用户名: 密码: 验证码:
青藏高原东部高寒草甸群落常见草本植物种子幼苗更新与生长研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
幼苗是植物生活史中的一个重要阶段,植物通过幼苗更新才能使种群得以扩大、扩散和延续。从种子萌发到幼苗建成的更新过程与植物群落的物种分布、丰富度以及群落的更新演替是密切相关的,特别是高寒草甸作为多年寒中生植物草本群落,其组分种的种子作为植被更新的潜在动力,对植被的演替和更新具有很大的贡献。而适宜的生境是植物幼苗更新的外在条件,由于过度放牧和人为施肥等不同的管理措施可以导致高寒草甸群落中的微生境差异。但微生境如何影响群落组分种的种子萌发和幼苗生长,至今尚未见系统的研究报道。因此,我们利用人工模拟的方法,研究了青藏高原东部高寒草甸群落中常见的杂类草组分种在不同微生境(光照、养分)下的幼苗更新(从种子萌发到幼苗出土、存活至越冬)过程和生长(生长率、生物量积累和分配)特征。以期揭示高寒草甸群落中常见杂类草组分种的幼苗更新机制和过程,为草地的退化和恢复过程提供理论基础。我们的研究结果主要有以下几个方面:
     1)光照微生境和种子大小的变化显著影响了这些杂类草组分种的萌发特征。本研究的20个物种间,小种子物种的萌发具有较大的光需求,而较大种子物种萌发具有相对较小的光需求,大部分物种的萌发是具有较小的或中性的光依赖性,其最适萌发的光照生境是中等光照和较低光照生境。大部分物种属于在较短时间内、集中性萌发并具有较大萌发率的物种,而较少物种属于在较长时间内、分散随机萌发并具有较低萌发率的物种。
     2)光照和种子大小差异显著影响了幼苗的出土率、存活率和越冬率。幼苗出土率、存活率、越冬率均与光照强度呈显著的正相关关系,而与种子大小的相互关系则随着生境差异发生了变化。本研究的大部分物种的幼苗最大出土率、存活率和越冬率均出现在中等光照和高光照条件下。高养分生境可以显著提高一些物种的幼苗存活率和越冬率,而对出土率没有显著影响。
     3)中等光照下的高养分微生境可以显著提高这些物种的幼苗更新补充概率。研究物种幼苗的更新补充率与光照呈显著正相关关系,养分差异也显著影响了物种内的更新补充率。在本研究的几个微生境下,种子幼苗平均更新补充概率约为10%~30%。
     4)微生境和种子大小显著影响了幼苗的生长率和生物量分配特征。幼苗的相对生长率、生物量积累、根分配、生物量根冠比和形态根冠比与光照强度呈显著正相关关系;幼苗的叶分配、茎分配、比叶面积和叶面积比与光照强度均呈显著的负相关关系。种子大小与初始幼苗大小、80天时的幼苗生物量和茎分配之间呈现显著的正相关关系;而与幼苗相对生长率、叶分配及遮荫生境下的幼苗长度(形态)根冠比均表现为显著的负相关关系。幼苗的最大相对生长率和生物量一般都出现在高养分生境下的高光照和中等光照条件下。
     5)较小种子物种幼苗具有较大的幼苗生长和更新补充可塑性。生境变化对较小种子物种的幼苗生长和更新补充产生更大的影响,而对较大种子物种的幼苗生长和更新补充则产生相对较小的影响。具有较小种子的物种幼苗比较大种子物种幼苗具有更大的生长可塑性和更新补充可塑性。
     6)幼苗通过其异质微生境下的形态生长特征的可塑性来改变其更新补充。在变化的微生境下,具有较小生长可塑性的物种具有相对较大的幼苗存活率;而生物量、株高可塑性和平均可塑性较高的物种具有相对较大的幼苗越冬存活率;具有较大的生物量分配和相对生长率可塑性的物种幼苗具有相对较大的存活率。
     7)放牧干扰下的高光照微生境有利于这些草甸常见组分种实生幼苗的更新补充,而施肥后草甸群落冠层底部的低光生境不利于这些物种的更新补充。不同种子大小的物种在不同微生境下表现了不同的幼苗更新特征,幼苗通过其形态特征可塑性调节来适应生境变化,提高其生存适合度内容,进而使其达到较大的出土、存活、越冬和成功更新补充概率。
Seedling period is the crucial stage during the whole plant life-history. Plants mainly make population extended, distributed and continued by seedling recruitment. The recruitment process from seed germination to seedling establishment is nearly related to species distribution, abundance and community succession in plant communities. Especially for alpine meadows which belong to perennial plant community, seeds of component species as potential dynamical of vegetation recruitment have significant contribution to vegetation recruitment and succession, because offspring recruitment may influence general patterns of succession and maintenance of diversity within communities and plant species richness and density in an area depends on a combination of patterns of arrival and survival of seeds, seedling emergence, and seedling survival. Fitting habitats were the extrinsic conditions for successful seedling recruitment in plant community. There are many different microsites in alpine meadow communities which were caused by different grassland management measures, e.g. overgrazing and fertilization. But. up to now. there is little systemic research on seed germination, seedling growth and establishment of component species in alpine meadow communities under different microsites were reported. So. we conducted this study on seedling recruitment process and growth performance of some familiar forbs component species under different microsites (light and nutrient availability), which were made by a simulative artificially method, in alpine meadow communities of the eastern Qinghai-Tibetan Plateau. Our objective was to study the seedling recruitment mechanism and process of familiar forbs component species in alpine meadow communities, and offer a theoretical foundation for understanding on grassland degradation and restoration process. Main results were following:
     1) Seed germination characteristics were significantly affected by light availability and seed mass for these forbs component species in alpine meadow communities. Among twenty species for this study, the smaller-seeded species had a bigger light requirement for germination than the larger-seeded species. Most of the studied species presented a lesser or neutral light dependence and the optimum light microsites were the middle and low light availability. For these species, they mostly adopt short-term and concentrative germination strategy and presented a higher germination percent, but several species adopt long time, scattered and stochastic germination strategy with a lower germination percent.
