用户名: 密码: 验证码:
披针叶茴香生理生态学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
披针叶茴香(Illicium lanceolatum A.C.Smith)为中国所特有的传统药用植物。其所含的莽草酸(Shikimic Acid)具有较强的抗炎、镇痛和抑制血小板聚集、抑制动、静脉血栓及脑血栓形成,还可作为抗病毒和抗癌药物的中间体。这一发现使得以披针叶茴香为主的八角属植物受到前所未有的关注,其资源开发利用前景可观。披针叶茴香虽有较广的生态幅,但多处于零星分布,加之当前资源掠夺式利用方式,野生资源日渐稀少,其规模引种保护和栽培日益迫切。本研究以不同产地披针叶茴香1年生幼苗、不同自然栽培方式下4年生栽培幼苗以及1年生盆栽苗为研究对象,结合野外调查、自然栽培以及室内培养试验等研究方式,从其光合生理生态以及水分生理生态研究角度,阐明披针叶茴香栽培幼苗对生长环境生理生态响应的季节差异、产地间差异以及幼苗对不同栽培方式的适应性与生理生态响应机制,探讨1年生幼苗对光照和水分二者综合影响的响应机理,取得以下结论:
     1、披针叶茴香1年生幼苗光合特性存在明显的季节差异和产地间差异。披针叶茴香净光合速率(Pn)日变化在生长初期呈“单峰型”;盛期和末期呈“双峰型”,12:00左右发生“光合午休”。披针叶茴香Pn日均值季节差异明显,表现出盛期>初期>末期的季节变化趋势。披针叶茴香WUE日变化季节性差异较明显,表现出生长末期>盛期>初期的季节变化趋势。生长初期,披针叶茴香最大净光合速率(Pmax)在2.585-5.103 umol·m~(-2)·s~(-1)范围之间;光饱和点(LSP)在373.5-1574.4 umol·m~(-2)·s~(-1)范围,光补偿点(LCP)在26.3 -61.8 umol·m~(-2)·s~(-1)范围。在生长盛期,披针叶茴香Pmax在4.6-9.9 umol·m~(-2)·s~(-1)范围变动,LSP变动范围在997.9-2182.9 umol·m~(-2)·s~(-1)之间,LCP变动范围在23.5-135.7 umol·m~(-2)·s~(-1)之间。在末期,披针叶茴香Pmax在0.151-1.163 umol·m~(-2)·s~(-1)范围变动,LSP在71.6-922.0 umol·m~(-2)·s~(-1)之间,LCP在11.1-41.3 umol·m~(-2)·s~(-1)之间。披针叶茴香光合参数季节差异表明,其Pmax、AQY以及LSP和LCP均呈生长盛期>初期>末期的季节变化趋势。净光合速率(Pn)与主要环境因子的相关分析表明,光合有效辐射(PAR)在初期、盛期不是主要制约因子,但末期却成为主要影响因子。4个产地植株对光照利用能力高低主要受季节影响,表现在LA植株生长初期和末期
     对弱光利用最低、对强光利用能力较高;到了盛期,对弱光的利用能力提高。WN产地和KH产地植株初期对强光和弱光的利用能力整体水平居中;盛期和末期,WN产地对强光和弱光利用效率仍然居中,而KH产地对低光的利用能力最强。NP产地初期主要趋向于利用弱光,对强光利用能力最低;盛期则趋向于利用强光,末期弱光和强光的利用能力均处于中等水平。WN产地所表现出的对弱光和强光在全生长季节较为稳定的利用效率以及其盛期具有最高的光饱和点、末期具有较低的光补偿点的光合特性,表明WN产地对光照的适应性范围最广,揭示出WN产地是目前苗期表现较好、生态适应性最强的一个优良种源。
     2、通过探讨不同栽培方式下4年生披针叶茴香植株光合生理生态特性,发现:4年生披针叶茴香植株光合日变化和个体光合特性既因栽培方式不同而不同,亦存在季节性差异;这种差异很好地体现了披针叶茴香幼苗对生长环境的光合生理适应性。光合日变化结果显示,A处理盛期较低WUE和SUE日均值表明披针叶茴香生长盛期采取遮荫措施的必要性;D处理盛期较高的SUE日均值和较低的WUE日均值体现其对弱光环境的一种适应性。不同栽培方式下披针叶茴香植株净光合速率日均值大小排序与其各生长季节环境光合有效辐射日均值大小排序密切正相关,充分体现不同栽培方式下主要小气候因子对植株光合能力的潜在影响。
     光合参数特性表明,生长初期,D处理幼苗拥有最低的LCP、较高的AQY和最高的Pmax以及较高的LSP,说明其对弱光、强光的利用能力较强;A处理植株则拥有最低的LSP值、较低的LCP值和Pmax值,以及最高的AQY值,表明全光照下植株利用弱光的能力虽然较强,但在强光照下光合能力明显下降。到了生长盛期,A处理幼苗具有最低的AQY值和LSP值、较低的Pmax值以及最高的LCP值,说明此处理幼苗对强光、弱光的光合利用效率下降为最低水平,导致植株生长受限;D处理幼苗拥有最低的LCP值、较低的LSP值和较大的AQY值以及较低的Pmax值,说明D处理幼苗对弱光环境适应性最好。综合表明了D处理套种模式为披针叶茴香幼苗栽培最佳模式。
     3、披针叶茴香幼苗叶绿素含量季节差异明显。叶片Chla/Chlb比值呈生长末期>盛期>初期的季节变化趋势;叶绿素总含量则呈生长盛期>初期>末期;叶绿素a和b含量分别是生长盛期>末期>初期和生长初期>盛期>末期。披针叶茴香叶绿素总含量表现出同其Pn日均值相一致的季节变化趋势。不同产地、不同栽培方式下披针叶茴香植株叶绿素含量、比叶重、叶氮含量与其光合能力的相关性受生长季节影响;4个指标大小季节性差异与其植株光合能力季节性差异密切相关。披针叶茴香幼苗形态可塑性较强,通过降低比叶重来适应弱光环境。
     4、短期水分胁迫可一定程度上提高披针叶茴香的WUE和SUE值;但受水分条件影响远高于受光强影响。在低光范围(0-200umol·m~(-2)·s~(-1))时,披针叶茴香幼苗光合响应主要受土壤水分条件的影响,当环境光合有效辐射继续增强时,其光合响应受光照的负面影响大于水分影响。因此,披针叶茴香生长环境需要一定土壤水分条件,但更重要的是需要一定光照,但光强不宜太大,尤其在土壤水分条件较差时需要弱光环境来缓和逆境胁迫。WN产地植株对水分和光照的适应能力相对较强,其次为NP产地,而LA和KH产地对于水分的要求较高。
     5、正常供水下,披针叶茴香幼苗生长适应光照范围变得较广。在水分胁迫下,在较低(25 umol·m~(-2)·s~(-1))或者较高光照(75 umol·m~(-2)·s~(-1))下其幼苗生长都将受限;在较高光照下,则主要受水分条件影响,充足供水下能较好的适应。无论水分条件,其比较适合50 umol·m~(-2)·s~(-1)光照下生长。披针叶幼苗整体较不耐旱,证明其喜阴湿的生物学特性。试验结果表明,正常供水下,LA产地植株比较适应在50 umol·m~(-2)·s~(-1)光照下生长;WN产地在50-75 umol·m~(-2)·s~(-1)之间较为合适;KH产地幼苗适应大于25 umol·m~(-2)·s~(-1)的光照下生长;NP产地不适应在25 umol·m~(-2)·s~(-1)以下的弱光生长,对较高光照的响应最敏感。在水分胁迫下,WN产地对光照需求范围最宽;而LA产地则最不能忍受干旱。
     总之,从光合与水分生理生态角度看,WN产地是所有试验材料中生态适应性较强、对光照和水分需求性范围较宽的优良可供选择种源,其次为LA产地。80%光郁闭下套种且套种树种为生长末期落叶的光照环境较为适宜,其次为50%光郁闭下的栽培方式。
