用户名: 密码: 验证码:
大口径闸阀阀体结构优化与可靠性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大口径闸阀(公称通径为350-1200mm)在供水和工业管道上被广泛应用。阀体作为闸阀主要零件之一,其结构型式及参数对阀门总体性能有重要的影响。由于大口径闸阀阀体受到结构长度的限制,其容纳闸板的内腔通常为扁圆形或椭圆形的异形容器,很难用理论公式对其进行结构分析,结构优化也人多依靠工程经验。因此,如何采用先进的计算机辅助工程(Computer Aided Engineering,CAE)技术对大口径阀体结构的强度、刚度性能进行数值分析和优化设计,并对阀体结构进行可靠性评估,进而为该类结构的改进提供依据和指导,己成为业内共同关注的课题。
     本文以某厂大口径闸阀阀体为主要研究对象,运用CAE技术对其进行静力有限元分析,以及结构优化和可靠性研究。研究内容概述如下:
     1.以ANSYS Workbench Environment(AWE)协同优化分析平台为工具,建立大口径闸阀阀体的参数化模型,基于整体结构设定边界条件,按照实际工况和试验工况分别施加载荷,对阀体的强度、刚度进行了有限元分析,研究阀体等效应力的大小和分布状况。
     2.从安全、经济的角度,以阀体质量、刚度约束条件下应力集中处的最大等效应力作为目标函数,以阀体结构的基本尺寸作为设计变量,就如何改进阀体的结构以减少阀体的应力集中现象,合理优化加强筋结构尺进一寸和位置进行结构设计,得出阀体最优的结构尺寸。结合最大应力强度敏感性分析,为该类阀体结构的设计提出指导性意见。结果表明,改进后的阀体等效应力最大值减小18.8%,应力集中处应力值明显减小,改善了阀体的应力分布状况,使其分布更加均匀,该研究方法具有较高的效率和精度。
     3.根据结构可靠性理论,基于ANSYS软件的PDS(Probabilistic Design System)模块,以阀体结构尺寸、材料特性、载荷等设计参数为随机输入变量,采用Monte-Carlo随机有限元法中的拉丁超立方法进行抽样分析,直观地显示了设计参数对结构应力、强度可靠度的影响程度,实现对优化后阀体结构强度的可靠性分析,验证了优化后该结构的可靠性及优化设计的可行性。
Large-calibred gate valve (DN is 350~1200mm) in the water and industrial pipelines are widely used. Valve body is the most important one of the components of large-calibred valve, and its structure and parameters have important implications on the overall performance of the valve. As a result of large-calibred valve body constrainted by structural length, and the cavity which contains flat flashboard usually round or oval shaped container, so it is difficult to use the theoretical formula for the strength and stiffness analysis. Therefore, how to use the advanced CAE(Computer Aided Engineering) technology for strength and stiffness analysis, optimization design and reliability assessment of the large-caliber valve body structure, further improvements to provide a basis and guidance for such structures, that has become a common concern topic of the industry.
     This paper has an optimization analysis and reliability research on a large-calibred valve body structure of one factory, with the method of CAE and advanced design technology. The research content outline is as follows:
     1. Based on the ANSYS Workbench Environment integrating development platform environment, the parameterized model of large-calibred gate valve body was established, based on the boundary conditions of overall structure, the static valve body was analyzed under test conditions imposed load. The distribution and stress of valve was researched.
     2. From the perspective of security and economy, taking the stress at the maximum equivalent stress concentration point as target function with the geometric mass, stiffness constrains and the principal dimensions of the valve body as the design variables.The valve body structure design was carried out on how to improve the structure of valve body to reduce the stress concentration and optimize the structural size and location of stiffeners. The optimum size of the valve body was obtained, and combined with the maximum equivalent stress sensitivity analysis, some instructive suggestions for design of the kind valve body are provided. The results showed that the maximum equivalent stress of the optimized valve body structure was reduced by 18.8 percent significantly. and the distribution of stress is more reasonable. The research method has higher efficiency and accuracy.
