用户名: 密码: 验证码:
集成故障诊断与容错控制研究及在卫星姿态控制中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
控制系统的集成故障诊断与容错控制作为故障诊断与容错控制的交叉领域,可以避免单独设计故障诊断或容错控制引起的时间延迟以及对故障诊断结果的完全依赖,能够为现代控制系统长寿命高可靠性运行提供有利保障。本文以卫星姿态控制系统为应用背景,设计三类集成故障诊断与容错控制算法,主要内容如下:
     对控制系统中的各种故障进行分类与建模,并根据内部资料中对一些卫星姿态控制系统测试与在轨运行中的故障的记载,对故障进行详细分析,设置本文研究的飞轮与陀螺故障类型与大小,构建全文统一的卫星姿态闭环系统仿真环境。闭环控制仿真结果也为验证后续进行的其它容错控制结果的有效性提供基准。
     研究基于有效性因子/LQR的集成故障诊断与容错控制方法。分别针对敏感器故障、执行机构故障、敏感器/执行机构故障三种情况,利用偏差分离原理,相应地引入测量有效性因子、控制有效性因子、测量/控制有效性因子表示系统的故障程度。通过二阶Kalman滤波估计对有效性因子值以及状态变量进行估计,同时设计线性二次调节器(LQR)作为重构控制器。将状态估计结果作为原控制器和重构控制器的输入,通过统计假设检验进行判断,当确认故障发生时,引入重构容错控制器,与原控制器联合对故障状况下的控制系统进行补偿控制。当统计假设检验的结果说明系统无故障时,则不引入重构控制器。基于有效性因子的故障诊断与基于LQR的重构控制器联合设计实现了集成故障诊断与容错控制。研究基于IMM/EA的集成故障诊断与容错控制方法。利用随机混合系统描述故障系统,考虑执行机构和敏感器故障,根据系统所有可能会出现的故障的先验知识,确定N个系统模型逼近混合系统。当系统中部分或者全部状态发生突变时,采用交互式多模型(IMM)估计器得到故障发生的位置以及大小。通过重构机制判断,当确认故障发生时,进行容错控制器重构设计,与原控制器联合对故障状况下的控制系统进行补偿控制。利用故障模型中的动力学部分,采用输出反馈或(以及)状态反馈进行特征结构配置(EA)设计重构控制器。基于IMM的故障诊断与基于EA的重构控制器联合设计实现集成故障诊断与容错控制。
     针对集成故障诊断与容错控制中的鲁棒容错控制问题,设计基于混合H_2/H∞控制的鲁棒容错控制方法。考虑执行机构和敏感器故障,利用故障诊断的结果,并考虑故障诊断结果和系统参数的不确定性,分别采用H_2和H∞范数作为系统故障诊断和容错控制的性能指标,设计输出反馈混合H_2/H∞控制器,运用线性矩阵不等式(LMI)方法,通过给定的性能指标γ∞,调节故障诊断性能指标γ2,求解集成故障诊断与容错控制问题,并使得包含该集成故障诊断与容错控制器的闭环系统鲁棒性能最优。
     针对线性系统和非线性系统分别设计基于鲁棒模型预测控制(RMPC)和基于鲁棒自适应的鲁棒容错控制方法。RMPC控制将鲁棒概念和预测控制的滚动优化原理进行融合,通过在线更新系统模型和滚动优化,对具有输入和输出约束的线性不确定系统,同时考虑执行机构和传感器的故障以及FDD的不确定性,将不确定控制系统完整性设计转化为对新系统模型的鲁棒控制器设计问题。基于鲁棒自适应的容错控制引入在线估计,可以解决参数扰动引起的系统故障问题,利用自适应控制Lyapunov函数(ACLF)设计反馈,使系统实现自适应稳定,并采用逆最优控制方法求解。为降低鲁棒容错控制器的计算负担,首先通过姿态确定子系统对测量敏感器中的各种误差和故障,包括测量误差、噪声、漂移等,进行修正,得到修正后的姿态测量信息。然后,再由FDD子系统进行故障诊断,此时的FDD子系统主要是针对执行机构进行的故障诊断。最后,自适应逆最优控制器根据FDD得到的执行机构故障模型设计容错控制器,以满足故障状况下的系统性能要求。
As an interdisciplinary domain between Fault Detection and Diagnosis (FDD) and Fault-Tolerant Control (FTC), Integrated Fault Detection and Diagnosis and Fault-Tolerant Control of control system enable to avoid the time-delay induced by single FDD or FTC and the absolute dependence by the results of FDD to present a benefited insurance for the long-life and reliable circulation of modern control system. Regarding satellite attitude control system as the application background, three kinds of integrated FDD and FTC algorithm are developed in this dissertation. Here is the main content in detail:
     First, classifying and modeling the faults for control system. Combining several actual faults of satellite attitude control system recorded in internal materials, the thesis setups the category and range of flywheel and gyro faults and builds a uniform satellite attitude control system simulation environment which is utilized in the later chapters. What is more, two simple controllers are simulated in the satellite attitude closed-loop control system provided the benchmark to validate the efficiencies of other fault-tolerant controllers that are presented in later.