     2) Light availability and seed mass also affected significantly seedling emergence rate, seedling survival rate and overwinter survival rate. They all presented a significant positive correlation with light availability. The relationships between seed mass and seedling emergence rate, seedling survival rate and overwinter survival rate were altered by the microsites change. For studied species, the maximum seedling emergence rate, survival rate and overwinter survival rate mostly appeared in middle and higher light conditions. Higher nutrient availability could significantly advanced seedling survival rate and overwinter survival rate for some species, but no significant effect on seedling emergence rate.
     3) Middle light and higher nutrient microsite can significantly advanced seedling recruitment probability for these species. For studied species, seedling recruitment rate was significant positively related to light availability, and nutrient difference also significantly affected seedling recruitment rate within species. For studied twenty species in ten microsites, the mean seedling recruitment percent (from seed to seedling overwinter survival) were about 10% to 30%.
     4) Microsite and seed mass both significantly affected seedling growth rate and biomass allocation characteristics. Seedling relative growth rate, biomass accumulation, root allocation, root to shoot ratio on biomass and on length all were significant positively related to light availability, but leaf allocation, stem allocation, specific leaf area and leaf area ratio were significant negatively related to light availability. Seed mass presented significant positive relationships with initial seedling size, seedling biomass at 80d and stem allocation, but negative relationships with relative growth rate, leaf allocation and root to shoot ratio on length under shade. The maximum seedling relative growth rate and biomass mostly appeared in microsites with higher nutrient and higher or middle light availability.
     5) The smaller-seeded species presented larger recruitment and growth plasticity than the larger-seeded species in this study. Microsites differences brought the larger influences on seedling growth and recruitment for the smaller-seeded species, but the lesser influences for the larger-seeded species.
     6) Seedling advanced their recruitment probability by their morphological performance plasticity in heterogeneous microsites. Species with lesser growth plasticity showed a higher seedling survival rate under different micorsites. Meanwhile, species with larger plasticity in biomass and height, and mean plasticity index presented higher seedling overwinter survival rate. Additionally, species with larger plasticity in biomass allocation and relative growth rate also showed higher seedling survival rate.
     7) All these suggested that higher light availability in grazed disturbed meadow community favor seedling recruitment for these familiar forbs component species, but bottom shade in fertilized meadow community restrain seedling recruitment for these species. Species with different seed mass show different seedling recruitment characteristics under variational microsites. Seedlings advance their fitness in emergence, survival. overwinter survival and successful recruitment by their morphological performance plasticity under variational microsites.
引文
卜海燕,任青吉,徐秀丽.等.青藏高原东部高寒草甸54种禾本科植物种子的萌发特性.植物生态学报.2006.30(4)624-632.
    卜海燕.青藏高原东部高寒草甸植物种子的萌发与休眠研究.兰州大学博士学位论文.兰州:兰州大学.2007.
    杜国祯,马锦荣.十五种野生草本植物种子在不同温度下萌发能力的研究.草业学报,1994.3(1):18-24.
    盖钧镒.试验统计方法.北京:中国农业出版社,2000.
    高英志,韩兴国.汪诗平.放牧对草原土壤的影响.生态学报,2004,24(4):790-797.
    耿宇鹏.张文驹.李博.等.表型可塑性与外来植物的入侵能力.生物多样性.2004.12:447-455.
    黄振英.Guuernman Y.胡正海,等.沙漠植物种子的传播和萌发机制.植物科学进展,2000.3:169-178.
    李春喜.王志和.王文林.等.生物统计学(第二版).北京:科学出版社.2000.
    李金花.李镇清.任继周.放牧对草原植物的影响.草业学报,2002.11(1):4-11.
    李雪华,刘志民.蒋德明.等.七种蒿属植物种子重量形状及萌发特性的比较研究.生态学杂志.2004.23(05):57-60.
    刘尚武.青海植物志.西宁:青海人民出版社,1999
    刘志民,蒋德明.高红瑛,等.植物生活史繁殖对策与干扰关系的研究.应用生态学报.2003,14(3):418-422.
    刘志民.李雪华.李荣平.等.科尔沁沙地31种1年生植物萌发特性比较研究.生态学报.2004,24(3):648-653.
    卢纹岱.SPSS for Windows统计分析.北京:电子工业出版社.2006.
    陆霞梅.周长芳,安树青.等.植物的表型可塑性、异速生长及其入侵能力.生态学杂志.2007.26:1438-1444.
    马涛.武高林.何彦龙.等.青藏高原东部高寒草甸群落生物量和补偿能力对施肥与刈割的响应.生态学报.2007.27(6):2288-2293.
    牛克昌.青藏高原高寒草甸群落主要组分种繁殖特征对施肥和放牧的响应.兰州大学博士学位论文.兰州:兰州大学.2008.
    彭闪江,黄忠良,彭少麟,等.植物天然更新过程中种子和幼苗死亡的影响因素.广西植物,2004,24(2):113-121.
    尚占环.将河源区退化高寒草地土壤种子库及其植被更新.甘肃农业大学博士学位论文,兰州:甘肃农业大学,2006.
    盛海燕,李伟成,葛滢.明党参幼苗存活与生长对光照强度的响应.应用生态学报,2006,17(5):783-788.
    苏金明.统计软件SPSS系列使用实战篇.北京:电子工业出版社,2002.
    王德利,吕新民,罗卫生.不同放牧密度对草原退化群落恢复演替的研究I.退化草原的基本特性和恢复常规演替动力.植物生态学报,1996,20(5):449-460.
    王学敏,易津.驼绒藜属植物种子萌发条件及其生理特性的研究.草地学报,2003,11(2):95-102.
    王宗灵,徐雨清,王刚.沙区有限降水制约下一年生植物种子萌发与生存对策研究.兰州大学学报(自然科学版),1998,34(2):98-103.
    吴征镒.西藏植物志.北京:科学出版社,1983.
    吴征镒.中国植被.北京:科学出版社,1980.
    武高林,陈敏,杜国祯.营养和光照对不同生态幅风毛菊属植物幼苗形态可塑性的影响.应用生态学报,2008,19:1708-1713.
    武高林,杜国祯,尚占环.种子大小及其命运对植被更新贡献研究进展.应用生态学报,2006,17(10):1969-1972.
    武高林,杜国祯.植物形态生长对策研究进展.世界科技研究与发展,2007,29:47-51.