     3. Based on the structural reliability theory, taking the valve structure size, materials property and load as the random input variable, the stochastic Monte Carlo finite method which bases on Latin ultra cubic sampling be used to achieve the cycle strength reliability analysis of the optimized valve body structure by the reliability analysis PDS module of ANSYS software platform. The strength reliability sensitivity analysis effect of the design parameters was showed intuitively, and the dependability of the optimized structure and the feasibility of the optimum design is verified ultimately.
引文
[1]李秀峰,陈宗华.CAE技术及其在阀门制造业中的应用[J].技术产品,2005,(2):5-7.
    [2]付青林.阀体受力与强度计算公式的理论依据[J].阀门,2006,(4):11-12.
    [3]庞明军.大口径球阀的阀体设计和三维数值模拟[J].化工机械,2005,32(6):385-388.
    [4]高平,孙江宏.基于UG的闸阀CAE[J].河北工业科技,2005,22(2):84-86.
    [5]陶春达,艾志久,刘春全.井口装置PFFA35/65-C88闸阀的有限元分析[J].西南石油学院学报,1997,19(4):95-98
    [6]李军业.弹性楔式闸阀阀体应力及位移分析[J].阀门,2003,(1):4-6.
    [7]江保全,欧学文.ANSYS与阀门新产品开发[J].变压吸附科技交流论文,2006,(6):25-28.
    [8]王孝天,杨源泉,贺友宗.不锈钢阀门的设计与制造[M].北京:原子能出版社,1957.
    [9]甘肃阀门研究所译.里昂氏阀门百科全书[M].兰州:甘肃阀门研究所,1980.
    [10]陆培文.实用阀门设计手册[M].北京:机械工业出版社,2002.
    [11]崔俊芝.计算机辅助工程(CAE)的现在和未来[J].计算机辅助设计与制造,2000,(6):3-7.
    [12]王自勤.计算机辅助工程(CAE)技术及其应用[J].贵州工业大学学报,2001,30(4):16-18.
    [13]王有智.CAE技术的过去、现在与未来[J].计算机辅助设计与制造,1998,(12):8-11
    [14]Schmit L A.Structural design by systematic synthesis[C].Proceedings of the 2nd Conference on Electronic Computation.New York:American Society of Civil Engineers,1960.105-122.
    [15]Fleury C,Sander G.Relations between optimality criteria and mathematical programming in structural optimization[C].Proceedings of symposium on applications of computer method in engineering,University of Southern California,LosAngeles,CA,1977.
    [16]Bellman R E and Zadeh L A.Decision-making in a fuzzy environment[J].Managenent Science.1970,(17):50-54.
    [17]MAYER R R,KIKUCHI N,SCOTT R A.Application of topological optimization techniques to structural crashworthiness[J].International Jounral for Numerical Methods in Engineering,Volume39,Issue8:1383-1403.
    [18]Woon S Y,Querin O M,Steven G P.Structural application of a shape optimization method based on a genetic algorithm.Struct Multidisc Optim 22:57-64.
    [19]Mattheck C,Bethge K.The structural optimization of trees.Naturwissen schaften 85,1998:10
    [20]夏人伟.工程数值优化方法研究进展[J].航空学报,2000,21(6):10-13.
    [21]田福祥.机械优化设计理论与应用[M].冶金工业出版社,1998.
    [22]刘刚.薄壁缺陷结构及其可靠性与安全性[M北京:人民交通出版社,2002.
    [23]蔡胜兵.集装箱岸桥双拉杆动臂的优化设计研究[D].武汉:武汉理工大学硕士论文,2001.
    [24]徐新辉.基于ANSYS分析的龙门起重机箱型主梁优化设汁[D].武汉:武汉理工大学硕士论文,2005.
    [25]陈喜红,辛成瑶.200kmh高速动力车车体结构轻量化设计和静动强度计算[J].铁道学报,2002(2):25-30.
