用户名: 密码: 验证码:
高压隔离开关自力型触指结构优化设计及其成形技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
触指零件是高压隔离开关最核心的部件,高压隔离开关的接通和断开要依靠触指/触头配合结构来实现,触指零件的服役寿命决定了高压隔离开关的寿命,进而决定着高压输变电网的安全运行。传统触指一般采用紫铜制作,为保证触指具有一定的强度和刚度,通常制作触指的紫铜板厚度较大,浪费铜材;传统触指一般采用弹簧提供触指和触头之间的接触压力,弹簧的存在使触指/触头的配合结构较为复杂,触指自洁能力差,同时长期使用后弹簧失去弹性,致使接触压力不足,接触电阻增大,造成导电回路过热等故障。自力型触指依靠自身刚性提供接触压力,该类型触指不但使零件厚度减薄,节省铜材,而且简化了触指/触头配合结构,自洁能力强,接触压力稳定,且避免了因弹簧存在引起的导电回路过热等故障。本文基于新型Cu-Cr合金材料在自力型触指上的应用及高压隔离开关服役工况的要求,对自力型触指和自力型触指/触头配合结构进行了研究。采用优化设计方法设计了一种高压隔离开关用新型自力型触指,同时对新型自力型触指/触头配合结构参数进行了优化分析,并通过数值分析研究了新型自力型触指的成形工艺。
     1.借助ANSYS Workbench软件,根据自力型触指强度和刚度理论分析,对自力型触指受力情况进行了数值分析,同时对自力型触指截面形状进行了优化设计。得到如下结论:
     (1)在触指材料一定的情况下,自力型触指截面形状是影响其自身强度和刚度的主要因素。为提高自力型触指的强度和刚度,本文提出了“W”形截面自力型触指结构。
     (2)经优化后,“W”形截面自力型触指的截面参数为厚度h = 3.18mm,圆角半径r = 2.32mm,中间槽宽w = 2.73mm;矩形截面自力型触指截面厚度为h = 3.33mm。
     (3)优化后的“W”形截面自力型触指与矩形截面自力型触指相比,最大变形减小了1.43mm,触指零件刚度显著提高;在触指材料相同的条件下,质量减小了4.22g。
     (4)与传统紫铜触指相比,“W”形截面自力型触指厚度由5mm减小到3.18mm,质量减轻47g,节材38.7%。
     2.利用SolidWorks软件建立了“W”形截面自力型触指/触头配合结构有限元分析模型。按照ANSYS Workbench软件参数化语言要求设置了优化参数,并通过无缝数据接口成功将模型及优化参数导入ANSYS Workbench软件。研究了触头直径D和触头位移S对自力型触指等效应力和变形的影响,采用目标驱动优化技术对触头直径D和触头位移S进行了优化。优化结果表明,“W”形自力型触指/触头配合结构最佳结构参数为:D = 63.39mm,S = 15.42mm。
     3.分析了自力型触指成形特点,制定了弯曲、压筋复合+压弯、冲孔复合成形“W”形截面自力型触指新工艺。采用Deform-3D软件研究了“W”形截面自力型触指弯曲、压筋复合成形性能。主要研究结果如下:
     (1)触指成形过程中,“W”形截面区域发生剧烈变形,过渡圆角处应力、应变最大,且破坏系数最高。
     (2)基于对自力型触指的优化设计和成形数值模拟的研究,提出将“W”形截面自力型触指圆角半径修正为2.7mm。
     (3)根据新型自力型触指成形工艺,设计了“W”形截面自力型触指弯曲、压筋复合和压弯、冲孔复合成形模具。
Contact fingers are the most core components of high voltage isolating switch. Whether isolating switch connects or not depends on assembly structure of contact finger/contact. The service life of contact finger determines the life of high voltage switch, and determines the safe operation of the high voltage power grid. The tradition contact finger is made of copper plate which thickness is up to 5mm, and the contact pressure between the contact finger and the contact is afforded by spring. So the tradition contact finger with the spring not only wastes plenty of copper, but can easily result in contact overheat or a major power accident. The self-elastic contact finger without the support of the spring has a small quantity usage of copper which consumedly save copper, and prevent overheat happening which may be caused by the spring. So the self-elastic contact finger is an important goal that designers go after in recent years. In this paper, combining with high voltage isolating switch service condition, using the optimized design method, a new kind of self-elastic contact finger used in high voltage isolating switch was designed, and the new assembly structure of self-elastic contact finger/contact was analyzed. Then, the forming process of the new self-elastic contact finger was studied by numerical analysis.