     Second, designing the Integrated Fault Detection and Diagnosis and Fault-Tolerant Control algorithm based on the effectiveness factor and Linear Quadric Regulator (LQR). Focusing on the sensor faults, actuator faults and sensor/actuator faults, the dissertation applies measurement effectiveness factor, control effectiveness factor and measurement/control effectiveness factor respectively to express the range of system faults by using the bias-separated principle. Further, the two-stage kalman filter is used to obtain the effectiveness factor value and system estimated states are obtained. Meanwhile, a LQR controller is designed with the estimated results to accomplish the joint design of Fault Detection and Diagnosis and Fault-Tolerant Control.
     Third, designing the Integrated Fault Detection and Diagnosis and Fault-Tolerant Control algorithm based on IMM/EA. The faulty system is expressed by stochastic hybrid system and the location and range of faults can be determined by the IMM when the saltation occurs among the partial or whole states of the attitude estimation subsystem. Furthermore, using the dynamic part in the fault model and the output feedback or/and state feedback to assign the eigenstructure, a reconstructure controller is developed to compensate the original control system to complete the joint design of Fault Detection and Diagnosis and Fault-Tolerant Control.
     Finally, designing the Integrated Fault Detection and Diagnosis and Fault-Tolerant Control algorithm based on robust fault-tolerant control. The robust fault-tolerant control algorithms base on the robust model predictive control (RMPC) and H_2/H_∞are present respectively for the linear system and also a robust adaptive robust fault-tolerant control algorithm is also designed for the nonlinear system. Syncretizing the robust concept of H_∞control and the rolling optimal principle of predictive control, RMPC transforms the integrity of uncertainty control system to the problem of robust controller design for the new system model through the online updating of system model and rolling optimal. The robust adaptive fault-tolerant control enables to solve the system faults resulted by the parameter disturbances, where the system is adaptive stable by using feedback of the adaptive control Lyapunov function。
引文
1 R. V. Beard. Failure Accommodation in Linear Systems through Self-reorganization. Report MVT-71-1, MIT, Cambridge, Massachusetts, 1971.
    2 R. K. Mehra, J. Peschon. An Innovation Approach to Fault Detection and Diagnosis in Dynamics. Automatica, 1971, 7: 637-640.
    3 A. S. Willsky. A Survey of Design Methods for Failure Detection and Diagnosis in Dynamics. Automatica, 1976, 12: 601-611.
    4 D. M. Himmelblau. Fault Detection and Diagnosis in Chemical and Petrochemical Process. Amsterdam: Elsevier Press, 1978.
    5叶银忠,潘日芳,蒋慰孙.动态系统的故障检测与诊断方法.信息与控制, 1986, 15(6): 27~34.