Illicium lanceolatum is a traditional and proper medicinal plant in China. The shikimic acid that is contained in I. lanceolatum has strong functions of anti-inflammatory, analgesic and inhibiting platelet aggregation, arterial and venous thrombosis and cerebral thrombosis, but also as is the intermediates for anti-virus and anti-cancer drugs. This discovery makes I. lanceolatum and other genuses of Illicium L. have been given the unprecedented attentions, and its prospects for the development and utilization are more great. Although I. lanceolatum has broader ecological amplitude, but its wild resources are scattered, the current predatory use and increasing scarcity of wild resources is more strong, which makes the protection and cultivation of its is increasingly urgent. Based on 1-year-old cultivated and potted seedlings of 4 provenances, the 4-year-old cultivations of seedlings of I. lanceolatum growthing under 5 different nature light conditions, through field and laboratory tests research, this study discusses the adaptable difference of ecophysiological responses of 4 different provenances of I. lanceolatum and LA provenance growthing under 5 natural light conditons to environment from two aspects of photosynthetic ecophysiology and water ecophysiology. The results as follows:
     (1) The obvious diversities of photosynthetic characteristics of 4 provenances seedlings are existed in provenances and different growth stages. LA provenance seedlings have lowest use efficiency of low-light and more higher use efficiency of high-light during the initial and later phase, but with the higher use efficiency of low-light during prosperous phase. WN provenance has middle use efficiency for using low-light and high-light in the whole growth phase, and KH provenance has highest use efficiency for low-light during the prosperous and later phase. Whereas, NP provenance has higher use efficiency of low-light during initial phase, but of high-light during prosperous phase. The photosynthetic characteristics with highest LSPin prosperous phase and lowest LCP in later phase indicate that WN provenance is a good provenance with a widest range of adaptability to illumination. The correlation analysis between Net photosynthetic rate (Pn) and the major environmental factors show that the photosynthetic active radiation (PAR) in the early and prosperous period is not a restricted factor, but in the later period has become a major factor.
     (2) The diurnal variation of photosynthesis and photosynthetic characteristics of 4-year-old I. lanceolatum seedlings under different light conditions are measured and the results show that they have obvious differences not only because of light conditions variation, there is also a seasonal differences. This difference reflects the photosynthetic physiological adaptation of seedlings to growth environment.
     The lower mean diurnal value of WUE and SUE of A light treatment shows that the shading is essential during prosperous stage. The more higher mean diurnal value of SUE and more lower its of WUE embody that D light treatment is adaptable to low-light environment. The order of diurnal mean value of Pn for I. lanceolatum seedlings under 5 different light conditions is positively correlative to its of PAR.
     The comparation of photosynthetic parameters reflect that D light treatment has the lowest LCP, higher AQY and LSP, highest Pmax in initial stage, which illuminates that seedlings under D environment have better light energy utilization efficiency. Whereas, it has the lowest LCP, lower LSP, lower Pmax and higher AQY in prosperous stage, which show that it is greatly adaptable to low-light environment in this stage. For A light treatment, it has lowest LSP, lower LCP and highest AQY in initial stage and has lowest AQY and LSP and highest LCP in prosperous stage, which reveal that seedlings of I. lanceolatum haven’t adaptable to entire light environment. So D light treatment is most better cultivation pattern of I. lanceolatum.