     1. According to the strength and rigidity theoretical analysis of self-elastic contact finger, Using ANSYS Workbench, The self-elastic contact finger was analyzed, and the cross-section shapes of self-elastic contact finger were optimized. Get conclusions as follows:
     (1) In the case of certain materials, the cross-section shape of self-elastic contact finger is one of the main factors which influence its own strength and rigidity. To improve its strength and rigidity, self-elastic contact finger with“W”shape section was put forward in this research.
     (2) After the optimization, Section parameter of self-elastic contact finger with
     “W”shape section were thickness h = 3 mm, fillet radius r = 2.32 mm, middle groove width w = 2.73 mm; thickness of self-elastic contact finger with rectangular section is h = 3.33 mm.
     (3) Compared with the self-elastic contact finger with rectangular section, the maximum deformation of the optimized self-elastic contact finger with“W”shape section was reduced 1.43 mm, rigidity was increased observably.
     (4) Compared with the traditional copper contact finger, section thickness of self-elastic contact finger with“W”shape section was reduced 1.82 mm, mass reduced 47 g, materials saved by 38.7%.
     2. Assembly structure parametric model of self-elastic contact-finger/contact was created using SolidWorks software, parameter names of contact diameter D and contact displacement S were set. The model and input parameters were imported into ANSYS Workbench software, in which the relationship between input parameters and response parameters were researched and input parameter D and S were optimized based on goal-driven optimization technique. Optimized input parameters are D = 63.39 mm, S = 15.42 mm.
     3. This paper analyzed forming characteristics of self-elastic contact finger, established bending and swaging compound + bending and punching compound new process to form self-elastic contact finger with“W”shape section. Using Deform - 3D software, bending and swaging compound forming performance of self-elastic contact finger with“W”shape section was researched. Get conclusions as follows:
     (1) Severe plastic deformations were occurred around the filleted corner of“W”shape section region of the self-elastic contact finger and the maximum equivalent stress and maximum equivalent strain were on the filleted corner. On the filleted corner region the damage coefficient was highest.
     (2) Based on the optimal design for self-elastic contact finger and the study on forming numerical simulation, put forward that the round angle-radius r of self-elastic contact finger with“W”shape section was revised to 2.7 mm.
     (3) According to the forming process of new self-elastic contact finger, bending and swaging compound and bending and punching compound forming die both were designed for self-elastic contact finger with“W”shape section.
引文
[1]“十一五”电力建设及高压开关市场分析[EB]. http://articles.e-works.net.cn/electrical /article48448.htm, 2011-02-03.
    [2]国家电网“十二五”投资将超1.7万亿元[EB]. http://www.china5e.com/show.php? contentid=138128, 2010-11-05.
    [3]费雷.“十一五”期间中国电力工业发展取得巨大成就[EB]. http://www.indaa.com.cn/ dl/hygc/201012/t20101221_462345.html, 2010-12-01.
    [4]国务院常务会议:实施新一轮农村电网改造升级工程[EB]. http://www.gov.cn/ldhd/2011-01/05/content_1778924.htm, 2011-02-05.
    [5]董韬.电网规划项目综合评价研究[D].保定:华北电力大学, 2008, 1-5.
    [6]我国电力发展规划预测及电网的发展趋势[EB]. http://www.doc88.com/p-30022238575.htm, 20l1-02-05.
    [7]我国超高压隔离开关的发展历程和水平评述[EB]. http://articles.e-works.net.cn/electrical /Article71173_1.htm, 2011-02-05.
    [8]苑舜,崔文军.高压隔离开关设计与制造[M].北京:中国电力出版社, 2007, 1-14.
    [9]杨德华. 10kV旋转式隔离开关易引发的故障原因分析及改造[J].广西电力. 2007, (05): 48-49.
    [10]陈宏伟,王光临. GW4-126型户外隔离开关的常见缺陷分析及改进措施[J].高压电器, 2004, 40(2): 155-157.
    [11]王沛,魏强,付连元. 110kV~220kV高压隔离开关存在的问题及其改进[J].宁夏电力. 2003, (02): 20-27.
    [12]王敬志. GW4和GW5系列隔离开关运行现状与改造[J].湖南电力. 2006, 26(02): 40-48.
