用户名: 密码: 验证码:
PSM/PP共混体系结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过控制聚合物形态结构达到提高材料力学性能的目标是人们关注的焦点,本文从加工过程中流变性能与结构形态对产品力学性能的影响入手,以实验测量、理论分析与数值模拟三个方面全面地分析了PSM/PP (生物基低碳材料/聚丙烯)共混物的结构与性能。
     对于PSM/PP结构与形态研究,本文分析了温度序列、组分序列、剪切序列对PSM/PP共混物结构与形态、界面层厚度等的影响。1. PSM/PP(90/10)共混物中分散相为PSM颗粒,随着温度升高分散相平均粒径都有先变大后变小的规律,其粒径分布逐渐变宽,界面层厚度先变大后变小。但是共混温度对共混物力学性能的影响较小;2.随着PSM含量增加,分散相间距有明显减小的趋势,拉伸强度、弯曲强度、冲击强度均呈减小的趋势;3.140~170℃,0~103S-1剪切速率越大越有利于PSM在PP基体中的分散均匀细化,然而PSM作为分散相的粒径大小、分布宽度与冲击性能大小并没有绝对的决定性关系,验证了分散相平均粒径并不是越小其冲击性能越高的结论。实验数据显示而言,当转速为40rpm分散相颗粒粒径大小为8.36μm其冲击强度最高,其界面层厚度为0.9μm。
     本文通过DMA研究表明,随着PSM含量的减少,PSM/PP共混体系的力学内耗tanδ次级转变峰越来越尖锐,验证了材料冲击性能与力学内耗tanδ成正比;-80~120℃时PSM/PP(90/10)储能模量Kerner理论值与实验值已基本吻合。
     应用毛细管流变仪研究PSM/PP体系的流变学性质,1.讨论了挤出成型温度、剪切速率、LPP含量和PP支链结构对PSM流动性能的影响:140~170℃,0~103S-1下PSM/PP共混体系流动曲线具假塑性流体特点;表观粘度随温度、剪切速率增加而降低,黏度随剪切速率下降逐渐减少;170℃后曲线有向牛顿型流体变化的趋势;PSM/SCBPP比PSM/LPP的表观粘度低,PSM/LCBPP比PSM/LPP的表观粘度高;PSM对剪切速率的敏感性低于PP。2.探讨了PSM/PP共混体系粘弹性:随着口模温度的升高或口模长径比的增大挤出胀大比B相对有所减小;随着压力载荷或剪切速率增大挤出胀大比随之增大。
     对于PSM/PP共混体系流变性能本构方程基础参数研究,本文利用关于B与第一法相应力差5个不同的方程式模拟PSM/PP共混体系的第一法相应力差的结果相近,这说明可选用方程之一模拟PSM/PP(90/10)共混体系的第一法向切应力作为本构方程的参数。
It is the focus of attention to improve material mechanical properties bycontrolling blend rheology and morphology. This paper studies the blend from theprocessing rheological property and morphology of the product mechanical propertyto the experimental measurements, theoretical analysis and numerical simulation toanalyse the properties of the PSM/PP (Plastic Starch bio-based Material/polypropylene) blends.
     To study structure and morphology of PSM/PP (90/10) blends, this papermeasures disperse phase and interface thickness through the sequence of temperature,components and shear rate structure and morphology.1. With increasing temperature,the interface layer average particle size of PSM/PP (90/10) has become smaller, andthe size distribution is wider, and trend of the interfacial layer thickness is smaller.But the blending temperature has little effect on the mechanical properties.2. WithPSM content increased, the the surface of the dispersed phase layer, the mechanicsproperties including tensile strength, flexural strength, impact strength showesdecreasing trend.3. It is useful for improving shear rate to refine the dispersed phase.But there is not directly relationship between particle disperse phase size, distributionwidth and the impact properties. This result verifies the conclusion that the impactproperty is not higher when the average particle size of dispersed phase is smaller.
     With the reduction in the content of PSM, PSM/PP blends mechanical internalfriction of the secondary transition peak became more acute through DMA studying,and it verifies mechanical internal friction is proportional to material impact property.During the entire experimental temperature range, PSM/PP (90/10) Kerner theoreticalstorage modulus and experimental values has been consistent. It is the explainationthat the Kerner theoretical storage modulus can be used as one of the constitutiveequation parameters.