     (3) The pertinency between chlorophyll content, leaf mass per area, leaf nitrogen content and photosynthetic capacity of seedlings of 4 provenance and those under 5 different light conditions is greatly affected by growing season. The seedlings of I. lanceolatum have strong morphological plasticity and are adaptable to low-light conditions by reducing the leaf mass per area.
     (4) The drought stress test for 4 provenances shows that seedlings of WN provenance have strongest adaptability to water and light conditions, followed by NP provenance. Whereas, the seedlings of LA and KH provenances are more greatly restricted by water condition. The short-time drought stress can improve the value of WUE and SUE at a certain extent. In low-light range (0-200 umol·m~(-2)·s~(-1)), the photosynthetic light-response of seedlings of 4 provenances is mainly affected by soil moisture conditions, and when the photosynthetic active radiation continues to enhancing, the photosynthetic response to light will have been more negatively impacted by the light than water.
     (5) The illumination cultivation and drought stress tests show that under normal water condition, the seedlings of LA provenance are growing better in a light range of 0-50 umol·m~(-2)·s~(-1), those of WN provenance are adaptable to the range of 50-75 umol·m~(-2)·s~(-1), those of KH provenance are growing better above 25 umol·m~(-2)·s~(-1), and those of NP provenance aren’t adaptable to the range of 0-25 umol·m~(-2)·s~(-1). It also shows that under drought stress, seedlings of WN provenance have widest range of lighting needs, and those of LA provenance can’t tolerate drought.
     In a word, from the viewpoint of photosynthetic ecophysiology and water ecophysiology, WN provenance of I. lanceolatum is a good provenance with strongest adaptability and widest range of light and water conditions, followed by LA provenance. The other important result is that the cultivation mode of inter-planting with 80% canopy density is the most suitable mode for I. lanceolatum, followed by 50% canopy density model of inter-planting.
引文
Adams W W, Demmig-Adams B, Logan B A, et al.. 1999. Rapid changes in xanthophylls cycle-dependent energy dissipation and photosystem efficiency in two vines, Stephania japonica and Smilax austrilis, growing in the understory of an open Eucalyptus forest. Plant, Cell and Environment, 22:125-136
    Anderson J M, Osmond C B. 1987. Shade-sun responses: compromises between acclimation and photoinhibition. In: Kyle D J, Osmond C B, Arntzen C J.eds. Topics in photosynthesis. Photoinhibition, vol 9, Elsevier, Amsterdam, 1-38
    Anten N P R, Schieving F, Werger M J A. 1995. Patterns of light and nitrogen distribution in relation to whole canopy gain in C3 and C4 mono- and dicotyledonous species. Oecologia, 101:504-513
    Bazzaz FA. 1996. Plants in Changing Environments: Linking Physiological, Population, and Community Ecology. Cambridge: Cambridge University Press.
    Borghetti M. 1998. Impact of long term drought on xylem embolism and growth in Pinus halepensis Mill. Trees: Structure and Function. 12(4):187-195
    Bouslama and Schapaugh. 1984. Stress in soybeans-Evuation of three screening techniques for heat and drought tolerance. Crop Sci., 24:933-937
    Boyer J S. 1970. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiol., 46:233-235
    Bravdo, Pallas. 1982. Photosynthesis, photorespiration and RuBP carboxylase/oxygenase activity in selected peanut genotypes. Photosynthetica, 16:36-42
    Broadley M R,Escobar-Gutierrez A J,Burns A, et a1.. 2001. Nitrogen-limited growth of lettuce is associated with lower stomatal conductance. New Phytologist, 152:97-106
    Cao K F. 2000. Leaf anatomy and chlorophyll content of 12 woody species in contrasting light conditions in a Bornean heath forest. Can. J. Bot., 78:1245-1253
    Carter G A and Smith W K. 1988. Microhabitat comparisons of transpiration and photosynthesis in three subalpine conifers. Can. J. Bot., 66:963-969
    Ceulemans R J. 1991. Photosynthesis. In: A S Kaghvendra ed. Physiology of Tree, A wiley interscience Publication, John whey & Sons, INC New York, 21-50
    Chang J C, Lin T S.2007. Gas exchange in litchi under controlled and field conditions. Scientia Horticulturae, 114(4):268-274
    ChapinⅢ, F.S., A.J. Bloom and C.B. Field et al.. 1997. Plant responses to multiple environmental factors. BioScience, 37(1):49-57
    Chazdon R L, Pearcy R W, Lee D W, et al.. 1996. Photosynthetic responses of tropical forest plants to contrasting light environments. In: Mulkey S S, Chazdon R L, Smith A P. eds. Tropical Forest Plant Ecophysiology. Chapmann and Hall, New York, 5-55
    Cho and Murata. 1989. Text book of plant physiology. 210-258
    Chun-shu Yang, Isao Kouno, Miwa Hashimoto, et al.. 1990. A new toxic neoanisation derivative from the pericarps of Illicium majus. Chem Pharm Bull, 38(1):291
    Chun-shu Yang, Isao Kouno, Nobusuke Kawano, et al.. 1988. New anisatin-like sesquiterpene lactones from pericarps of Illicium majus. Tetrahedron Lett. 29(10):1165