    武高林,杜国祯.植物种子大小与幼苗生长策略研究进展.应用生态学报,2008,19(1):191-197.
    武高林,杜国祯.青藏高原退化高寒草地生态系统恢复和可持续发展探讨.自然杂志,2007,29(3):159-164
    肖治术,张知彬.王玉山.以种子为繁殖体的植物更新模型研究.生态学杂志,2003,22(4):70-75.
    徐秀丽,齐威,卜海燕,等.青藏高原高寒草旬40种一年生植物种子的萌发特性研究.草业学报,2007,16(3):74-80.
    闫兴富,曹敏.不同光照对望天树种子萌发和幼苗早期生长的影响.应用生态学报,2007,18(1):23-29.
    杨允菲,李建东.不同利用方式对羊草繁殖特性的影响及其草地更新的分析.中国草地,1994.5:34-37.
    张大勇.植物生活史进化与繁殖生态学.北京:科学出版社.2004.
    张荣.陈亚明.孙国钧,等.繁殖体与微生境在退化草地恢复中的作用.生态学报,2004,24(5):972-977.
    张荣.孙国钧.陈业明.等.高寒草甸15种植物种子发芽的比较研究.生态学报,2004.24(6):1150-1156.
    张世挺.杜国祯.陈家宽,熊志远.不同营养条件下24种高寒草甸菊科植物种子重量对幼苗生长的影响.生态学报.2003,29:1737-1744.
    中国科学院植物研究所主编.中国高等植物图鉴,北京:科学出版社,1980.
    周兴民,王启基,张堰青,等.不同放牧强度下高寒草甸植被演替规律的数量分析.植物生态学和地植物学学报,1987,11(4):276-285.
    Akpan EEJ, Bean EW. The effects of temperature upon seed development in three species of forage gasses. Ann. Bot. 1977, 41:689-695.
    Baker HG. Seed weight in relation to environmental conditions in California. Ecology 1972, 53: 997-1010.
    Balaguer L, Mart(?)nez-Ferri E. Valladares F, P(?)rez-Corona ME, Baquedano FJ, Castillo FJ, Manrique E. Population divergence in the plasticity of the response of Quercus coccifera to the light environment. Funct. Ecol. 2001, 15:124-135.
    Baraloto C, Forget PM, Goldberg DE. Seed mass. seedling size and neotropical tree seedling establishlnent. J. Ecol. 2005.93:1156-1166.
    Baraloto C, Goldberg DE. Bonal D. Performance trade-offs among tropical tree seedlings in contrasting microhabitats. Ecology 2005, 86: 2461-2472.
    Baraloto C, Goldberg DE. Bonal D. Performance trade-offs among tropical tree seedlings in contrasting microhabitats. Ecology 2005.86:2461-2472.
    Baskin CC, Baskin JM. Seeds. Ecology, Biogeography and Evolution of Dormancy and Germination. London: Academic Press, San Diego, C. 2001.
    Bazzaz FA. Grace J. Plant Resource Allocation. New York: Academic Press. 1997.
    Bazzaz FA. Plants in changing environments: Linking physiological, population, and community ecology. Australia, Cambridge University Press, 1996.
    Bergamini A, Peintinger M. Effects of light and nitrogen on morphological plasticity of the moss Calliergonella cuspidata. Oikos 2002, 96: 355-3632.
    Bewley JD, Black M. Physiology and Biochemistry of Seeds in Relation to Germination.vol. 2, Viability, Dormancy, and Environmental Control. 1982.
    Blad(?) C, Vallejo VR. Seed mass effects on performance of Pinus halepensis Mill.seedlings sown after fire. Forest Ecology and Management, 2008, 255(7): 2362-2372.
    Bretagnole E, Thompson JD, Lumaret R. The influence of seed size variation on seed germination and seedling vigour in diploid and tetraploid Dacrylis glomerara L. Ann. Bot. 1995, 76:607-615.
    Broncano MJ, Riba M, Retana J. Seed germination and seedling performance of two Mediterranean tree species, holm oak (Quercus ilex L.) and Aleppo pine {Pinus halepensis Mill.): a multifactor experimental approach. Plant Ecol. 1998, 138:17-26.
    Brooker RW, Callaghan TV, Jonasson S. Nitrogen uptake by rhizomes of the clonal sedge Carex bigelowii:a previously overlooked nutritional benefit of rhizomatous growth. New Phytol. 1999, 142:35-48.
    Brown JH, Stevens GC, Kaufman DM. The geographic range: size, shape, boundaries and internal structure. Ann. Rev. Ecol. Syst. 1996, 27: 597-623.
    Bu HY, Chen XL, Wang YF, Xu XL, Liu K, Du GZ. Germination time, other plant traits and phylogeny in an alpine meadow on the eastern Qinghai-Tibet plateau. Commu. Ecol. 2007, 8: 221-227.
    Bu HY, Chen XL, Xu XL, Liu K, Jia P, Du, GZ. Seed mass and germination in an alpine meadow on the eastern Tsinghai-Tibet plateau. Plant Ecol. 2007,191:127-149.
    Bu HY, Du GZ, Chen XL, Xu XL, Liu K, Wen SJ. Community-wide germination strategies in an alpine meadow on the eastern Qinghai-Tibet plateau: phylogenetic and life-history correlates. Plant Ecol. 2008, 195: 87-98.
    Burke MJM, Grime JP. An experimental study of plant community invasibility. Ecology 1996.77:776-790.
    Campbell BC, Grme JP. An expermental test of plant strategy theory. Ecology 1992.73:15-29.
    Castro J, H(?)dar JA, G(?)mez JM. Seed Size. In: A.S. Basra, Editor, Handbook of Seed Science and Technology, Food Products Press/The Haworth Press. Inc. New York 2006. 397-427.
    Chacon P, Bustamante RO. The effects of seed size and pericarp on seedling recruitment and biomass in Cryptocarya alba (Lauraceae) under two contrasting moisture regimes. Plant Ecol. 2001, 152: 137-144.
    Chambers JC. Relationships between seed fates and seedling establishment in an alpine ecosystem. Ecology 1995. 76: 2124-2133.
    Chen H. Maun MA. Effects of sand burial depth on seed ger mination and seedling emergence of Circium pilcheri. Plant Ecol. 1999. 140(l):53-60.
