interstitialfibosis in 5/6 nephrectiomize rats. Kindey Int,1998, 54:864-876.
    3. Norman JT, Clark IM, Garcia PL. Hypoxia promotes fibrogenisis in human renal fibrosis. Kindey Int, 2000, 58:2351-2366.
    4. Yang J, Dai C, Liu Y. Hepatocyte growth factor gene therapy and angiotensin II blockade synergistically attenuate renal interstitial fibrosis in mice. J Am Soc Nephrol, 2002, 13 (10) :2464-2477.
    5. Fan JM, Huang XR, NgY Y, et al. Interleukin-1 induces tubular epithelial- myofibroblast transdifferentiation through a transforming growth factor-beta1-dependent mechanism in vitro. Am J Kidney Dis, 2001, 37:820-831
    6. Muller GA, Zeisberg M, Strutz F. The importance of tubulointerstitial damage in progressive renal disease. Nephrol Dial Transplant, 2000,15 (suppl) :76-77.
    7. Johnson DW, Saunders HJ, Baxter RC, et al. Paracrine stimulation of human renal fibroblasts by proximal tubule cells. Kidney Int, 1998 ,54:747-757.
    8. Riser BL, Cortes P, Yee J. Modelling the effects of vascular stress in mesangial cells. Curr Opin Nephrol Hypertens, 2000, 9:43-47.
    9. Yang J, LiuY. Delayed administration of hepatocyte growth factor reduces renalfibrosis in obstructive nephropathy. Am J Physiol Renal Physiol, 2003, 284 (2) :F349-57
    10.Ikolic,Paterson DJ, Atkins RC. The role of macrophages in glomerulonephritis [J]. Nephrol Dial Transplant, 2001. 16 Supp l5:3-7
    11. Schindler T,Bornmann W,PellicenaP,et al. Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science,2000,289:1938-1942.
    12. Takahari D, Matsunaga T, Fujimi A, etal. Treatment of chronic myeogenous leukemia with imatinib mesylate resulting in hematological remission and marked regression ofmyelofibrosis[J].RinshoKetsuek2002,43(10):924-930.
    13. Aono Y, NishiokaY, InayamaM, etal. Imatinib as a novel anti-fibrotic agent in bleomycin -induced pulmonary fibrosis in mice[J].Am J Respir Crit Care Med, 2005,171(11): 1279-1285.
    14. Lassila M, Jandeleit- Dahm K, Seah KK, et al Imatinib attenuates diabetic nephropathy in apolipoprote in E-knock out mice J Am Soc Nephrol 2005, 16( 2): 363-73
    15. Bateman JF, Lamande SR, Ramshaw JAM: Colagen superfamily ,in Extracelhilar Matrix(vol2): Molecular Components and Interaction, edited by Comper WD, Amstedam Harwood Acdemic 1996:22-67.
    16. Krieg T, Leroy EC. Diseases of the extracellular matrix. J Mol Med. 1998;76:224-225.
    17. Eddy AA. Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol. 1996;7:2495-2508.
    18. Obstructive nephropathy and renal fibrosis.Am J Physiol Renal Physiol. 2002 Nov; 283(5):F861-75. Review.
    19. Mohammed S, Taguchi T. Cellular and molecular events leading to renal tubulointerstitial fibrosis. Med Electron Microsc. 2002;35:68-80.
    20. Stokes MB, Holler S, Cui丫et al. Expression of decorin, biglycan, and colagen type I in human renal fibrosing disease. Kidney Int. 2000; 57: 487-498
    21. Kee HX,Thornhill BA,Chevalier RL,et al. Phenotypic transformation of renal tubular epithelial cells and interstitial fibroblasts following unilateral ureteral obstruction(UUO) or single nephron obstruction(SNO) in the rats [ J ].J Am Soc Nephrol.1996;7: l 768-1772.
    1. EddyAA.Molecularbasisofrenalfibrosis.PediatrNephrol2000,15(3-4):290-310.
    2. Schindler T,Bornmann W,PellicenaP,et al. Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science,2000,289:1938-1942.