    Constable J V H, Peffer B J, DeNicola D M. 2007. Temporal and light-based changes in carbon uptake and storage in the spring ephemeral Podophyllum peltatum (Berberidaceae). Environmental and Experimental Botany, 60(1):112-120
    Dewar R C, Medlyn B E, Mcmutrie R E. 1999. Acclimation of the respiration and photosynthesis ratio to temperature: insights from a model. Global Change Biology, 5(5):615-622
    Dickmann. D. 1992. Photosynthesis, water relations and growth of two hybrid Populus genotypes during a severe drought. Can.J.For.Res., 22(8):1092-1106
    Dwelle, Hurley, Pavek. 1983. Photosynthesis and stomatal conductance of potato clones. Photosynthetica,101:13-20
    Eamus D, Jarvis P G. 1989. The direct effects of increase in the global atmospheric concentration on natural and commercial temperate trees and forests. In: Begon M et al..(ed) Advances in Ecological Research. Academic Press, Harcourt Brace Jovanovich, Publishers. 19:1-55
    Elster E F.1982. Oxygen activation and oxygen toxicity. Ann. Plant Physiol.33:69-73
    Elster and Harald. 1994. Biological resource of free radicals. Ann Rev Plant, (7):13-15
    Evans J R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 78:9-19 Farquhar, Sharkey. 1982. Stometal conductance and photosynthesis. Ann Rev Plant Physiol, 3:317-345
    Field C, Merino I, Mooney H A. 1983. Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia, 60:384-389
    Field C, Mooney H A. 1986. The photosynthesis-nitrogen relationship in wild plants. In: Givnish T J ed on the economy of plant form and function Cambridge: Cambridge University Press, 25-55
    Givnish T J, Monigomery R A and Goldstein G. 2004. Adaptive radiation of photosynthetic physiology in the
    Hawaiian Lobeliads: light regimes, static light responses, and whole-plant compensation points. American Journal of Botany, 91(2):228-246
    Givnish T J. 1995. Adaptations to sun and shade: a whole plant perspective. Aust. J. Plant Physiol.,1988,15:63-92
    Grann T. 1990. Very high CO2 partially restore photosynthesis in sunflower at low water potential. Planta, 181:378
    Han Q, Yamaguchi E, Odaka N, et al.. 1999. Photosynthetic induction responses to variable light under field conditions in three species grown in the gap and understory of a Fagus crenata forest. Tree Physiology, 19:625-634
    Harrison R D,Cheshire J W,Cheshire J R. 1989. Net photosynthesis and conductance of peach seedings and cutting in responses to changes in soil water potential. Journal of the American Society for Horticultural Science, 114:986-990
    Hcque, Dathe, Tesche. 1983. Abscisic acid and its beta-D-lucopyranosyl easter in saplings of Scots pine in relation to water stress. Biochemical Physiology, 178(4):287-295
    Helms, JA. 1964. Apparent photosynthesis of Douglas-fir in relation to silviculture treatment. For. Sci. ,10:432-442
    Hikosaka K, Hanba Y T, Hirose T, et al.. 1998. Photosynthetic nitrogen-use efficiency in leaves of woody and herbaceous species. Functional Ecology, 12:896-905
    Hikosaka K. 2004. Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance. Journal of Plant Research, 117:481-494
    Hirasawa. 1995. Stomatal responses to water deficits and abscisic acid in leaves of sunflower plants(Helianthus annuus L.) grown under different conditions. Plant Cell Physiology, 36(6):955-964
    Hoare E R. 1994. Water relations and photosynthesis among horticultural species as effected by stimulated soil water stress. Proc. Int. Hort. Congr, 3:482-486
    Isao Kouno, Chun-shu Yang, Ayako Hashimoto, et al. 1989. New sesquineolignan from the pericarps of Illicium macranthum. Chem Pharm Bull, 37(5):1291.
    Isao Kouno, Chun-shu Yang, Chifumi Iwamoto, et al.. 1994. A new triphenyl-type neolignan and a biphenylneolignan from the barks of Illicium simonsii. Chem Pharm Bull, 42(1):112.
    Isao Kouno, Chun-shu Yang, Miwa Hashimoto, et al.. 1991. Isolation of neoanisatin dirivatives from the pericarps of Illicium majus with other constituents. Chem Pharm Bull, 39(7):1773.
    Isao Kouno, Chun-shu Yang, Naosuke Baba, et al.. 1989. A new sesquiterpene lactone and its glucoside from the pericarps of Illicium majus. Chem Pharm Bull, 37(9):24-27.
    Isao Kouno, Chun-shu Yang, Nobusuke Kawano. 1988. New pseudoanisatin-like sesquiterpene lactones from the bark of Illicium dunnianum. J Chem Soc Perkin Trans, 1:1537.
    Isao Kouno, Chun-shu Yang, Takuya Morisaki, et al.. 1991. Two new sesquineolignans from the bark ofIllicium dunnianum. Chem Pharm Bull, 39(10):2606.
    Isao Kouno, Chun-shu Yang, Yukari Yanagida, et al..1992. Phenylpropanoids from the barks of Illicium difengpi. Chem Pharm Bull, 40(9):2461.
    Isao Kouno, Chun-shun Yang, Yukari Yanagida, et al.. 1993. Neolignans and a phenylpropanoid glucoside from Illicium difengpi. Phytochemistry, 32(6):1573.
    Isao Kouno, Kaori Mori, Shoko Okamoto, et al.1990. Structures of anislactone A and B; novel type of sesquiterpene lacatones from the pericarps of Illicium anisatum. Chem Pharm Bull, 38(11):30-36.
    Isao Kouno, Mori Kaori, Akiyama Toshihiko, et al.. 1991. Two new sesquiterpene lactones from Illicium anisatum. Phytochemistry, 30(1):351.