    Chmielewski JG. Semple JC. Burr LM. Hawthorn WR. Comparison of achene characteristics within and among diploid and tetraploid clones of Solidago flexicaulis and their significance in germination and resource allocation studies. Can. J. Bot. 1989.67:1821-1832.
    Coomes DA. Grubb PJ. Colonization, tolerance. competition and seed-size variation within functional groups. Trend Ecol. Evol. 2003. 18(6): 283-291.
    Cornelissen JHC. Diez CP, Hunt R. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 1996, 84: 755-765.
    Dalling JW. Hubbell SP. Seed size. growth and gap microsite conditions as determinants of recruitment success for pioneer species. J. Ecol. 2002. 90: 557-568.
    de Kroon H. Huber H, Stuefer JF. et al. A modular concept of phenotypic plasticity in plants. New Phytol. 2005, 166: 73-82.
    de Kroon H, Knops J. Habitat exploration through morphological plasticity in two chalk steppe perennials. Oikos 1990. 59:39-49.
    De Steven D. Wright SJ. Consequences of variable reproduction for seedling recruitment in three neotropical tree species. Ecology 2002, 83: 2315-2327.
    Dent DH, Burslem DFRP. Performance trade-offs driven by morphological plasticity contribute to habitat specialization of bornean tree species.Biotropica 2009, 10.1111/j. 1744-7429.2009.00505.x
    DeWitt TJ, Sih A, Wilson DS. Costs and limits of phenotypic platicity. Trend Ecol. Evol. 1998, 13(2): 77-81.
    Diaz S, Lavorel S, Ntyres S, et al. Plant trait responses to grazing - a global synthesis. Global Change Biol. 2007, 13: 313-341.
    Dong M, During H J, Werger MJA. Clonal plasticity in response to nutrient availability in the pseudoannual herb,Trientalis europaea L. Plant Ecol. 1997, 131:233-239.
    Dong M, Pierdominici MG. Morphology and growth of stolons and rhizomes in three clonal grasses,as affected by different light supply. Vegetatio 1995, 116:25-32.
    Dudley S, Schmitt J. Testing the adaptive plasticity hypothesis: density-dependent selection on manipulated stem length in Impatiens capensis. Am. Nat. 1996, 147: 445-465.
    Edmond DB. Effects of treading perennial reygrass and white clover pastures in winter and summer at two soil moisture levels. J. Agricul. Res. 1963, 6(2):265-276.
    Ellison AM. 1987. Effect of seed dimorphism on the density-dependent dynamics experimental populations of Atriplex triangularis (Chenopodiaceae). Am. J. Bot. 74(8): 1280-1288.
    Eriksson O. Seed mass variation and its effect on germination and seedling performance in the clonal herb Convallaria majalis. Acta Oecol. 1999, 20: 61-66.
    Evans JP, Cain ML. A spatially explicit test of foraging behavior in a clonal plant. Ecology 1995, 76:1147-1155.
    Fahnestock JT, Knapp A K. Plant responses to selective grazing by bison: Interaction between light, herbivory and water stress. Vegetatio 1994, 115:123-131.
    Falster DS, Westoby M. Plant height and evolutionary games. Trend Ecol. Evol. 2003, 18(7): 337-343.
    Fenner M, Thompson K. The Ecology of Seeds. Cambridge University Press, Cambridge. 2005.
    Fenner M. Relationships between seed weight, ash content and seedling growth in twenty-four species of Compositae. New Phytol. 1983, 95: 697-706.
    Fenner M. Seed Ecology. New York: Chapman and Hall, 1985, 103-112.
    Figueroa JA, Armesto JJ. Community-wide germination strategies in a temperate rainforest of Southern Chile: ecological and evolutionary correlates. Aust. J. Bot. 2001, 49: 411-425.
    Flohn H. The elevated heat source of the Tibetan highlands and its role for the large scale atmospheric circulation. In: Geological and Ecological Studies on Qinghai-Xizang Plateau. Vol. 2. Science Press, Beijing; Gordon and Breach, New York. NY. 1981, 1463-1469.
    Foster SA, Joanson CH. The relationship between seed size and establishment conditions in tropical woody plants. Ecology 1985.66: 773-780.
    Geripsson S. Davy AJ. Seed and germination behaviour in populations of the dune-building grass Leymusar enarius. Ann. Bot. 1995.76:493-501.
    Gertiz SAH. Co-evolution of seed size and seed predation. Evol. Ecol. 1998, 12: 891-911.
    G(?)mez JM. Bigger is not always better: conflicting selective pressures on seed size in Quercus ilex. Evolution 2004, 58(1):71-80.
    Grace JB. The factors cont rolling species density in herbaceous plant communities. Perspect. Plant Ecol. Evol. Syst. 1999, 2: 1-28.
    Gratani L, Meneghini M, Pesoli P. Crescente MF. Structural and functional plasticity of Quercus ilex seedlings of different provenances in Italy. Oecologia 2003, 17: 515-521.
    Green PT. Juniper PA. Seed-seedling allometry in tropical rain forest trees: seed mass-related patterns of resource allocation and the 'reserve effect'. J. Ecol. 2004. 92: 397-408.
    Greipsson SA, Davy J. Seed mass and germination behavior in populations of the dune-building grass Leymus arenarius. Ann. Bot. 1995, 76: 493-501.
    Grime JP, Jeffrey DW. Seedling establishment in vertical gradients of sunlight. J. Ecol. 1965,53:621-634.
    Grime JP, Mackey JML. The role of plasticity in resource capture by plants. Evolut. Ecol. 2002, 16:299-307.
    Grime JP, Mason G, Curtis AV, et al. A comparative study of germination characteristics of a local flora. J. Ecol. 1981, 69: 1017-1059.
    Grime JP. Plant strategies and vegetation processes. John Wiley and sons, Chichester,1979.
    Gross KL. Effects of seed size and growth form on seedling establishment of six monocarpic plants. J. Ecol. 1984, 72(2): 369-387.
    Grubb PJ, Lee WG, Kollmann J, et al. Interaction of irradiance and soil nutrient supply on growth of seedlings of ten European tall-shrub species and Fagus sylvatica. J. Ecol. 1996, 84:827-840.