     The rheological behavior of PSM/PP composite was studied by die rheometer.1.The influences of temperature, shear rate, mass fraction of PP and chain branching PPon the rheological curves of PSM were investigated, used for extrusion forming. Theresults show that the rheological curves obey power law and descend along with theincrease of temperature and shear rate during140~170℃,0~103S-1, and the decliningrate is more and more small. Additionally, the curves transform from non-Newtonsection to Newton section increase when the temperature over170℃. The viscosity ofPSM/SCBPP blend is lower than PSM/LPP, and the viscosity of PSM/LCBPP blend ishigher than PSM/LPP. Finally, shear rate sensitivity of PSM is lower than PP.2.Viscoelastic: Extrudate swell B relative reduces, as the die temperature or die aspectratio increasing. And Extrudate swell B relative increases, as the pressure load orshear rate increasing.
     About basic parameters of the constitutive equation for the rheological propertiesof the PSM/PP blends, in this paper, the first corresponding power differential results is similar to simulation of five different Extrudate swell B formulas. This shows thatwe can choose one of the formulas as constitutive equation parameter, throughsimulating the first corresponding power differential of the PSM/PP (90/10) blendsaccording to shear stress.
引文
[1] Michael J, Gidley S, Bociek M. Molecular organization in starch[J]. Chem Soc,1985,107:7040-7044.
    [2] Nara S, Komiya T. Studies on the relationship between water saturated state andcrystallinity by the diffraction method for moistened potato starch[J].Starch/Strike,1983,35:407-410.
    [3] Wang L F, Wang Y J. Structure and physicochemical properties of acid-thinnedcorn, potato and rice starch[J]. Starch/Strike,2001,53:570-576.
    [4] Paris M, Bizot H, Emery J. Crystallinity and structuring role of water in native andrecrystallized starches by13C CP-MAS NMR spectroscopy: Spectraldecomposition[J]. Carbohydrate Polymers,1999,39:327-339.
    [5] Otey F H, Westhoff R P. Biodegradable film compositions prepared from starchand copolymers of ethylene andacrylic acid[J]. Industrial Engineering ChemistryProduction Research and Development,1977,16:305-308.
    [6]梁兴荣.国外降解塑料发展动向[J].广东化工,1993,21:1-8.
    [7]何光波.淀粉基生物降解聚合物[J].高分子学报,1996,2:116-119.
    [8]彭少贤,池彩云.可生物降解淀粉基共混物的研究[J].塑料工业,2006,34:121-123.
    [9] Funkea U, Bergthallera W, Lindhauera M G. Processing and characterization ofbiodegradable products based on starch[J], Polymer Degradation and Stability,1998,59:293-296.
    [10]于昊.完全生物降解材料聚丙撑碳酸酯(PPC)/玉米淀粉共混物的研究[J].沈阳化工大学学报,2005,21:35-36.
    [11]于九皋.淀粉细化及其与聚乙烯增容性的研究[J].化工进展,1997,3:25-29.
    [12]吴俊,谢笔钧,朱金华.超微淀粉在LDPE中分散性及其共混体系性能研究[J].高分子材料科学与工程,2002,18(6):126-128.
    [13]周小凯.填充改性淀粉可纺性研究[D].天津纺织工学院,1999,13:25-26.
    [14]宋荣钊,王春林,曾梅珍.用高锰酸钾氧化研制氧化淀粉[J].化学世界,1993,34(4):170-172.
    [15] Thakore I M, Desai S, Sarawade B D et al. Studies on biodegradability,Morphology and thermo-mechanical properties of LDPE/modified starchblends[J]. Eur Polym J,2001,37(1):151-160.
    [16] Aburto J, Thiebaud S, Alric I et al. Properties of octanoated starch and its blendswith polyethylene[J]. Carbohyd Polym,1997,34(1-2):101-112.
    [17] Frank B, Berthold W, Siegfried W. Hydrophobic modification of starch byalkali-catalyzed addition of1,2-epoxyalkanes[J]. Starch/Strike,2001,53:555-559.
    [18] Kighflinger, Adrian P. Stable liquid amylopectin starch graft copolymercompositions[P]. US Pat:4375535.1983-03-01
    [19]高建平,于九皋.淀粉/丙烯腈接枝共聚反应速率及反应机理[J].高分子材料科学工程,2000,16(1):63-66.