    Ishida A, Toma T, Marjenah. 1999. Leaf gas exchange and chlorophyll fluorescence in relation to leaf angle, azimuth, and canopy position in the tropical pioneer tree, Macaranga conifera. Tree Physiology, 19:117-124
    Jarvis A J, Mansfield T A, Davies W J. 1999. Stomatal behavior, photosynthesis and transpiration under rising CO2. Plant,Cell&Environment, 22(6):639-648
    Johnston M, Grof C P L, 1984. Brownell P F. Effects of sodium nutrition on chlorophyll a/b ratios in C4 plants, Australian. Journal of Plant Physiology, 11:325-332
    Jones, M M et al. 1998. Osmotic adjustment in leaves of sorghum in response to water deficits. Plant Physiol. 61:122-126 Jones, M.M.et al. 1990. Osmotic adjustment in expend and full expended leaves of sunflower in response to waster stress. Aust.J. Plant Physiol., 7:181-192
    Kamaluddin, Grace J. 1992. Photoinhibition and light acclimation in seedlings of Bischofia javanica, a tropical forest tree from Asia. Ann. Bot. 69:47-52
    Kaufmann, M R. 1968. Water relations of pine seedlings in relation to root and shoot growth. Plant Physiol. 43:281-288
    Kitao M, Lei T T, Koike T, et al.. 2000. Susceptibility to photoinhabition of three deciduous broadleaf tree species with different successional traits raised under various light regimes. Plant, Cell and Environment, 23:81-89
    Kitao M, Lei T T, Koike T, et al.. 2000. Susceptibility to photoinhabition of three deciduous broadleaf tree species with different successional traits raised under various light regimes. Plant, Cell and Environment, 23:81-89
    Kolber Z, Falkowski P G. 1993. Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol. Oceanogr., 38,164-166
    Kraiser W M. 1987. Effect of water deficit on photosynthesis capacity. Plant Physiology, 1:142-149
    Lambers H, Poorter H. 1992. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research, 23:187-261
    Lange O L, Green T G A, Meyer A, et al.. 2007. Water relations and carbon dioxide exchange of epiphytic lichens in the Namib fog desert. Flora,202(6):479-487
    Lange,O.I. 1982. Encyclopedia of plant physiology. New Series. 12:317-343
    Langenheim J H, Osmond C B, Brools A, et al.. 1984. Photosynthetic responses to light in seedlings of selected Amazonian and Australian rainforest tree species. Oecologia, 63:215-224
    Larcher W. 1980. Physiological Plant Ecology. New York: Spinger-verlag, 303-304
    Le Loux X, Grand S, Dreyer E, et al.. 1999. Parameterization and testing of a biochemically based photosynthesis model for walnut(Juglans regia) trees and seedlings. Tree Physiology, 19:481-492
    Le Roux X, Walcroft A S, Daudet F A, et al.. 2001. Photosynthetic light acclimation in peach leaves: importance of changes in mass: area ratio, nitrogen concentration, and leaf nitrogen portioning. Tree physiology, 21:377-386 Liang J. 1997. Can stomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying? Photosynthesis Research. 51(2):149-159
    Long S P, Humphries S, Falkowski P G. 1994. Photoinhibition of photosynthesis in Nature. Annual Review of Plant Physiology and Plant Molecular Biology, 45:633-662
    Lortie C J, Aarssen L W. 1996.The specialization hypothesis for phenotypic plasticity in plants. International Journal of Plant Science, 157:484-487
    Lovelock C E, Jebb M, Osmond C B. 1994. Photoinhibition and recovery in tropical plant species: response to disturbance. Oecologia, 97:297-307
    Lusk C H, Reich P B. 2000. Relationships of leaf dark respiration with light environment and tissue nitrogen content in juveniles of 11 cold-temperate tree species. Oecologia, 123:318-329
    Luukkanen O. 1992. and Kozlowski T T. Gas exchange in six populus clones, Silvae Genetica, 21:22-29
    Mahoney.J. 1992. Response of a hybrid popular to water table decline in different substrates. Forest Ecology and Management, 54:141-156
    Malavasi U C, Malavasi M M. 2001. Leaf characteristics and chlorophyll concentration of Schyzolobium parahyburn and Hymenaea stibocarpa seedlings grown in different light regimes. Tree Physiology, 21:701-703
    Mandal K J, Sinha A C. 2004. Nutrient management effects on light interception, photosynthesis, growth, dry-matter production and yield of Indian mustard(Brassica juncea). Journal Agronomy& Crop Science, 190(2):l19-129
    Marc Thery. 2001. Forest light and its influence on habitat selection: Netherland. Plant Ecology, 153:251-261
    Mazzolenil. 1988. Differential physiological and morphological responses of two hybrid Populus clones to water stress. Tree Physiol. 4:61-70
    Metcalfe J.C. 1990. Leaf growth of Eucalyptus seedlings under water deficit. Tree Physiol., 6(2):221-226 Meziane D, Shipley B. 2001. Direct and indirect relationships between specific leaf area, leaf nitrogen and leaf gas exchange-Effects of irradiance and nutrient supply. Annuals of Botany, 88:915-927
    Miller R E, Gleadow R M, Woodrow I E. 2004. Cyanogenesis in tropical Prunus turneriana: characterization variation and response to low light. Funct. Plant Biol., 31:491-503
    Mishra, Mishra, Singlral. 1993. Changes in the activities of antioxidant enzymes during exposure on intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiol., (102):903-910
    Miyazawa Y, Kikuzawa K. 2006. Photosynthesis and physiological traits of evergreen broadleaved saplings during winter under different light environments in a temperate forest. Can. J. Bot., 84:60-69