    Grubb PJ. The maintenance of species richness in plant communities: the importance of the regeneration niche. Biol. Rev.1977, 52: 107-145.
    Guo QF, Brown JH, Valone TJ, Kachman SD. Constraints of seed size on plant distribution and abundance. Ecology 2000, 81(8): 2149-2155.
    Harper JL, Lovell PH, Moore KG The shapes and sizes of seeds. Ann. Rev. Ecol. Evol. Syst. 1970, 1:327-356.
    Harper JL. Population biology of plants. Academic Press, London. 1977.
    Hendrix SD, Trapp EJ. Population demography of Pastinaca sativa (Apinceae): effects of seed mass on emergence, survival and recruitment. Am. J. Bot. 1992,79(4):365-375.
    Hendrix SD. Variation in seed weight and its effects on germination in Pastinaca sativa L. (Umbelliferae). Am. J. Bot. 1984, 71: 795-802.
    Henery ML, Westoby M. Seed mass and seed nutrient content as predictors of seed output variation between species. Oikos 2001, 92:479-490.
    Herben T, Hara T, Marshall C, et al. Plant clonality: biology and diversity. Folia Geobot. 1994,29: 113-122.
    Herrera CM. Selection on floral morphology and environmental determinants of fecundity in a hawk-moth pollinated violet. Ecol. Monog. 1993, 63: 251-275.
    Hiroyuki S, Yoshio I, Schoichi K. Plastic responses to nutrient and light intensity gradients in populations of Oxalis corniculata L. (Oxalidaceae). Plant Spec. Bio. 1996, 11 : 213-223.
    Hobbs RJ, Huenneke LF. Disturbance, diversity and invasion:Imp lications for conservation. Cons. Biol. 1992, 6: 324-337.
    Hodgson J. Variations in the surface characteristics of the sward and the short-term rate of herbage intake by cattle and lambs. Grass Forage Sci. 1981.36: 49-57.
    Hopper N W, Overholt JR, Martin JR. Effect of cultivar, temperature and seed size on the germination and emergence of soya beans (Glycine max (L.) Merr.). Ann. Bot. 1979. 44:301-308.
    Humara JM, Casares A, Majada J. Effect of seed size and growing media water availability on early seedling growth in Eucalyptus globules. Forest Ecol. Manage. 2002. 167:1-11.
    Humphrey JW. Patterson GS. Effect s of late summer cattle grazing on the diversity of riparian pasture vegetation on an upland conifer forest. J. Appl. Ecol. 2000, 37: 986-996.
    Jacobsson A. Eriksson O. A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos 2000, 88: 494-502.
    Jones FA. Hubbell SP. Demographic spatial genetic structure of the neotropical tree Jacaranda copaia. Molecu. Ecol. 2006, 15:3205-3217.
    Jurado E, Westoby M. Seedling growth in relation to seed size among species of arid Australia. J. Ecol. 1992, 80: 407-416.
    Kelly VR, Canham CD. Resource heterogeneity in old fields. J.Veg. Sci. 1992. 3: 545-552.
    Khurana E, Singh JS. Influence of seed size on seedling growth of Albizia procera under different soil water levels. Ann. Bot. 2000, 86:1185-1192.
    Kitajima K, Fenner M. Ecology of Seedling Regeneration. In: Fenner M.ed. Seeds: The Ecology of Regeneration in Plant Communities 2nd Edition. New York: CABI Publishing, 2000, 331-359.
    Kitajima K. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 1994, 98: 419-428.
    Klime(?) L, Klime(?)ova J, Hendriks R, et al. Clonal plant architecture: a comparative analysis of form and function. The Ecology and Evolution of Clonal Plants (eds de Kroon H, van Groenendael J), pp. 1-29. Backhuys Publishers, Leiden. 1997.
    Kobe RK, Pacala SW, Silander JA. Juvenile tree survivorship as a component of shade tolerance. Ecol. Appl. 1995, 5: 517-532.
    Kobe RK. Light gradient partitioning among tropical tree species through differential seedling mortality and growth. Ecologyl999, 80: 187-201.
    Korner C. Alpine Plant Life. 2nd edition. Springer-Verlag Berlin Heidelberg New York. 2003.
    Krishnasamy V, Seshu DV. Seed germination rate and associated characters in rice. Crop Sci. 1989,29:904-908.
    Leishman M, The evolutionary ecology of seed size. In: M. Fenner, Editor, Seeds, The Ecology of Regeneration in Plant Communities, CAB International, Wallingford, 2000, pp. 31-57.
    Leishman M, Westoby M. The role of seed size in seedling establishment in dry soil conditions: experimental evidence from semi-arid species. J. Ecol. 1994, 82: 249-258.
    Li QK, Ma KP. 2003. Factors affecting establishment of Quercus liaotungensis Koidz. under mature mixed oak forest overstory and in shrubland. Forest Ecol. Manag.176:133-146.
    Liao MJ, Yu FH, Song MH, Zhang SM, Zhang JZ, Dong M. Plasticity in R/S ratio, morphology and fitness-related traits in response to reciprocal patchiness of light and nutrients in the stoloniferous herb, Glechoma longituba L. Acta Oecol. 2003, 24:231-239.
    Lloyd DG. Selection of offspring size at independence and other size-versus-number strategies. Am. Nat. 1987, 129:800-817.
    Loret F, Casanovas C, Penuelas J. Seedling survival of Mediterranean shrubland species in relation to root:shoot ratio, seed size and water and nitrogen use. Funct. Ecol. 1999, 13: 210-216.
    Lortie CJ, Aarssen LW. The specialization hypothesis for phenotypic plasticity in plants. Inter. J. Plant Sci. 1996, 157: 484-487.
    MacArthur RH. Geographical ecology: patterns in the distribution of species. Princeton University Press, Princeton, NJ. 1972.
    Manasse RS. Seed size and habitat effects on the water-dispersed perennial, Crinum erubescenes (Amaryllidacheae). Am. J. Bot. 1990, 77(10): 1336-1341.
    McConnaughay KDM, Coleman JS. Biomass allocation in plants: ontogeny or optimality? a test along three resource gradients. Ecology 1999, 80:2581-2593.