    3. Takahari D, Matsunaga T, Fujimi A, etal. Treatment of chronic myeogenous leukemia with imatinib mesylate resulting in hematological remission and marked regression of myelofibrosis[J].RinshoKetsuek2002,43(10):924-930.
    4. Aono Y, NishiokaY,InayamaM,etal.Imatinib as a novel anti-fibrotic agent in bleomycin-induced pulmonary fibrosis in mice[J].Am J Respir Crit Care Med,2005,171(11):1279-1285.
    5. Lassila M, Jandeleit- Dahm K, Seah KK, et al Imatinib attenuates diabetic nephropathy in apolipoprote in E-knock out mice J Am Soc Nephrol 2005, 16( 2): 363-73
    6. Gilbert RE, KeIIy DI, McKayT, etal PDGF signal transduction inhibition ameliorates experimental mesangial proliferative glomemlonephritis Kidney Int, 2001, 59 1324-1332
    7. Iwano M,,Neilson EG. Mechanisms of tubulointrstitial fibrosis.Curr Opin Nephrol Hypertern.2004 May;139(3):279-84.
    8. LiY,YangJ,DaiC,etal. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J Clin Invest,2003,112:503-516.
    9. DaiC,YangJ,LiuY.Transforming growth factor-beta1 potentiates renal tubular epithelial cell death by a mechanism in Edependent of Smad sigaling. J Biol Chem,2003,278: 12537-12543.
    10.黄云剑,张远宁,王沂芹,等.PAI-1和TIMP-1基因在肾小管间质纤维化中的表达及的干预作用[J].中国病理生理杂志,2004(9):1542-1546.
    11.黄杰雄.增殖细胞核抗原的研究进展.国外医学生理、病理科学与临床分册1994;14(1):9-11
    12.李萍.肾间质纤维化动物实验研究进展及肾间质纤维化的基因治疗.国际泌尿系统杂志2006; 26( 2):261-266
    13. . StrutzfOkada H,Cecilia WL,etal. Identification and characterization of a fibroblastmarker;FSP1.J Cell,1995,1320:393-405.
    14.王小琴,高呜.成纤维细胞与肾脏纤维化.临床肾脏病杂志,2002,2(4):197-199.
    15.唐嵘,樊均明.肌成纤维细胞与肾间质纤维化.中国中西医结合肾病杂志,2002,3(5):308-309.
    16. SpornMB,RobertsAB Transforming growth factor-beta: recent progress and new challenges.J Cell Biol. 1992 Dec;119(5):1017-21.
    17. Yang J Liu,Y; Blockage of tubular epithelial to myofibroblast transition by hepotocyte growth factor prevents renal interstitial fibrosis.J Am Soc Nephrol.2002,13:96-107
    1. Aono Y, NishiokaY,InayamaM,etal.Imatinib as a novel anti-fibrotic agent in bleomycin-induced pulmonary fibrosis in mice[J].Am J Respir Crit Care Med,2005,171(11):1279-1285.
    2. Lassila M, Jandeleit- Dahm K, Seah KK, et al Imatinib attenuates diabetic nephropathy in apolipoprote in E-knock out mice J Am Soc Nephrol 2005, 16( 2):363-73
    3. Gilbert RE, KeIIy DI, McKayT, etal PDGF signal transduction inhibition ameliorates experimental mesangial proliferative glomemlonephritis Kidney Int, 2001, 59 1324-1332
    4.朱辟疆.肾脏纤维化与抗纤维化治疗研究.中国中西医结合肾病杂志, 2004, 5(2) :114-117
    5.李萍.肾间质纤维化动物实验研究进展及肾间质纤维化的基因治疗.国际泌尿系统杂志2006; 26( 2):261-266
    6. StrutzfOkada H,Cecilia WL,etal. Identification and characterization of a fibroblast marker;FSP1.J Cell,1995,1320:393-405.
    7.唐嵘,樊均明.肌成纤维细胞与肾间质纤维化.中国中西医结合肾病杂志,2002,3(5):308-309.
    8. SpornMB,RobertsAB Transforming growth factor-beta: recent progress and new challenges.J Cell Biol. 1992 Dec;119(5):1017-21.