    6周东华,孙优贤.控制系统的故障检测与诊断技术.清华大学出版社, 1994.
    7张育林,李东旭.动态系统故障诊断理论与应用.国防科技大学出版社, 1997.
    8闻新,张洪钺,周露.控制系统的故障诊断和容错控制.机械工业出版社, 1998.
    9周东华,叶银忠.现代故障诊断与容错控制.清华大学出版社, 2000.
    10胡昌华,许化龙.控制系统故障诊断与容错控制的分析和设计,国防工业出版社, 2001: 5-7.
    11 R. Isermann, P. Balle. Trends in the Application of Model Based Fault Detection and Diagnosis of Technical Processes. Proc. of IFAC World Congress, San Francisco, 1996, 1-12.
    12 P. M. Frank. Fault Diagnosis in Dynamic Systems Using Analytical and Knowledge-based Redundancy-A Survey and Some new Results. Automatica, 1990, 26(3):459-474.
    13 A. Niederlinski. A Heuristic Approach to the Design of Interacting Multivariable Systems. Automatica, 1971, 7 (6):691-701.
    14 D. D. Saljak. Reliable Control Using Multiple Control Systems. International Journal of Control. 1980, 31: 303-329.
    15 R. J. Patton. Robustness Issues in Fault Tolerant Control. Proceedings ofInternational Conference on Fault Diagnosis, Toulouse, France. 1993: 1081-1117.
    16 R. J. Patton. Fault-Tolerant Control: the 1997 Situation. Proc. of IFAC/Imacs Symposium on Fault Detection and Safety for Technical Process. Hull, England, 1997: 1033-1055.
    17 D. H. Zhou, P. M. Frank. Fault Diagnosis and Fault Tolerant Control. IEEE Transactions on Aerospace and Electronic Systems. 1998, 34(2): 420-427.
    18 M. Blanke. Fault-Tolerant Control Systems. In New Trends in Advanced Control. Berlin: Springer. 1999, 171-196.
    19 M. Blanke. M. Kinnaert, J. Lunze, et al. Diagnosis and fault-tolerant control. Berlin, Germany: Springer-Verlag, 2004.
    20 Y. Zhang, J. Jiang. Integrated Design of Reconfiguration Fault-Tolerant Control Systems. Journal of Guidance, Control and Dynamics. 2000, 1(24): 133-136.
    21郑应平.控制科学面临的挑战:专家意见综述.控制理论与应用, 1987, 4(3):1-9.
    22叶银忠,潘日芳,蒋慰孙.控制系统的容错技术:回顾与展望.化工进展, 1989, 2: 38-43.
    23 Ye Y. Fault-Tolerant Pole Assignment for Multivariable System Using A Fixed State Feedback. Control Theory and Applications, 1993, 10(2):212-216.
    24周东华, X. Ding.容错控制理论及其应用.自动化学报, 2000, 26(6): 788-797.
    25胡寿松,程炯.飞机的模型参考容错控制.航空学报, 1991,12(5):279-286.
    26王源,胡寿松,吴庆宪.一类非线性系统的自组织模糊CMAC神经网络自适应重构跟踪控制.控制理论与应用, 2003, 20(1):70-72.
    27刘亚,胡寿松.基于模糊模型的鲁棒自适应重构飞行控制.航空学报, 2004, 25(2):143-147.
    28葛建华,孙优贤,周春辉.故障系统容错能力判别的研究.信息与控制, 1989, 18(4): 8-11.
    29葛建华,孙优贤,最优鲁棒容错控制器的设计.控制理论与应用, 1994, 11(5): 630-633.
    30 D. H. Zhou, Y. X. Sun, Y. G. Xi, et al. Extension of Friedland’s Separate-Bias Estimation to Randomly Time-Varying Bias for Nonlinear Systems. IEEETransactions on Automatic Control, 1993, 38(8): 1270-1273.
    31 L. Yu, J. Wang, J. Chu. Guranteed Cost Control of Uncertain Linear Discrete-Time Systems. Proceedings of ACC’97, 1997: 3181-3184.