    Meekins JF, McCarthy BC. Effects of population density on the demography of an invasive plant (Alliaria petialata, Brassicaeae) population in a southeastern Ohio forest. Am. Mid. Nat. 2002, 147:256-278
    Meekins JF. McCarthy BC. Effects of population density on the demography of an invasive plant (Alliaria petialata, Brassicaeae) population in a southeastern Ohio forest. Am. Mid. Nat. 2002. 147: 256-278.
    Meyer SE, Carlson SL. Achene mass variation in Ericameria nauseosus (Asteraceae) in relation to dispersal ability and seedling fitness. Funct. Ecol. 2001. 15: 274-281.
    Milberg P, Andersson L. Thompson K. Large-seeded species are less dependent on light for germination than small-seeded ones. Seed Sci. Res. 2000, 10: 99-104.
    Milberg P, Lamont BB, P(?)rez-Fern(?)ndez MA. Survival and growth of native and exotic composites in response to a nutrient gradient. Plant Ecol. 1999. 145: 125-132.
    Milberg P, Perez-Fernandez M, Lamont BB. Seedling growth response to added nutrients depends on seed size in three woody genera. J. Ecol. 1998, 86: 624-632.
    Miner BG. Sultan SE, Morgan SG. et al. Ecological consequences of phenotypic plasticity. Trend Ecol. Evol. 2005, 20: 685-692.
    Moleele MN, Reed MS, Motoma L, Seabe O. Seed weight patterns of Acacia tortilis from seven seed provenances across Botswana. Afr. J. Ecol. 2005.43: 146-149.
    Moles AT Westoby M. Seed addition experiments are more likely to increase recruitment in larger-seeded species. Oikos 2002, 99: 241-248.
    Moles AT, Ackerly DD, Webb CO, Tweddle JC, Dickie JB, Westoby M. A brief history of seed size. Science 2005, 307: 576-580.
    Moles AT, David I, Warton DI, Westoby M. Seed size and survival in the soil in arid Australia, Aust. Ecol. 2003, 28: 575-585.
    Moles AT, Warton DI, Westoby M. Do small-seeded species have higher survival through seed predation than large-seeded species? Ecology 2003, 84(12):3148-3161.
    Moles AT, Westoby M. Seed addition experiments are more likely to increase recruitment in larger-seeded species. Oikos 2002, 99:241-248.
    Moles AT, Westoby M. What do seedlings die from, and what are the implications for evolution of seed size? Oikos 2004, 106: 193-199.
    Miiller I, Schmid B, Weiner J. The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspect. in Plant Ecol. Evol. Syst. 2000,3:115-127.
    Muller-Landau HC. Seeds of understanding of plant diversity-Traits important to competitive ability are variable and subject to evolutionary change. PNAS(USA) 2003, 100: 1469-1471.
    Muraoka H, Tang Y, Koizumi H, et al. Combined effects of light and water availability on photosynthesis and growth of A risaem a heterophyllum in the forest understory and an open site. Oecologia 1997, 112: 26-34.
    Murdoch AJ. Environmental control of germination and emergence in Avena fatua. Aspects Appl. Bio. 1983, 4: 63-69.
    Nathan R, Muller-Landau HC. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trend Ecol. Evol. 2000, 15: 278-285.
    Navas ML, Gamier E. Plasticity of whole plant and leaf traits in Rubia peregrina in response to light, nutrient and water availability. Acta Oecol. 2002, 23: 375-383.
    Ni J. A simulation of biomes on the Tibetan Plateau and their responses to global climate change. Mountain Res. Devel. 2000, 20: 80-89.
    Niu KC, Luo YJ, Choler P, Du GZ. The role of biomass allocation strategy on diversity loss due to fertilization. Basic Appl. Ecol. 2008, 9:485-493.
    Pacala SW, Canham CD, Saponara J, Silander JA, Kobe RK, Ribbens E. Forest models defined by field measurements: estimation, error analysis and dynamics. Ecol. Monogr. 1996, 66: 1-43.
    Parciak W. Seed size, number, and habitat of a fleshy-fruited plant: consequences for seedling establishment. Ecology 2002, 83: 794-808.
    Paz H. Martinez-Ramos M. Seed mass and seedling performance within eight species of Psychotria (Rubiaceae). Ecology 2003, 84(2): 439-450.
    Paz H, Mazer SJ, Martinez-Ramos M. Comparative ecology of seed mass in Psychotria (Rubiaceae): within-and between-species effects of seed mass on early performance. Funct. Ecol. 2005, 19: 707-718.
    Paz H, Mazer SJ. Martinez-Ramos M. Seed mass, seedling emergence, and environmental factors in seven rain forest phychotria (Rubiaceae). Ecology 1999. 80:1594-1606.
    Pearson TRH. Burslem DFRP. Mullins CE. Dalling JW. Functional significance of photoblastic germination in neotropical pioneer trees: a seed's eye view. Funct. Ecol. 2003. 17:394-402.
    Pearson TRH, Burslem DFRP, Mullins CE, Dalling JW. Germination ecology of neotropical pioneers: interacting effects of environmental conditions and seed size. Ecology 2002. 83:2798-2807.
    Peco B. Traba J. Levassor C. Sanchez AM, Azc(?)rate FM. Seed size. shape and persistence in dry Mediterranean grass and scrublands. Seed Sci. Res. 2003. 13:87-95.
    Pigliucci M. Schlichting CD. Ontogenetic reaction norms in Lobelia siphilitica (Lobeliaceae): reponse to shading. Ecology 1995. 76: 2134-2144.
    Pigliucci M. Phenotypic Plasticity: Beyond Nature and Nurture.The Johns Hopkings University Press.Baltimore and London. 2001.
    Pintado A,Valladares F. Sancho LG. Exploring phenotypic plasticity in the lichen Ramalina capilata: morphology, water relations and chlorophyll content in north-and south-facing populations. Ann. Bot. 1997, 80:345-353.
    Poorter H, Van der Werf A. Is inherent variation in RGR determined by LAR at low light and by NAR at high light? Pages 309-336 in H Lambers, H. Poorter, and MMI. Van Vuuren, editors. Inherent variation in plant growth: physiological mechanisms and ecological consequences. Backhuys, Leiden, The Netherlands.1998.