    9. Yang J Liu,Y;Blockage of tubular epithelial to myofibroblast transition by hepotocyte growth factor prevents renal interstitial fibrosis.J Am Soc Nephrol.2002,13:96-107
    10. Kanamaru Y, Nakao A,Tanaka Y,etal. Involvement of p300 in TGF-B/Smad- pathway- mediated alpha2 (I) collagen expression in mouse mesangial cells.Nephron Exp Nephrol, 2003,95(1):e36-42.
    11. Mark C. Wilkes and Edward B. Leof.Transforming Growth FactorβActivation of c-Abl Is Independent of Receptor Internalization and Regulated by Phosphatidylinositol- 3-Kinase and PAK2 in Mesenchymal Cultures. J. Biol. Chem., 2006,9: 27846-27854
    12.陈琛,叶冬梅.转化生长因子TGF-β/Smads信号通路研究进展.医学分子生物学杂志, 2006,3(2):126-128
    13. Cell-type-specific activation of PAK2 by transforming growth factor beta independent of Smad2 and Smad3.Mol Cell Biol. 2003 Dec;23(23):8878-89.
    14.黄文林、朱孝峰主编.信号转导.人民卫生出版社,2005年第一版
    15. Schindler T,Bornmann W,PellicenaP,et al. Structural mechanism for STI-571 inhibitionof Abelson tyrosine kinase. Science,2000,289:1938-1942.
    1. Schieppati A, Remuzzi G. Chronic renal disease as a public health problem: Epidemiology, social, and economic implications. Kidney int 2005;68(suppl 1):s7-s10.
    2. Eddy AA. Molecular basis of renal fibrosis. Pediatr Nephrol 2000; 15: 290-301.
    3. Iwano M, Neison EG. Mechanisms of tubulointerstitial fibrosis. Curr OpinNephrol Hypertens 2004; 13: 279-284.
    4. Hirschberg R. Wound healing in the kidney: complex interactions in renal interstitial fibrogenesis. J Am Soc Nephrol 2005; 16: 9-11.
    5. Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 2004; 15: 1-12.
    6. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112: 1776-1784.
    7. Yang J, Zhang X, Li Y et al. Downregulation of Smad transcriptional corepressors SnoN and Ski in the fibrotic kidney: an amplification mechanism for TGF-β1 signaling. J Am Soc Nephrol 2003; 14: 3167-3177.
    8. Bottiger Ep, Bitzer M. TGF-βsignaling in renal disease. J Am Soc Nephrol 2002; 13: 2600-2610.
    9. Schnaper HW, Hayashida T, Hubchak SC et al. TGF-βsignal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol 2003; 284: F243-F252.
    10. Ma LJ, Jha S, Ling H et al. Divergent effects of low versus high dose anti-TGF-βantibody in puromycin aminonucleoside nephropathy in rats. Kidney Int 2004; 65: 106-115.
    11. Wang W, Huang XR, Li AG et al. Signaling mechanism of TGF-β1 in prevention of renal inflammation: role of Smad7. J Am Soc Nephrol 2005; 16: 1371-1383.
    12. Hou CC, Wang W, Huang XR et al. Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-βsignaling and fibrosis in rat remnant kidney. Am J Pathol 2005; 166: 761-771.
    13. Yang J, Shultz RW, Mars WM et al. Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. J Clin Invest 2002; 110: 1525-1538.
    14. Edgtton KL, Gow RM, Kelly DJ et al. Plasmin is not protective in experimental renal interstitial fibrosis. Kidney Int 2004; 66: 68-76.
    15. Cheng S, Lovett DH. Gelatinase A(MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Am J Pathol 2003; 162: 1937-1949.
    16. Radisky DC, Levy DD, Littlepage LE et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 2005; 436: 123-127.
    17.Nakamura T, Nawa K, Ichihara A, Kaise N, Nishino T. Purification and subunit structure of hepatocyte growth factor from rat platelets. FEBS Lett 1987; 224: 311-18.
    18.Gohda E, Tsubouchi H, Nakayama H, Hirono S, Sakiyama O, Takahashi K, Miyazaki H, Hashimoto S, Daikuhara Y. Purification and partial characterization of hepatocyte growth factor from plasma of a patient with fulminant hepatic failure. J Clin Invest 1988; 81: 414-9.