    [20]于九皋,李新蕊.十一烯酸在淀粉/聚乙烯共混体系中的增容性[J].天津大学学报,1997,12:65-66.
    [21]保罗D R,巴克纳尔C B.聚合物共混物:组成与性能[M],北京:科学出版社,2004.
    [22]张玲.弹性体及无机刚性粒子增韧增强聚丙烯共混材料的研究[D].四川大学,2002.
    [23] Yu W, Zhou C X, Xu Y Z. Rheology of concentrated blends with immisciblecomponents[J]. Polym Sci Part B: Polym. PCMys.2005,43(18):2534-2544.
    [24] Yu W, Bousmina M, Ellipsoidal model for dropet deformation in emulsions[J].Rheology,2003,47(4):1011-1039.
    [25]应继儒. PP/POE微结构与性能[D].华中科技大学,2008.
    [26] Wu S. Formation of dispersed phase in incompatible polymer blends: Interfacialand rheological effects[J]. Polym Eng Sci.1987,27(5):335-343.
    [27] Wu S. Polymer interface and adhensive[M]. New York: Marcal Dekker,1982.
    [28]胡汉杰.环境降解塑料的降解原理及影响降解的因素[E].第三届生物基与分解材料技术和应用国际研讨会.2009.
    [29] Baranov A O, Medintseva T I. Dispersivity of rubbers in thermoplasticpolymers[J]. J Appl Polym Sci.,1999,73(8):1563-1567.
    [30]张洪斌,周持兴.流场中高分子共混物分散相的形态变化[J].高分子材料科学与工程.1999,15(7):89-93.
    [31]李云岩.聚丙烯/聚苯乙烯共混物相结构形成演变及其动力学研究[D].天津大学,2001.
    [32]于秀艳.相差显微镜研究PP/POE共混体系的相分散行为[J].化学工业与工程.2006,12:77-79.
    [33] Element P H M, Bos H L, Janssen J M H. Transient phenomena in dispersivemixing[J]. Chem Eng Sci.1993,48(2):267-276.
    [34]吴其晔.高分子凝聚态物理及其进展[M].上海:华东理工大学出版社,2006.
    [35]张本山.高交联非糊化淀粉物态性质与机理研究[D].华南理工大学,1999.
    [36]过梅丽.高聚物与共混材料的动态力学热分析[M].北京:化学工业出版社,2002.
    [37] Zorowski C F, Murayama T. Wave Propagation and Dynamic Modulus inContinuous Filament Twisted Yarns, Part I: Low Initial Yarn Tension[J].TextileResearch Journal,1967,37(10):852-860.
    [38] Bandyopadhyay G G, Bhagawan S S, Ninan K N, et al. Dynamic properties ofNR/EVA polymer blends: Model calculations and blend mormpeology[J]. J ApplPolym Sci,1999,72:165-174.
    [39] Bandyopadhyay G G, Bhagawan S S, Ninan K N, et al. Viscoelastic behavior ofNBR/EVA polymer blends: Application of models [J]. Rubb Chem Technol,1997,70:650-662.
    [40] Bandyopadhyay G G, Bhagawan S S, Ninan K N, et al. Viscoelastic behavior ofpolypropylene/nitrile rubber thermoplastic elastomer blends: Application ofKerner's models for reactively compatibilized and dynamically vulcanizedsystems[J]. J Polym Sci Part B: Polym PCMys,2004,42:1417-1432.
    [41] Mazich K A, PlummerJr H K, Samus MA, et al. Mean field calculations of thedynamic mechanical properties of two-PCMase elastomer blends: Includedparticles in a matrix PCMase[J]. J Appl Polym Sci.1989,37:1877-1888.
    [42] Mazich K A, KillgoarJr P C, Ingram JA. Mean-field calculations of the dynamicmechanical properties of heterogeneous elastomer blend[J]. Rubb Chem Technol,1989,62:305-314.
    [43] Liu H, Xie F. Thermal processing of starch-based polymers[J]. Progress inPolymer Science.2009.12(34):1348-1368.
    [44] Rodriguez-Gonzalez F J, Ramsay B A, Favis B D. Rheological and thermalproperties of thermoplastic starch with high glycerol content[J]. CarbohydratePolymers.2004(58):139-147.