    Poorter L, Rose SA. Light-dependent changes in the relationship between seed mass and seedling traits: a meta-analysis for rain forest tree species. Oecologia 2005,142: 378-387.
    Poorter L. Growth response of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Funct. Ecol. 1999, 13:396-410.
    Raich JW, Khoon GW. Effects of canopy openings on tree seed germination in a Malaysian dipterocarp forest. J. Trop. Ecol. 1990, 6: 203-217.
    Rees M, Condit R, Crawley M, et al. Long-term studies of vegetation dynamics. Science 2001, 293: 650-655.
    Rees M. Trade-offs among dispersal strategies in British plants. Nature 1993, 366(11): 150-152.
    Reich PB, Tjoelker MG, Walters MB, Vanderklein DW, Buschena C. Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Funct. Ecol. 1998, 12: 327-338.
    Sala A, Nowak RS. Ecophysiological responses of three riparian graminoids to changes in soil water table. Inter. J. Plant Sci. 1997, 158: 835-843.
    Sallabanks R. Hierarchical mechanisms of fruit selection by an avian frugivore. Ecology 1993, 74: 1326-1336.
    Sanchez-Gomez D, Valladares F, Zavala MA. 2006. Performance of seedlings of Mediterranean woody species under experimental gradients of irradiance and water availability: trade-offs and evidence for niche differentiation. New Phytol.170:795-806.
    Sasaki S, Mori T. Growth responses of dipterocarp seedlings to light. Malaysian Forester 1981, 44: 319-345.
    Saverimuttu T, Westoby M. Seedling longevity under deep shade in relation to seed size. J. Ecol. 1996, 84: 681-689.
    Schaal B. Reproductive capacity and seed size in Lupinus texensis. Am. J. Bot. 1980. 71: 703-709.
    Schnid B. Clonal growth in grassland perennials Ⅱ. Growth forms and fine scale colonizing ability,. Journal of Ecology 1985, 73:808-818.
    Scott JD. The study of perennial buds and the reaction of roots to defoliation as a basis of grassland management. In: G.J.Neale(ed).Proc.Intern. Grassl.Cong.Palmerston 306.North: New Zealand Wright and Carman Ltd. 1956, 279.
    Seiwa K. Advantages of early germination for growth and survival of seedlings of Acer mono under different overstorey phonologies in deciduous broad-leaved forests. J. Ecol. 1998, 86: 219-228.
    Seiwa K. Effects of seed size and emergence time on tree seedling establishlnent: importance of developmental constraints. Oecologia 2000, 123:208-215.
    Seiwa K. Trade-offs between seedling growth and survival in deciduous broadleaved trees in a temperate forest. Ann. Bot. 2007, 99(3):537-544.
    Shipley B, Meziane D. The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Funct. Ecol. 2002, 16:326-331.
    Silvertown J. The evolutionary ecology of mast seeding in trees. Bio. J. Linn. Soc. 1980. 14: 235-250.
    Silvertown JW. Seed size, life span. and germination date as coadapted features of plant life history. Am. Nat. 1981, 118: 860-864.
    Smith CC, Fretwell SD. The optimal balance between size and number of offspring. Am. Nat. 1974. 108:499-506.
    Stanton ML. Seed size variation in wild radish: effect of seed size on components of seedling and adult fitness. Ecology 1984, 65:1105-1112.
    Sterck FJ, PoorterL, Schieving F. Leaf traits determine the growth-survival trade-off across rain forest tree species. Am. Nat. 2006, 167: 758-765.
    Sternberg M, Gutman M, Perevolot sky A, et al. Vegetation response to grazing management in a Mediterranean herbaceous community: A functional group approach. J. Appl. Ecol. 2000, 37: 224-237.
    Stoll P, Egli P, Schmid B. Plant foraging and rhizome growth patterns of Solidago altissima in response to mowing and fertilizer application. J. Ecol. 1998, 86:341-354.
    Suding KN, Collins SL, Gough L, et al. Functional-and abundance-based mechanisms explain diversity loss due to N fertilization. PNAS 2005, 102:4387-4392.
    Sultan SE, Bazzaz FA. Phenotypic plasticity in Polygonum persicaria Ⅲ. The evolution of ecological breadth for nutrient environment. Evolution 1993, 47: 1050-1071.
    Sultan SE, Wilczek AM, Bell DL, et al. Physiological response to complex environments in annual Polygonum species of contrasting ecological breadth. Oecologia 1998, 115:564-578.
    Sultan SE. Phenotypic plasticity and plant adaptation. Acta Bot. Neerland. 1995, 44:363-383.
    Sultan SE. Phenotypic plasticity for fitness components in Polygonum species of contrasting ecological breadth. Ecology 2001, 82: 328-343.
    Sultan SE. Phenotypic plasticity for plant development, function and life history. Trend Plant Sci. 2000, 5: 537-542.
    Sultan SE. Promising directions in plant phenotypic plasticity. Perspect. Plant Ecol. Evol. Syst. 2004, 6(4): 227-233.
    Sultan SE. What has survived of Darwin's theory? Phenotypic plasticity and the Neo-Darwinian legacy. Evol. Trend Plants Sci. 1992, 6: 61-71.
    Thompson JN. Variation among individual seed masses in Lomatium grayi (Umbelliferae) under controlled conditions: magnitude and partitioning of the variance. Ecology 1984, 65: 626-631.
    Thompson K. Seed and seed banks. New Phytol. 1987, 106: 23-24.
    Thompson K. The Functional Ecology of Seed Banks. In: Fenner, M. ed. Seeds-the Ecology of Regeneration in Plant Communities. Wallingford: CAB International. 1992, 231-258.
    Tiffney BH, Nicklas KJ. Clonal growth in land plants:a palaeobotanical perspective.In: Jackson JBC, Bass LW, Cook RE.(eds.) Population biology and evolution of clonal organisms.New Haven,C.T.:Yale University Press, 1985, 35-66.
    Tilman D, Pacala S. In Species diversity in ecological communities. Ricklefs E., Schluter D., Eds. Univ. of Chicago Press, Chicago. 1993, 13-25.
    Tilman D. Plant strategies and the dynamics and structure of plant communities, vol. 26 of Monographs in Population Biology, Princeton Univ. Press, Princeton, NJ. 1988.