    Mohotti A J,Lawlor D W. 2002. Diurnal variation of photosynthesis and photoinhibition in tea: Effects of irradiance and nitrogen supply during growth in the field. Journal of Experimental Botany,53:313-322 Mooney H A. 1987. Today of plant physiological. Bioscience, 37(8):18-20
    Munns R. 1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ, 16: 15-24
    Myers D A, 1999. Thomas R B and Delucia E H. Photosynthetic responses of loblolly pine(Piracy weds) needes to experimental reduction in sink demand. Tree Physiol. 19:235-242
    Nautiyal S. 1994. Plant responses to water stress: changes in growth, dry matter production, stomatal frequency and leaf anatomy. Biologia Plantarum, 36(1):91-97
    Niinemets U, Kull O, Tenhunen J D. 1998. An analysis of light effects on foliar morphology, and light interception in temperate deciduous woody species of contrasting shade tolerance. Tree Physiology, 18:681-696
    Niinemets U, Tenhunen J D. 1997. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant, Cell and Environment, 20:845-866
    Norman J M. 1993. Scaling processed between leaf and canopy levels. In:Ehleringer J R. and Field C B.eds. Scaling Physiological Processes: Leaf to Globe, Academic Press, San Diego, 41-76
    Noulas CH, Stamp P, Soldati A,et a1. 2003. Nitrogen use efficiency of spring wheat genotypes under field and lysimeter conditions. Journal of Agronomy and Crop Science, 190(2):111-l18
    Onoda Y, Hikosaka K, Hirose T. 2004. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Functional Ecology, 18:419-425
    Osone Y, Tateno M. 2005. Nitrogen absorption by roots as a cause of interspecific variations in leaf nitrogenconcentration and photosynthetic capacity. Functional Ecology, 19:460-470
    Otegui, Andrade and Sucto. Growth, 1995. Water use and kernel abortion of maize subjected to drought at silking. Field Crops Res., 40:87-94
    Page A L, Miller R H, Keeney D R. 1982. Methods of soil analysis Part2 Chemical and Microbiological Properties, 2nd edn Madison: American Society of Agronomy Press
    Pearcy R W, Sims D A. 1994. Photosynthetic acclimation to changing light environments: scaling from the leaf to the whole plant. In: Caldwell M M, Pearcy R W.eds. Exploitation of Environmental Heterogeneity by Plant: Ecophysiological Processes Above-and Belowground, Academic Press, San Diego, CA. 145-174
    Pearcy R W. 1987. Photosynthetic gas exchanges of Australian tropical forest in canopy, gap and understorey microenvironment. Functional Ecology, 1:169-178
    Pierce S, Stirling C M, Baxter R. 2003. Pseudoviviparous reproduction of Poa alpine var. vivipara L.(Poaceae)during long-term exposure to elevated atmospheric CO2. Annals of Botany, 91:613-622
    Pinto M E, Casati P, Hsu T P, et al.. 1999. Effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme in bean(Phaseolus vulgaris L.)grown under different nitrogen conditions. Journal of Photochemistry and Photobiology B: Biology,48:200-209
    Poorter H, Evans J R. 1998. Photosynthetic nitrogen use efficiency of species that differ inherently in specific area. Oecologia, 116:26-37
    Prioul J L, Chartier P. 1977. Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: a critical analysis of the methods used. Ann Bot, 41:789-800
    Reich P B, Walters M B, Tjoelker M G, et al.. 1998. Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Funct Ecol., 12:395-405
    Riddoch I, Grace J, Fasehun F E, et al.. 1991. Photosynthesis and successional status of seedlings in a tropical semideciduous rainforest in Nigeria. J. of Ecol., 79:491-503
    Rosati A, Day K Y, Dejong T M. 2000. Distribution of leaf mass per unit area and leaf nitrogen concentration determine partitioning of leaf nitrogen within tree canopies. Tree Physiology, 20:271-276
    Rosati A, Esparza G, Dejong T M, et al..1999. Influence of canopy light environment and nitrogen availability on leaf photosynthetic characteristics and photosynthetic nitrogen-use efficiency of field-grown nectarine trees. Tree Physiology, 19:173-180
    Scholes J D, Press M C, Zipperlen S W. 1997. Differences in light energy utilization and dissipation betweendipterocarp rainforest tree seedlings. Oecologia, 109:41-48
    Seiler J R. 1988. Physiological and morphological responses of three half families of loblolly pine to water stress conditioning. Forest Sci., 34(2):487-495
    Shangguan Z P, Shao M A, Dyckmans J. 2000. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. Journal of Plant Physiology, 156:46-51
    Shangguan Z P, Zheng S X, Zhang L M, et al.. 2005. Effect of nitrogen fertilization on leaf chlorophyll fluorescence in field-grown winter wheat under rainfed conditions. Agricultural Sciences in China, 4(1):15-20
    Sims D A, Seemann J R, Luo Y.1998. The significance of differences in the mechanisms of photosynthetic acclimation to light, nitrogen and CO2 for return on investment in leaves. Functional Ecology,12:185-194
    Su Peixi, Liu Xinmin.2005. Photosynthetic characteristics of linze jujube in conditions of high temperature and irradiation. Scientia Horticulturae, 104(3):339-350
    Susuma Takada, Shiro Nakamura, Kiyoyuki Yamada, et al..1966. Isolation and structure of neoanisatin, Tetrahedron Lett, (39): 39-47.