    [45] Tzankova Dintcheva, La Mantia, et al. Durability of a starch-basedbiodegradable polymer[J]. Polymer Degradation and Stability.2007(92):630-634.
    [46] Kim Y S, Chung C I, Lai S Y, et al. Melt rheological and thermodynamicproperties of polyethylene homopolymers and poly(ethylene/a-olefin) copolymerswith respect to molecular composition and structure[J]. Appl Polym Sci,1996,59:125-137.
    [47] Mirahella F M. Correlation of the elution behavior in temperature rising elutionfractionation and melting in the solid state and in the presence of a diluent ofpolyethylene copolymers[J]. Polym Sci B: Polym Physics,2001,39:2819-2832.
    [48] Eynde S V, Mathot V B F, Koch M H J, et al. Thermal behaviour andmorphology of homogeneous ethylene-1-octene copolymers with highcomonomer contents[J]. Polymer,2000,41:4889-4900.
    [49] Villar M A, Failla M D, Quijeda R, et al. Rheological characterization of moltenethylene-a-olefin copolymers synthesized with Et[Ind]2ZrCl2/MAO catalyst[J].Polymer.2001,42:9269-9279.
    [50] Aguilar M, Vega J F, Sana E, et al. New aapeces on the rheological behaviour ofmetallocene catalyzed polyethy-Lene[J].Polymer.2001,42:9713-9721.
    [51] Paula M, Wood A, John M D. Using rheological data to determine the branchinglevel in metallocene polyethylene[J]. Macromolecules.2000,33:7489-7499.
    [52] Paula M, Wood A, John M D. Effect of molecular structure on the linearviscoelastic behavior of polyethylene[J]. Macromolecules.2000,33:7481-7488
    [53] Wood A, Costeux S. Thermorheolngical behavior of polyethylene: Effects ofmacrostructure and long chain branching[J]. Macromolecules,2001,34:6281-6290.
    [54] Liang J Z, Peng W. Melt viscosity of PP and FEP/PP blends at low shear rates[J].Polymer Testing,2009,13:1819-1832.
    [55] Xie F, Yu L. Rheological properties of starches with different amylose/amylopectin ratios[J]. Journal of Cereal Science.2009,49(3):371-377.
    [56]欧阳伟,邱运仁.聚乙烯醇缩丁醛/聚乙二醇体系的流变性能[J].高分子材料与工程,2010,26(12):92-94.
    [57]陈方泉,陈惠芳,潘鼎.聚丙烯腈/二甲基亚砜溶液的流变学性质[J].高分子材料与工程,2005,21(3):133-136.
    [58] Tanner R I. A theory of die-swell revisited[J]. Non-Newtonian Fluid Mech.2005,129:85-87.
    [59] Grassley W W, Glasscock S D. Crawley R L. Die swell in molten polymers[J].Trans Soc Rheol.1987
    [60] Mendelson R A, Finger F L, Bagley E B. Die swell and recoverable shear strainin polyethylene extrusion[J]. J Appl Polym Sci Part C: Polymer Symposia.1971,35(1):177-188.
    [61] Han Chang Dae. Rheology in polymer processing[M]. New York: AcademicPress,1976:50-56.
    [62] Bagley E B, Duffey H J. Recoverable Shear Strain and the Barus Effect inPolymer Extrusion[J]. Journal of Rheology.1975:14(4)89-95.
    [63] Cogswell F N. The rheology of polymer melts under tension[J]. Plast Polym.,1970,38:391-405.
    [64] Huang D C, White J L. Extrudate swell from slit and capillary dies: Anexperimental and theoretical study[J]. Polymer Engineering&Science.1979,19(9):609-616.
    [65] Liang J Z. Estimation of die-swell ratio for polymer melts from exit pressuredrop data[J]. Polymer Testing.2001,20:29-31.
    [66]梁基照.内胎胶挤出流动中第一法向应力差的预测[J].合成橡胶工业.2000,23(5):303-305.
    [67] Liang J Z. Rheological properties of glass bead-filled low density polyethylenecomposite melt in capillary extrusion[J]. Applied Polymer Science.1999,73:1451-1456.
    [68]梁基照.聚合物挤出流动中得弹性特性及其相互关系的定量表征[J].特种橡胶制品.2003,24(3):49-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700