    32葛建华,孙优贤,周春晖.传感器失效故障系统的容错控制研究.浙江大学学报(自然科学版), 1990, 24(3): 481-483.
    33张颖伟,王剑,张嗣瀛.一类组合大系统的容错控制.东北大学学报(自然科学版), 2000, 21(4): 351-353.
    34周玉国,张颖伟,王福利.线性不确定系统的容错控制.东北大学学报(自然科学版), 2001, 22(5): 473-476.
    35孙金生,李军,徐蓄等.动态大系统的分散容错控制.南京理工大学学报, 1998, 22(2): 117-120.
    36孙金生,李军,王执锉.不确定离散系统的D稳定鲁棒容错控制.控制理论与应用. 1998, 15(4): 636-641.
    37孙金生,王执铨.不确定离散时滞系统的D稳定鲁棒容错控制.控制理论与应用,2002,19(6): 968-971.
    38郑英,方华京.不确定网络化控制系统的鲁棒容错控制.西安交通大学学报, 2004, 38(8): 804-807.
    39 B. Liang, G. Duan. Observer-Based H-infinite Fault-Tolerant Ccontrol for Descriptor Linear Systems with Sensor Failures. Proceedings of 5th World Congress on Intelligent Control and Automation, Hangzhou, China, 2004: 1012-1016.
    40孙继涛,邓飞其,刘永清.变时滞不确定关联系统的分散鲁棒容错控制.控制与决策. 2001, 16(6): 968-970.
    41姜偕富,费树崛,冯纯伯.线性时滞系统依赖于时滞的H∞状态反馈控制.自动化学报. 2001, 27(1): 108-114.
    42王福忠,姚波.一类不确定线性系统容错保成本控制器设计.系统工程与电子技术. 2004, 26(5): 636-640.
    43 M. Vidyasagar, N. Viswanadham. Reliable Stabilization Using a Multi-Controller Configuration. Automatica. 1985, 21: 599-602.
    44 J. Ackermann. Robustness against Sensor Failures. Automatica, 1984, 20(2): 211-215.
    45 M. Morari. Robust Stability of Systems with Integral Control. IEEE Transactions on Automatic Control. 1985, 30: 574-588.
    46 Y. Z. Ye. Fault Tolerant Pole Assignment for Multi-variable Systems Using A Fixed State Feedback. Control Theory and Application. 1993, 10(2): 212-218.
    47 Q. Zhao, J. Jiang. Reliable State Feedback Control System Design against Actuator Failures. Automatica, 1998, 34(10): 1267-1272.
    48胡昌华,王青,邓方林.具有H∞范数界的传感器失效容错控制方法研究.宇航学报, 1997, 18(3): 63-70.
    49 J. Chen, R. J. Patton, Z. Chen. An LMI Approach to Fault Tolerant Control of Uncertainty Systems. Proceedings of the 1998 IEEE ISIC/CIRA/ISAS Joint Conference, Gainthersburg, MD, September 14-17, 1998: 174-180.
    50 K. Zhou, A. Ren. A New Controller Architecture for High Performance, Robust, and Fault Tolerant Control. IEEE Transactions on Automatic Control. 2001, 46(10): 1613-1618.
    51 N. Niksefat, N. Sepehri. A QFT Fault-Tolerant Control for Electrohydraulic Positioning Systems. IEEE Transactions on Control System Technology, 2002, 10(4): 626-632.
    52宗臻,王诗宓.基于LMI的输出反馈鲁棒完整性控制器设计.控制理论与应用, 2005, 22(5): 682-971.
    53 J. S. Eterno, D. P. Looze, J. L. Weiss, A. S. Willsky. Design Issues for Fault-Tolerant Restructurable Aircraft Control. Proceedings of 24th Conference on Decision & Control, Fort Lauderdale, 1985: 900-905.