    Takashima T, Hikosake K, Hirose T. 2004. Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell and Environment, 27:1047-1054
    Tan W X, Blake T J. 1997. Gas exchange and water relations responses to drought of fast and slow growing black spruce families. Canadian Journal of Botany, 75(10):1700-1706
    Taub D R, Lerdau M T. 2000. Relationship between leaf nitrogen and photosynthetic rate for three NAD·ME and three NADP·ME C4 grasses. American Journal of Botany, 87:412-417
    Theodore T V, Paul J K, Stephen G. 1991. The physiological ecology of woody plants. Academic press, Inc. Thornley J H M. 1976. Mathematical models in plant physiology. London: Academic press,85-106
    Tobiessen P. 1982. Dark opening of stomata in successional trees. Oecologica, 52(3):356-359
    Valladares F, Wright S J, Lasso E, et al.. 2000. Plastic phenotypic response to light of 16 congenetic shrubs from a Panamanian rainforest. Ecology, 81:1925-1936
    Walker D A. 1989. Automated measurement of leaf photosynthetic O2 evolution as a function of photon flux density. Philosophical trascations of the Royal Society London B, 323:313-326
    Walters M B and Reich P B. 2000. Trade-offs in low-light CO2 exchanges: a component of variation in shade tolerance among cold temperature tree seedlings. Functional Ecology, 14:155-165
    Walters M B,Field C B. 1987.Photosynthesis light acclimation in two rainforest Piper species with different ecological amplitudes. Oecologia,72:449-456
    
    Waring, Schlesinger W H. 1985. Forest Ecosystem: Concepts and Management Academic Press
    Warren C R, Adams M A. Distribution of N, 2001. Rubisco and photosynthesis in Pinus pinaster and acclimation to light. Plant, Cell and Environment, 24:597-609
    Warren C R, Adams M A. 2004. Evergreen trees do not maximize instantaneous photosynthesis. Trends in Plant Science, 9:270-274
    Wellburn A R. 1994. The spectral determination of chlorophylls a and b, as well total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiol, 144:307-313
    William B. 1989. Reduced irradiance affects dry weight partitioning in Easter lily. J Amer Soc Hort Sci, l14(2):306-309
    Wright I J, Reich P B, Comelissen J H C, et al.. 2005. Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 14:411-421
    Wright I J, Reich P B, Westoby M, et al.. 2004. The worldwide leaf economics spectrum. Nature, 428:821-827
    Yokushijin Kenichi, Tohshima Tomoko, Kitagawa Eiji, et al.. 1984. Studies on the constituents of the plants of Illicium speciesⅢstructure elucidations of novel phytoquinoids, illicinones from Illicium tashiroi Maxim and Illicium arborescens Hayata. Chem Pharm Bull, 32(1):11
    Yoshiyasu Fukuyama, Naomi Shida, Mitsuaki Kodama, et al.. 1992. Illicinolides A and B, novel sesquiterpene lactones from the wood of Illicium tashiroi. Tetrahedron, 48(28):5847
    Yoshiyasu Fukuyama, Naomi Shida, Mitsuaki Kodama. 1993. Isodunnianin: a new sesquiterpene enhancing neurite outgrowth in primary culture of fetal rat cerebral hemisphere from Illicium tashiroi. Planta Med, 59(2):181
    Yoshiyasu Fukuyama, Naomi Shida, Yunko Hata, et al. 1994. Prenylated C6-C3 compounds from Illicium tashiroi. Phytochemistry, 36(6):1497
    Zhang Leiming, Yu Guirui, Sun Xiaomin, et al.. 2006.Seasonal variations of ecosystem apparent quantum yield(α)and maximum photosynthesis rate(Pmax) of different forest ecosystems in China. Agricultural and Forest Meteorology, 137(3/4):176-187