    19.Miyazawa K, Shimomura T, Kitamura A, Kondo J, Morimoto Y, Kitamura NI. Molecular cloning and sequence analysis of the cDNA for a human serine protease responsible for activation of hepatocyte growth factor. Structural similarity of the protease precursor to blood coagulation factor XII. J Biol Chem 1993; 268: 10024-8.
    20.Matsumoto K, Nakamura T. Emerging multipotent aspects of hepatocyte growth factor. J Biochem 1996; 119: 591-600.
    21.Matsumoto K, Nakamura T. Hepatocyte growth factor (HGF) as a tissue organizer for organogenesis and regeneration. Biochem Biophys Res Commun 1997; 239: 639-44.
    22.Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Van der Woude GF, Aaronson SA. Identification of hepatocyte growth factor as the c-met proto-oncogene product. Science 1991; 251: 802-4.
    23.Naldini L, Vigna E, Narsimhan RP, Gaudino G, Zarnegar R, Michalopoulos GK, Comoglio PM. Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene 1991; 6: 501-4.
    24. Yang J, Liu Y. Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis. J Am Soc Nephrol 2002; 13: 96-107.
    25.Mizuno S, Kurosawa T, Matsumoto K, Mizuno-Horikawa Y, Okamoto M, Nakamura T. Hepatocyte growth factor prevents renal fibrosis and dysfunction in a mouse model of chronic renal disease. J Clin Invest 1998; 101: 1827-34.
    26.Ishibashi K, Sasaki S, Sakamoto H, Hoshino Y, Nakamura T, Marumo F. Expression of receptor gene for hepatocyte growth factor in kidney after unilateral nephrectomy and renal injury. Biochem Biophys Res Commun 1992; 187: 1454-9.
    27.Liu Y, Rajur K, Tolbert E, Dworkin LD. Endogenous hepatocyte growth factor ameliorates chronic renal injury by activating matrix degradation pathways. Kidney Int 2000; 58: 2028-43.
    28.Mizuno S, Matsumoto K, Wen J, Nakamura T. Hepatocyte growth factor suppresses interstitial fibrosis in a mouse model of obstructive nephropathy. Kidney Int 2001; 59: 1304-14.
    29.Azuma H, Takahara S, Matsumoto K, Ichimaru N, Wang JD, Moriyama T, WaagaAM, Kitamura M, Otsuki Y, Okuyama A, Katsuoka Y, Chandraker A, Sayegh MH, Nakamura T. Hepatocyte growth factor prevents development of chronic allograft nephropathy in an experimental rat transplant model. J Am Soc Nephrol 2001; 12: 1280-92.
    30. Yang J, Dai C, Liu Y. A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition. J Am Soc Nephrol 2005; 16: 68-78.
    31. Liu Y. Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. Am J Physiol Renal Physiol 2004; 287: F7-F16.
    32.Morrissey J, Hruska K, Guo G, Wang S, Chen Q, Klahr S. Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function. J Am Soc Nephrol 2002; 13 (suppl 1): S14-21.
    33.Wang S, Chen Q, Simon TC, Strebeck F, Chaudhary L, Morrissey J, Liapis H, Klahr S, Hruska KA. Bone morphogenetic protein-7 (BMP-7), a novel therapy for diabetic nephropathy. Kidney Int 2003; 63: 2037-49.
    34. Zeiberg M, Hanai J, Sugimoto H et al. BMP-7 counteracts TGF-β-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 2003; 9: 964-968.
    35. Iyer SN, Wild JS, Schiedt MJ, Hyde DM, Margolin, SB, Giri SN. Dietary intake of pirfenidone ameliorates bleomycin induced lung fibrosis in hamsters. J Lab Clin Med 1995; 125: 779-85.
    36. Iyer SN, Gurujeyalakshmi G, Giri SN. Effects of pirfenidone on procollagen gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J Pharmacol Exp Ther 1999; 289: 211-8.