    54 R. Srichander, B. K. Walker. Stochastic Stability Analysis for Continuous-time Fault Tolerant Control Systems. Internal Journal of Control, 1993, 57 (3): 433-452.
    55 H. E. Rauch. Intelligent Fault Diagnosis and Control Reconfiguration. IEEE Control Systems, 1994, June: 26-32.
    56 A. K. Caglayan, S. M. Allen, K. Wehmuller. Evaluation of a Second Generation Reconfiguration Strategy for Aircraft Flight Control Systems Subjected to Actuator Failure Surface Damage. Proc. of 1988 National Aero. & Electron, Dayton. 1988, 520-529.
    57 Z. Q. Gao, P. J. Antsaklis. Stability of the Pdeudo-Inverse Method for Reconfigurable Control Systems. International Journal of Control. 1991, 53(3): 711-729.
    58 Jiang J. Design of Reconfigurable Control Systems Using EigenstructureAssignments. International Journal of Control, 1994, 59(2): 395-410.
    59 S. Kanev, M. Verhaegen. A Bank of Reconfigurable LQG Controllers for Linear Systems Subjected to Failures. Proceedings of the 39th IEEE, Conference on Decision and Control Sydney, Australia. December. 2000: 3684-3689.
    60 Y. Zhang, J. Jiang. Design of Proportional-Integral Regonfigurable Control Systems via Eigenstructure Assignment. Proceedings of the American Control Conference (ACC’00). Chicago, Illinois, USA. 2000: 3732-3736.
    61 J. Wang, W. J. Rugh. Feedback Linearization Families for Nonlinear Systems. IEEE Transactions on Automatic Control, 1987, 32(10): 935-940.
    62 C. Y. Huang, R. F. Stengel. Restructurable Control Using Proportional-Integral Implicit Model Following. Journal of Guidance, Control and Dynamics, 1990, 13(2): 303-30.
    63 K. Stoyan. Robust Fault-Tolerant Control. Netherlands, Febo-Druk Press, 2004: 1-237.
    64 D. H. Zhou, P. M. Frank. Fault Diagnostics and Fault Tolerant Control, IEEE Transaction on Aerospace and Electronic Systems, 1998, 34(2): 420-427.
    65 K. Astrom, P. Albertos, M. Blanke, et al. Control of Complex Systems. Springer Verlag. 2001.
    66陈虹,刘志远.一种基于H∞理论的鲁棒预测控制方法.自动化学报, 2002, 28(2): 296-300.
    67 M. Kothare, V. Balakrishnan, M. Morari. Robust Constrainedmodel Predictive Control Using Linear Matrix Inequalities. Automatica. 1996, 32(10), 1361-1379.
    68 M. Huzmezan, J. Maciejowski. Reconfigurable Flight Control during Actuator Failures Using Predictive Control. Proceedings of the 14th Triennial World Congress of IFAC. Beijing, China, 1999.
    69 S. Kanev, M. Verhaegen. Robust Output-Feedback Integral MPC: A Probabilistic Approach. Proceedings of the 41th IEEE Conference onDecision and Control (CDC’03), Maui, USA. 2003: 1914-1919.
    70罗小元.几类非线性系统鲁棒故障诊断及容错控制研究.燕山大学博士论文. 2006: 13-17.
    71 D. Wang, D. H. Hua, Y. H. Jin. Active Fault Tolerant Control of a Class ofNonlinear Time-Delay Processes. Chinese J. Chem. Eng. 2004, 12(1): 60-65.
    72 Z. Qu, C. M. Ihlefeldb, Y. Jin, et al. Robust Fault-Tolerant Self-Recovering Control of Nonlinear Uncertain Systems. Automatica. 2003, 39: 1763-1771.
    73 X. Zhang, T. Parisini, M. M. Polycarpou. Adaptive Fault-Tolerant Control of Nonlinear Uncertain Systems: An Information-Based Diagnostic Approach. IEEE Transactions on automatic control. Aug. 2004, 49(8): 1259-1274.