    [13]谢宏亮. GW5-35系列隔离开关存在的问题及改进[J].大众电气. 2006, (10): 32-33.
    [14]黄伟杰.高压隔离开关的完善化改造[C]. 2006年研究综述与技术论坛专刊. 2006, 56-57.
    [15]赵铁林.高压隔离开关的故障及处理分析[J].科技信息. 2008, (22): 301-302.
    [16] Andrew S. Whittaker, Gregory L. Fenves, Amir S.J. Gilani. Seismic evaluation and analysis of high-voltage substation disconnect switches [J]. Engineering Structures 2007, 29: 3538-3549.
    [17]史登祥.高压隔离开关的故障处理[J].农村电气化, 2007, (6): 31-32.
    [18]石建军.户外高压隔离开关存在的问题和改进措施[J]. 2006, 21(04): 510-512.
    [19]吴东,王孝宇.影响户外隔离开关运行可靠性的原因分析及对策[J]. 2005, (02): 42-43.
    [20]李建基.高压开关设备实用技术[M].北京:中国电力出版社, 2004, 434-440.
    [21] GB/T 11022-1999,高压开关设备和控制设备标准的共性技术要求[S].北京:国家质量技术监督局, 1999.
    [22]曹胜利,苑金海,赵昌.户外高压隔离开关的腐蚀与防护分析[J].华通技术, 2007, (3): 53-55.
    [23]谢宏亮. GW5- 35系列隔离开关存在的问题及改进[J].电工技术应用, 2006, (10): 32-33.
    [24]关于GW4系列高压隔离开关一些问题浅析[EB]. http://www.ehuahai.com/news /xingyedongtai/2010/0427/15664.html, 2011-02-09.
    [25]郑焕城, GW4型户外高压隔离开关缺陷分析及预防措施[J].电气时代. 2008, (08): 92-94.
    [26]谢宏亮. GW4-110型隔离开关触头发热缺陷及处理方法[J].大众用电. 2007,(09): 31-32.
    [27]梁方建,张道乾. GW5-110型隔离开关触头发热缺陷分析及检修处理[J].高压电器. 2008, 44(01): 88-90.
    [28]岳永刚,白志强,赵墨林,等.采用导电滚动触头的隔离开关过热故障分析[J].高压电器, 2010, 44(6): 592-595.
    [29]林莘,何柏娜,徐建源.自力型触头的设计与计算[J].高电压技术, 2008, 34(4): 828-830.
    [30]马伟强.碰撞过程中高压开关触头分析及优化[J].机电工程技术, 2008, 37(06): 90-92.
    [31]张正周,黎斌.弹簧触头设计(Ⅱ)[J].高压电器. 2009, 45(03): 70-72.
    [32]黎斌,张正周.弹簧触头设计[J].高压电器. 2007, 43(05): 358-360.
    [33]张建.新材料在隔离开关触指上的应用研究[C].武汉:中国电机工程学会高压电专委会学术年会, 2009, 1194-1197.
    [34]刘志远,王仲奕,张炫,等.杯状纵磁真空灭弧室开断能力与触头直径和触头开距的关系[J].高压电器, 2006, 42(03): 169-171.
    [35] Chuantao Zheng, Chunsheng Ma, Xin Yan. Optimal design and analysis of a high-speed, low-voltage polymer Mach-Zehnder interferometer electro-optic switch [J]. Optics & Laser Technology 2010, 46: 457-464.
    [36] A. Kundu, S. Sethi, N.C. Mondal, et al. Analysis and optimization of two movable plates RF MEMS switch for simultaneous improvement in actuation voltage and switching time [J]. Microelectronics Journal 2010, 41: 257-265.
    [37]李世芸,唐夫阳.基于UG和ADAMS的高压开关弹簧机构动力学仿真和优化[J].高压电器. 2008, 44(2): 110-113.
    [38]宫瑞磊,肖风良,王峰,等.基于响应表面法的550kV GIS隔离开关中的结构优化设计[J].高压电器, 2009, 45(05): 100-103.
    [39] Bing-Chung Chen, Noboru Kikuchi. Topology optimization with design-dependent loads [J]. Finite Elements in Analysis and Design, 2001, 37: 57-70.
    [40] Apostolos Papanikolaou. Holistic ship design optimization [J]. Computer-Aided Design, 2010, 42: 1028-51044.
    [41] Joo-Ho Choi. Shape design sensitivity analysis and optimization of general plane arch structures [J]. Finite Elements in Analysis and Design, 2002, 39: 119-136.