    Tripathi RS. Khan MC. Effects of seed weight and microsite characteristics on germination and seedling fitness in two species of Quercus in a subtropical wet hill forest. Oikos 1990, 57:289-296.
    Urbas P, Zobel K. Adaptive and inevitable morphological plasticity of three herbaceous species in a multi-species community: field experiment with manipulated nutrients and light. Acta Oecol. 2000. 21: 139-147.
    Uriarte M. Reeve HK. Matchmaking and species marriage: a. game-theory model of community assembly. PNAS(USA), 2003. 100:1787-1792.
    Valladares F. Balaguer L. Martinez-Ferri E. Perez-Corona E, Manrique E. Plasticity. instability and canalization: is the phenotypic variation in seedlings of sclerophyll oaks consistent with the environmental unpredictability of Mediterranean ecosystems? New Phytol. 2002a. 156: 457-467.
    Valladares F. Chico JM, Aranda I. Balaguer L. Dizengremel P. Manrique E, Dreyer E. Greater high light seedling tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Tree Struc. Funct. 2002b, 16: 395-403.
    Valladares F. Martinez-Ferri E, Balaguer L, Perez-Corona E, Manrique E. Low leaf-level response to light and nutrients in Mediterranean evergreeen oaks: a conservative resource-use strategy? New Phytol. 2000a, 148: 79-91.
    Valladares F. Sanchez-Gomez D. Zavala MA. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J. Ecol. 2006, 94:1103-1116.
    Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology 2000b, 81: 1925-1936.
    Vaughton G, Ramsey M. Sources and consequences of seed mass variation in Banksia marginata (Proteaceae). J. Ecol. 1998, 86: 563-573.
    Vazquez-Yanes C, Smith H. Phytochrome control of seed germination in the trop ical rain forest pioneer trees Cecropia obtusifolia and Piper auritum and its ecological significance. New Phytol. 1982, 92: 477-485.
    Vera ML. Effects of altitude and seed mass on germination and seedling survival of heathland plants in north Spain. Plant Ecol. 1997, 133: 101-106.
    Walters MB, Reich PB. Are shade tolerance, survival, and growth linked? Low light and nitrogen effects on hardwood seedlings. Ecology 1996, 77:841-853.
    Walters MB, Reich PB. Seed size, nitrogen supply, and growth rate affected tree seedling survival in deep shade. Ecology 2000, 81(7): 1887-1901.
    Weiner J. Allocation, plasticity and allometry in plants. Perspect. Plant Ecol. Evol. Syst. 2004, 6: 207-215.
    Weis IM. The efects of propagule size on germination and seedling growth in Mirabilis Hirsuta. Can. J. Bot. 1982, 60: 1868-1874.
    Welch D, Scott D. Studies in the grazing of healthier moorland in northeast Scotland. Ⅵ. 20-year trends in botanical composition. J. Appl. Ecol. 1995, 32:596-611.
    Welling P, Laine K. Characteristics of the seedling flora in alpine vegetation, subaractic Finland, Floristic similarity between seedling flora and mature vegetation. Ann. Bot. Fenn. 2000, 37: 133-147.
    Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ. Plant ecological strategies: some leading dimensions of variation between species. Ann. Rev. Ecol. Syst. 2002, 33: 125-159.
    Westoby M, Jurado E, Leishman M. Comparative evolutionary ecology of seed size. Trend Ecol. Evol. 1992, 7: 368-372.
    Westoby M, Leishman M, Lord J. Comparative ecology of seed size and dispersal. Philosophical Trans-actions of the Royal Society, London B. 1996, 351: 1309-1318.
    Wright SD, McConnaughay KDM. Interpreting phenotypic plasticity: the importance of ontogeny. Plant Spe. Bio. 2002, 17: 119-131.
    Wu GL, Chen M, Zhou XH, Wang YF, Du GZ. Response of morphological plasticity of three herbaceous seedlings to light and nutrition in the Qinghai-Tibetan Plateau. Asian J. Plant Sci. 2006, 5(4): 635-642.
    Wu GL, Du GZ, Chen M. et al. Response of seedling root of six herbaceous species to light and nutrient in alpine meadow of Qinghai-Tibetan Plateau. Inter. J. Bot. 2006, 2: 395-401.
    Wu GL. Du GZ, Liu ZH, Thirgood S. Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant Soil, 2009. 319: 115-126.
    Wu GL, Du GZ, Wang YF. Seed germination and seedling recruitment of Vicia angustifolia Leguminosae in alpine meadow of the Qinghai-Tibetan Plateau. Pakistan J. Plant Sci. 2006. 12(1): 1-12.
    Wu GL. Du GZ. Germination is related to seed mass in grasses (Poaceae) of the eastern Qinghai-Tibetan Plateau. China. Nordic J. Bot. 2007, 25: 361-365.
    Wu GL, Shang ZH, Long RJ. Seedling recruitment pattern of alpine grassland under different disturbance in the Headwaters of Yangtze and Yellow Rivers on Tibetan Plateau. Multifunctional Grasslands in a Changing World. Volume (Ⅰ): 2008, 791.
    Yang J. Lovett-Doust J. Lovett-Doust L. Seed germination patterns in green dragon (Arisaema dracontium, Araceae). Am. J. Bot. 1999, 86:1160-1167.
    Zhang J. Seed dimorphism in relation to germination and growth of Cakile edentula. Can. J. Bot. 1993, 71: 1231-1235.
    Zhang XS, Yang DA, Zhou GS. et al. Model expectation of impacts of global climate change on biomes of the Tibetan Plateau. In: Omasa K, Kai K, Taoda H, Uchijima Z. Yoshino M, editors. Climate Change and Plants in East Asia. Tokyo: Springer-Verlag. 1996.
    Zhao K. Marshes and Swamps of China: A Compilation. Science Press of China. 1999.
    Zheng D. The system of physico-geographical regions of the Qinghai-Tibet (Xizang) Plateau. Sci. Chin. (Series D), 1996, 39: 410-417.
    Zimmerman JK and Weis IM. Fruit size variation and its effects on germina tion and seedling growth in Xanthium strwnarium. Can. J. Bot. 1983, 61: 2309-2315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700