    74 Z. Gao, S. X. Ding. Actuator Fault Robust Estimation and Fault-Tolerant Control for a Class of Nonlinear Descriptor Systems. Automatica. 2007, 43: 912-920.
    75 H. N. Wu, H. Y. Zhang. Reliable Mixed L2/H∞Fuzzy Static Output Feedback Control for Nonlinear Systems with Sensor Faults. Automatica. 2005, 41: 1925-1932.
    76 C. Y. Chiang, H. M. Youssef. Neural Network and Fuzzy Logic Approach to Aircraft Reconfigurable Control Design. In: Proceedings of the 1995 American Control Conference. Washington, 1995.3505-3506.
    77 S. Saluds, M. J. Fuente. Neural-Networks-Based Fault Detection and Accommodation in a Chemical Reactor. In: Chen H F, Cheng D Z, Zhang J F eds. Proceedings of 14th World Congress of IFAC. Beijing: Publishing House of Pergamon, 1999. 169-174.
    78 H. Wang, Y. Wang. Neural-Network-Based Fault-Tolerant Control of Unknown Nonlinear Systems. IEEE Proceeding Control Theory and Application, September 1999, 146(5): 389-398.
    79 N. Mort, D A.Derradji. Control Reconfiguration in Submersible Vehicles Using Artificial Neural Networks. International Journal of Systems Science, 1999, 30(9): 989-1010.
    80 C. Zhou, W. Hu, Q. Cheng, et al. Nonlinear Reconfigurable Control Based on RBF Neural Networks. Proceedings of the 3rd World Congress on Intelligent Control and Automation. Hefei, IEEE Service Center, 2000. 1002-1005.
    81 D. L. Yu, D. W. Yu. Controlling an MIMO Process with Actuator and Component Faults. In: The proceedings of the 6th IFAC symposium on Dynamics and Control of Process System. June 4-6, 2001, Korea. 514-515.
    82 C. N. Nett. Algebraic Aspects of Linear Control System Stability. IEEE Transactions on Automatic Control 1986; 31(10): 941-949.
    83 C. N. Nett, C. A. Jacobson, A. T. Miller. An Integrated Approach to Controls and Diagnostics: The 4-Parameter Controller. In Proceedings of the 1988 American Control Conference, 1988: 824-835.
    84 A. Elias-Juarez, A. Ajbar, J. C. Kantor. Multiobjective Design with Integrated Diagnostics. Proceedings of the 1991 American Control Conference, 1991:1671-1672.
    85 M. L. Tyler, M. Morari. Optimal and Robust Design of Integrated Control and Diagnostic Modules. American Control Conference, Baltimore, MD, June 1994; 2060-2064.
    86 J. Stoustrup, M. J. Grimble, H. Niemann. Design of Integrated Systems for the Control and Detection of Actuator/Sensor Faults. Sensor Review 1997; 17(2):138-149.
    87 N. E. Wu. Robust Feedback Design with Optimized Diagnostic Performance. IEEE Transactions on Automatic Control. 1997, 42(9):1264-1268.
    88 M. J. Khosrowjerdi, R Nikoukhah, N. Safari-Shad. A Mixed H2/H∞Approach to Simultaneous Fault Detection and Control. Automatica. 2004, 40: 261-267.
    89 A. Marcos, G. J. Balas. A Robust Integrated Controller Diagnosis Aircraft Application. International Journal of Robust and Nonlinear control. 2005, 15: 531-551.
    90 M. Mariton. Detection Delays, False Alarm Rates and the Reconfiguration of Control Systems, International Journal of Control, 1989, 49(3): 981.
    91 R. Srichander, B. K. Walker. Stochastic Stability Analysis for Continuous-Time Fault-Tolerant Control Systems, International Journal of Control. 1993, 57(2): 433-452.
    92 Y. W. Kim. A Methodology for Integration of Control and Fault Diagnostics. Ph.D Dissertation of the Ohio State University, 1999: 1-183.