    [42]徐新辉.基于ANSYS分析的龙门起重机箱形主梁优化设计[D].武汉:武汉理工大学, 2005, 1-37.
    [43]邓杨芳.优化理论及ANSYS程序在桥梁优化设计中的应用研究[D].重庆:重庆交通大学, 2009, 1-44.
    [44] G. Zeng, S.H. Li, Z.Q. Yu, et al. Optimization design of roll profiles for cold roll forming based on response surface method [J]. Materials and Design, 2009, 30: 1930-1938.
    [45] Jyhwen Wang. Design optimization of rigid metal containers [J]. Finite Elements in Analysis and Design, 2001, 37: 273-286.
    [46]郭仁生,苏君,卢洪胜.优化设计应用[M].北京:电子工业出版社, 2003, 1-10.
    [47]张鄂.机械与工程优化设计[M].北京:科学出版社, 2008,1-150.
    [48]方世杰,綦耀光.机械优化设计[M].北京:机械工业出版社, 2003, 3-117.
    [49]谢里阳.现代机械设计方法[M].北京:机械工业出版社, 2005, 112-131.
    [50]王凤岐,张连洪,邵宏宇.现在设计方法[M].天津:天津大学出版社, 2004, 65-139.
    [51]张彦敏.飞机蒙皮拉伸成形工艺优化研究[D].北京:北京航空航天大学, 2006, 49-70.
    [52] Xiao-Ping Zeng, Yong-Ming Li, Jian Qin. A dynamic chain-like agent genetic algorithm for global numerical optimization and feature selection [J]. Neurocomputing, 2009, 72: 1214- 1228.
    [53] F. Jime′nez, J.M. Cadenas, G. Sa′nchez, et al. Multi-objective evolutionary computation and fuzzy optimization [J]. International Journal of Approximate Reasoning, 2006, 43: 59-75.
    [54] Jian-Hua Zhao, Zhaoheng Liu, My-Thien Dao. Reliability optimization using multiobjective ant colony system approaches [J]. Reliability Engineering and System Safety, 2007, 92: 109-120.
    [55] D. Croccolo, R. Cuppini, N. Vincenzi. Design improvement of clamped joints in front motorbike suspension based on FEM analysis [J]. Finite Elements in Analysis and Design, 2009, 45: 406-414.
    [56] Qingfeng Zeng, Litong Zhang, Yongdong Xu, et al. A unified view of materials design: Two-element principle [J]. Materials and Design, 2009, 30: 487-493.
    [57]李兵,何正嘉,陈雪峰. ANSYS Workbench设计、仿真与优化[M].北京:清华大学出版社, 2008, 1-103.
    [58] ANSYS Workbench Help. ANSYS Inc.
    [59] Dogan Ozmen, Mustafa Kurt, Bulent Ekici, et al. Static, dynamic and fatigue analysis of a semi-automaticgun locking block [J]. Engineering Failure Analysis, 2009, 16: 2235-2244.
    [60] Stefan Reh, Jean-Daniel Beley, Siddhartha Mukherjee, et al. Probabilistic finite element analysis using ANSYS. Structural Safety 2006, 28: 17-43.
    [61]陈俊.基于AWE的滚齿机床身结构刚度优化设计[D].南京:南京信息工程大学, 2008, 27-47.
    [62]权帅峰.大口径闸阀阀体结构优化与可靠性分析[M].兰州:兰州理工大学, 2009, 30-53.
    [63]王华侨,赵华萍.基于AWE协同环境下的环形气瓶结构有限元优化分析[J].航天制造技术, 2005, (2): 10-15.
    [64]汪宇,王东方.基于AWE的立式加工中心床身优化设计[J].微计算机信息, 2010, 26 (1-1): 130-178.
    [65]陈殿云,张淑芬,杨民献.工程力学[M].兰州:兰州大学出版社, 2003, 123-157.
    [66]王平.自力型触头的应用[J].高压电器,1996, 32(5):41-43.
    [67]赵祖德,姚良均,郭鸿运,等.铜及铜合金材料手册[M].北京:科学出版社, 1993: 154-157.
    [68]钟卫佳,马可定,吴维治,等.铜加工技术实用手册[M].北京:冶金工业出版社, 2007: 195-197.
    [69]李传民,王向丽,闫华军.金属成形有限元分析实例指导教程[M].北京:机械工业出版社, 2007, 1-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700