    37. Suga H, Teraoka S, Oka K, Komemushi S, Furutani S, Yamauchi S, Margolin S. Preventive effect of pirfenidone against experimental sclerosing peritonitis in rats. Exp Toxicol Pathol 1995; 47: 287-92.
    38. Duce B, Miric G, Mirkovic S, Margolin, S, Taylor S, Brown L. Reversal of cardiac fibrosis by pirfenidone. Naunyn Schmiedebergs Arch Pharmacol 1998; 358 (suppl 2): P36-107.
    39. Hua BL. Antifibrotic agent, pirfenidone, reduces the progression of experimental glomerulosclerosis. 32nd Annu Meet Am Soc Nephrol (Nov 5-8, Miami Beach) 1999, Abst 2900.
    40. Shimizu F, Fukagawa M, Yamauchi S. Pirfenidone prevents the progression of irreversible glomerular sclerosis lesions in rats. Nephrology 1997; 3: 315-22.
    41. Shimizu T, Fukagawa M, Kuroda T, Hata S, Iwasaki Y, Nemoto M, Shirai K, Yamauchi S, Margolin SB, Shimizu F, Kurokawa K. Pirfenidone preventscollagen accumulation in the remnant kidney in rats with partial nephrectomy. Kidney Int 1997; 52 (suppl 63): S239-43.
    42. Shimizu T, Kuroda T, Hata S, Fukagawa M, Margolin SB, Kurokawa K. Pirfenidone improves renal function in the post obstructed kidney. Kidney Int 1998; 54: 99-109.
    43. Shihab FS, Bennet WM, Yi H, Andoh TF. Pirfenidone decreases TGF-b1 expression and ameliorates fibrosis in chronic cyclosporine nephrotoxicity. Am J Transplant 2001; 1 (suppl 1): A34.
    44. Cain WC, Stuart RW, Lefkowitz DL, Starnes JD, III, Margolin SB, Lefkowitz SS. Inhibition of tumor necrosis factor and subsequent endotoxin shock by pirfenidone. Int J Immunopharmacol 1998; 20: 685-95.
    45. Di Sario A, Bendia E, Saccomanno S, Ridolfi R, Ugili U, Trozzi L, Jezequel AM, Benedetti A. Effect of pirfenidone on rat hepatic stellate cell proliferation and collagen production. J Hepatol 2002; 37: 584-91.
    46. Bani D. Relaxin: a pleiotropic hormone. Gen Pharmacol 1997; 28: 13-22.
    47. Unemori EN, Amento EP. Relaxin modulates synthesis and secretion of procollagenase and collagen in human dermal fibroblasts. J Biol Chem 1990; 265: 10681-5.
    48. Unemori EN, Pickford LB, Salles AL, Piercy CE, Grove BH, Erikson ME, Amento EP. Relaxin induces extracellular matrix-degrading phenotype in human lung fibroblasts in vitro and inhibits lung fibrosis in murine models in vivo. J Clin Invest 1996; 98: 2739-45.
    49. Garber SL, Mirochnik Y, Brecklin, CS Unemori EN, Singh AK, Slobodskoy L, Grove BH, Arruda JA, Dunea G. Relaxin decreases renal interstitial fibrosis and slows progression of renal disease. Kidney Int 2001; 59: 876-82.
    50. Lewis M, Amento EP, Unemori EN. The AP-1 domain mediates transcriptional inhibition of stromelysin by interferon-gamma in normal human fibroblasts. J Cell Biochem 1999; 72: 373-86.
    51. Danielson LA, Sherwood OD, Conrad KP. Relaxin is a potent renal vasodilator in conscious rats. J Clin Invest 1999; 103: 525-33.
    52. Seibold JR, Clements PJ, Furst DE, Mayes MD, McCloskey DA, Moreland LW, White B, Wigley FM, Rocco S, Erikson M, Hannigan JF, Sanders ME, Amento EP. Safety and pharmacokinetics of recombinant human relaxin in systemic sclerosis. J Rheumatol 1998; 25: 302-7.
    53. Seibold JR, Korn JH, Simms R. Recombinant human relaxin in the treatment of scleroderma: a randomized, double-blind, placebo controlled trial. Ann Intern Med 2000; 132: 871-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700