    93 X. Zhang, M. M. Polycarpou, T. Parisini. Integrated Design of Fault Diagnosis and Accommodation Schemes for a Class of Nonlinear Systems. Proceedings of the 40th IEEE Conference on Decision and Control. Orlande, USA, Dec. 2001: 1448-1453.
    94 B. Jiang, F. N. Chowdhury. Fault Estimation and Accommodation for Linear MIMO Discrete-Time Systems. IEEE Transactions on Automatic Control. 2005, 13(3): 493-499.
    95 S. C. Patwardhan, S. Manuja, S. Narasimhan, et al. From Data to Diagnosis and Control Using Generalized Orthonormal Basis Filters. Part II: Model Predictive and Fault Tolerant Control. Journal of Progress Control. 2006, 16: 157-175.
    96 P. Mhaskar, C. Mcfall, A. Gani, et al. Isolation and Handling of Actuator Faults in Nonlinear Systems. Automatica. 2007, 1-10.
    97张晓梅.基于模型的卫星姿控系统故障诊断的理论与应用研究.哈尔滨工业大学博士学位论文. 2001, 1-104.
    98 B. Friedland. Treatment of Bias in Recursive Filtering. IEEE Transaction on Automatic Control.1969, 14(4): 359-367.
    99 A. K. Caglayan, R. E. Lancraft. A Separated Bias Identification and State Estimation Algorithm for Nonlinear Systems. Automatica. 1983, 19(5): 561-570.
    100 A. K. Caglayan, S. M. Allen, K. Wehmuller. Evaluation of a Second Generation Reconfiguration Strategy for Aircraft Flight Control Systems Subjected to Actuator Failure Surface Damage Process of 1988 National Aerospace & Electron, Dayton. 1988: 520-529.
    101 N. E. Wu, Y. Zhang, K. Zhou. Control Effectiveness Estimation Using an Adaptive Kalman Estimator. In Proceedings of the IEEE International Symposium on Intelligent Control, Gaithersburg, MD, Sep. 1998: 181-186.
    102 N. E. Wu, Y. M. Zhang, K. M. Zhou. Detection, Estimation, and Accommodation of Loss of Control Effectiveness. International Journal of Adaptive Control and Signal Processing. 2000, 14: 775-795.
    103王德军.故障诊断与容错控制方法研究.吉林大学博士学位论文. 2004, 12: 1-103.
    104 G. J. Bierman. The Treatment of Bias in the Square-Root Information Filter/Smoother. Journal of Optimization Theory and Application. 1975, 16: 165-178.
    105周东华等.一类非线性系统输出偏差的伪分离估计算法.信息与控制. 1992, 21(3): 141-145.
    106周东华等.一类非线性系统输出输入偏差的伪分离估计算法.控制与决策. 1992, 7(3): 217-220.
    107 D. H. Zhou, Y. X. Sun, Z. J. Zhang. Extension of Friedland’s Separate-BiasEstimation to Randomly Time-Varying Bias of Nonlinear Systems. IEEE Transactions on Automatic Control. 1993, AC-38(8):1270-1273.
    108史忠科,王培德.非线性分离算法及其在飞行试验中的应用.航空学报, 1989,10(10): 501-508.
    109张汉国,张洪钺.用偏差分离估计的鲁棒Kalman滤波算法,控制与决策, 1991, 6(6): 413-417.
    110 Y. Zhang, H. Zhang, G. Dai. A New Bias Partitioned Square-Root Information Filter and Smoother for Aircraft State Estimation. Process of 31st IEEE Conference on Decision and Control, Tucson, 1992, 741-742.
    111 H. S. Witsenhausen. A Class of Hybrid-State Continuous-Time Dynamic Systems, IEEE Transactions on Automatic Control, 1966, 11(6):665-683.
    112 A. N. Michel.Recent Trends in the Stability Analysis of Hybrid Dynamical Systems, IEEE Transactions on Circuits and SystemsⅠ, 1999, 45(1):120-134.