    [26]王皎.重型特种车车架强度分析及其轻量化问题研究[D].武汉:武汉理工大学硕士学位论文,2005.
    [27]刘鹏,王讯肇民.基于齿行法的钏结构塔优化设计[J].特种结构,2000,(2):16-18.
    [28]Freudenthal A M.The Safety of Structures.Transition ASCE.,1947.
    [29]Cornell C A.A Probability-based Structural Code.Journal of ACI,1969,66(2)
    [30]Lind N C.Consistent Partial Safety Factors.ASCE.,1971,97(ST6)
    [31]Hasofer A M,Lind N C.An Exact and Invariant First Order Reliability Format[J].Eng.Mech.Div..ASCE,1974,100(1 )
    [32]Zhao Y G,Ono T.New Approximations for SORM:Partl.J.Eng.Mech,1999,125(1):79-93.
    [33]赵维涛,安伟光,严心池.二次二阶矩可靠性指标[J].哈尔滨上程大学学报,2004(2):35-37
    [34]Rackwitz R,Fiessler B.An Algorithm for Calculation of Structural Reliability under Combined Loading.Munchen,1977.
    [35]Shinozuka M,Lence E.A probabilistic model for spatial distribution of material properties.Engng Fracture Mech.,8(1976):217-227.
    [36]Combou B.Application of first order uncertainty analysis in the finite element method in linear elasticity,Proc.2nd Int.Conf.on Appli.of Statis.And Probab.Insoil and Structural Eng.,London.,1975.
    [37]Dendrou B A,Houstis E N.An inference finite element model for field applications Applied Mathematical Modeling,1,Guildford,England(1978):49-55.
    [38]Handa K,Anderson K.Application of finite element method in the stochastic analysis of structures In:Proc 3rd ICO SSAR.Trondheim:Elsevier Scientific.1981.409-417.
    [39]Amazaki F,Shinozuka M.Neumann expansion for stochastic finite element analysis of Engineering Mechanics[J].1988,114(8):1335-1354.
    [40]彭雄奇.基于三参数可靠性分析模型的随机有限元法[J].西北工业大学学报,1996,(1):26-29.
    [41]孙殿玉,刘志新.主闸阀强度与刚度分析[J].阀门,2000,(6):14-16.
    [42]朱朝辉.UG软件在系列化阀门产品设计中的应用[J].阀门,2001,(1):35-36.
    [43]丁祝顺.汽机主蒸汽调节阀阀体强度及应力检测技术的研究[D].北京:华北电力大学硕士学位论文,2001.
    [44]吴狄.3D CAD在阀门设计中的应用[J].阀门,2003,(1):30-31.
    [45]李秀峰,陈宗华.低温阀门闸板应力场的数值计算及分析[J].化工机械,2005,32(1):27-31.
    [46]邵将.节流管调控式阀门CAD模块丌发及CAE应用技术研究[D].无锡:江南大学硕士学位论文,2004.5
    [47]周思柱,袁新梅.井口阀体有限元计算与简化计算的比较[J].石油天然气学报,2005,27(2):256-257.
    [48]余龙.阀门三维参数化建模与仿真分析[D].兰州:兰州理工大学硕士学位论文,2005.
    [49]陈英华.阀门仿真实验系统性能评价方法研究[D].兰州:兰州理工大学硕士学位论文,2005.
    [50]巫宗萍,徐兵,羊海涛.阀门用波纹管的应力分析[J].润滑与密封,2006(11):127-129.
    [51]刘世辉.基于VB和数据库技术的阀门三维设计及试验仿真系统的研究[D].兰州:兰州理工大学硕士学位论文,2005.
    [52]杨源泉.阀门设计手册[M].北京:机械工业出版社,1992
    [53]俞树荣,宋伟.大口径闸阀阀体强度分析与结构优化[J].兰州理工大学学报,2007,33(5):64-66.
    [54]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700