    113 L. Hou, A. N. Miche. Stability Preserving Mappings for Stochastic Dynamical Systems, IEEE Transactions on Automatic Control. 2001, 46(6):933-938.
    114 H. A. P. Blom, Y. Bar-shalom. The Interacting Multiple Model Algorithm for Systems with Markovian Switching Coefficients. IEEE Transactions on Automatic Control, 1988, AC-33(8):780-783.
    115 Y. M. Zhang, R. X. Li. Detection and Diagnosis of Sensor and Actuator Failures Using IMM Estimator. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34 (4): 1293-1313.
    116 N. Tudoroiu, K. Khorasani. Fault Detection and Diagnosis for Satellite's Attitude Control System (ACS) Using an Interactive Multiple Model (IMM) Approach. IEEE Conference on Control Applications Toronto, Canada, August 28~31, 2005: 1287-1292.
    117 Y. Bar-Shalom, C. Huimin. IMM Estimator with Out-of-Sequence Measurement. IEEE Transactions on Aerospace and Electronic Systems, 2005,
    41 (1):90-98.
    118 J. Lu, H. D. Chiang, J. S. Thorp. Eigenstructure Assignment by Decentralized Feedback Control. IEEE Transactions on Automatic Control, 1993, 38(4): 587-594.
    119 M. Krstic, P. V. Kokotovic. Control Lyapunov Function for AdaptiveNonlinear Stabilization. Systems and Control Letters. 1995, 26(1): 17-23.
    120闫根峰,王俊,奚宏生等.严格反馈非线性系统的鲁棒自适应逆最优跟踪.中国科学技术大学学报. 2006, 36(5): 502-506.
    121陈奕梅,韩正之.一类非线性不确定系统的最优自适应控制.自动化学报, 2006, 32(1):54-59.
    122 W. Luo, Y. Chu, K. Ling. Inverse Optimal Adaptive Control for Attitude Tracking of Spacecraft. IEEE Transactions on Automatic Control. 2005, 50(11): 1639-1654.
    123 J. Ahmed, V. T. Coppola, D. S. Bernstein. Asymptotic Tracking of Spacecraft Attitude Motion with Inertia Matrix Identification. Proceedings of the 36th conference on Decision and Control, San Diego, USA. Dec. 1997, 2471-2476.
    124 M. E. Pittelkau. Kalman Filter for Spacecraft System Alignment Calibration. Journal of Guidance, Control and Dynamics. 2001, 24(6): 1187-1195.
    125 M. H. Smaili, J. Breeman, T. J. J. Lombaerts, et al. A Simulation Benchmark for Integrated Fault Tolerant Flight Control Evaluation. AIAA Modeling and Simulation Technologies Conference, Aug. 2006, AIAA-2006-6471.
    126梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用.北京:清华大学出版社. 2003: 94-95.
    127 F. Fahroo, I. M. Ross. Pseudospectral Methods for Infinite-Horizon Optimal Control Problems. Journal of Guidance, Control and Dynamics. 2008, 31(4): 927-936.
    128 N. Slegers. Predictive Control of a Munition Using Low-Speed Linear Theory. Journal of Guidance, Control and Dynamics. 2008, 31(3): 768-775.
    129 M. Nishi. Structured Control Design and Application to Fault Tolerance. AIAA Guidance, Navigation and Control Conference and Exhibit. 20-23, Aug. 2007, Hilton Head, South Carolina. AIAA-2007-6408.
    130邱红专.分散化滤波方法及其在组合导航系统中的应用研究.北京航空航天大学博士学位论文. 2005: 11.
    131 J. Y. Shin, C. M. Belcastro. Performance Analysis on Fault Tolerant Control System IEEE Transactions on Control Systems Technology. 2006, 14(5): 920-925.
    132林玉荣.基于星敏感器确定卫星姿态的滤波算法研究.哈尔滨工业大学博士论文. 2002, 46-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700