    Zhang Shibao, Hu Hong, Xu Kun, et al.. 2007. Flexible and reversible responses to different irradiance levels during photosynthetic acclimation of Cypripedium guttatum. Journal of Plant Physiology, 164(5): 611-620
    白伟岚,任建武.1999.八种植物耐阴性比较研究.北京林业大学学报,21(3):13-17
    Butery, Buzzell.赵福洪译.1989.大豆光合作用速率和叶绿素含量之间的关系.光合作用.北京:科学技术出版社,72-75
    蔡昆争,骆世明.1999.不同生育期遮光对水稻生长发育和产量形成的影响.应用生态学报,10(2):193-196
    蔡志全,曹坤芳,冯玉龙,等.2003.热带雨林三种树苗叶片光合机构对光强的适应.应用生态学报,14(4):493-496
    蔡志全,齐欣,曹坤芳.2004.七种热带雨林树苗叶片气孔特征及其可塑性对不同光照强度的响应.应用生态学报,15(2):201-204
    曹兵,宋丽华,谢应吉.2008.土壤干旱胁迫对臭椿苗木生理指标的影响.东北林业大学学报,36(9):11-13
    曹慧,兰彦平,曹冬梅,等.2000.水分胁迫对短枝苹果叶片活性氧清除酶类活性的影响.山西农业科学,28(4):48-51
    曹永慧,陈双林,萧江华,等.2008.浙江天童披针叶茴香群落种间联结性研究.热带亚热带植物学报,16(6):100-108
    曹永慧,萧江华,李迎春,等.2009.浙江天童披针叶茴香-南酸枣群落优势种群结构及空间格局.浙江林学院学报,26(1):44-51
    曹玉峰,徐娟,林永木,等.2008.不同光照条件对兴安杜娟和迎红杜娟光合生理的影响.东北林业大学学报,36(8):19-20
    陈禅友,汪汇东,丁毅.2005.低温胁迫下长豇豆幼苗可溶性蛋白质和细胞保护酶活性的变化.园艺学报,32(5):911-913
    陈少裕.1989.膜脂过氧化与植物逆境胁迫.植物学通报,6(4):211-217
    陈淑芳,朱月林,刘友良,等.2005.NaCl胁迫对番茄嫁接苗保护酶活性、渗透调节物质含量和光合特性的影响.园艺学报,32(4):609-613
    陈向明,郑国生,张圣旺.2001.钙对保护地栽培牡丹光合特性的影响.园艺学报,28(6):572-574
    陈亚军,曹坤芳,蔡志全.2008.两种光强下木质藤本与树木幼苗的竞争关系.植物生态学报,32(3):639-647
    陈志辉,张良诚.1992.水分胁迫对柑桔光合作用的影响.浙江农业大学学报,18(2):60-66
    丑敏霞,张玉进.2000.光照强度对石斛生长与代谢的影响.园艺学报,27(5):380-382
    范雪涛,马丹炜,向莎,等.2008.不同逆境条件下辣子草抗氧化酶系统的变化.应用与环境生物学报,14(5):616-619
    范燕萍,余让才,郭志华.1998.遮荫对叶天南星生长及光合特性的影响.园艺学报,25(3):270-274
    方玉珍,宋杰云,岑燕飞,等.1989.毒八角酸的镇痛作用研究.贵阳中医学院学报,(1):59-60
    冯玉龙,曹坤芳,冯志立,等.2002.四种热带雨林树种幼苗比叶重,光合特性和暗呼吸对生长栽培方式下的适应.生态学报,22(6):901-910
    冯玉龙,张亚杰,朱春全.2001.调控活性氧代谢对渗透胁迫时杨树光合作用光抑制的影响.植物生态学报,25(4):451-459
    傅立国.1992.中国植物红皮书-稀有濒危植物(第一册).北京:科学出版社
    傅瑞树,黄琦,刘爱琴,等.2006.南方红豆杉扦插繁殖技术研究—扦插苗与实生苗光合生理特性比较.中国生态农业学报,14(2):62-63
    高健,吴泽民,彭镇华.2000.滩地杨树光合作用生理生态的研究.林业科学研究,13(2):147-152
    关义新,戴俊英,林艳.1995.水分胁迫下植物叶片光合的气孔和非气孔限制.植物生理学通讯,31(4):293-297
    关义新,戴俊英.1995.水分胁迫下植物叶片光合的气孔和非气孔限制.植物生理学通讯,31(4):293-297
    郭春芳,孙云,张木清.2008.不同土壤水分对茶树光合作用与水分利用效率的影响.福建林学院学报,28(4):333-337
    郭连生,田有亮.1989.对几种阔叶树种耐旱性生理指标的研究.林业科学,25(5):389-394
    郭志华,胡启鹏,王荣,等.2006.喜树幼苗的叶悬挂角和叶柄角对不同栽培方式下的响应和适应.林业科学研究,19(5):647-652
    郭志华,张宏达,李志安,等.1999.鹅掌楸苗期光合特性的研究.生态学报,19(2):164-169
    郭志华,张宏达.1997.银杏光合特性的研究.生态科学,16(1):30-33
    郭志华.1999.鹅掌楸苗期光合特性的研究.生态学报,19(2):164-169
    何斌,黄寿先,梁机,等.2005.八角林生长对土壤水分-物理特性的影响.西北林学院学报,20(1):45-49
    何斌,黎跃,王凌晖,等. 2003.八角林分的研究水源涵养功能.南京林业大学学报, 27:(6):36-39
    何纪星,朱守谦.1995.马尾松光合生态特性的初步研究.林业科学,18(2):104-109
    河野信助,松尾明美.シキミ有毒成分の研究.药学杂志,1958,78(11):12-18
    贺善安,刘友良,郝日明,等.1999. Differentiation of light ecological adaptability among populations of Liriodendron Chinese in the process of being endangered.植物生态学报,23(1):40-47
    胡启鹏,郭志华,李春燕,等.2008.不同栽培方式下下亚热带常绿阔叶树种和落叶阔叶树种幼苗的叶形态和光合生理特征.生态学报,28(7):3262-3270
    胡新生,刘建伟,王世绩.1997.四个杨树无性系在不同温度和相对湿度条件下净光合速率的比较研究.林业科学,32(2):107-116
    黄建梅,刘慧,杨春澍,等.2000.八角科16种植物果实的形态鉴别.中草药,31(1):54
    黄建梅,王嘉琳,杨春澍.1996.滇南八角果挥发油的气相色谱-质谱分析.中国中药杂志,21(3):168-172
    黄建梅,许文蔚,王嘉琳,等.1994.中国八角属三种果实挥发油的气相色谱-质谱分析.中草药,25(10):551
    黄建梅,杨春澍,唐恢天.1996.短柱八角和假地枫皮果皮挥发油的气相色谱-质谱分析.中国中药杂志,21(10):618-620
    黄建梅,杨春澍.1998.八角科植物化学成分和药理研究概况.中国药学杂志,33(6):123-125
    黄建梅,杨春澍.1996.大八角和小花八角果皮挥发油的气相色谱-质谱分析.中国中药杂志,21(11):976-979
    黄相中,古昆,李聪,等.2002.云南富宁八角茴香茎和叶挥发油化学成分研究.云南化工,29(6):17-18
    霍常富,孙海龙,王政权,等.2008.光照和氮营养对水曲柳苗木光合特性的影响.生态学杂志,27(8):1255-1261
    
    霍宏,王传宽.2007.冠层部位和叶龄对红松光合蒸腾特性的影响.应用生态学报,18(6):1181-1186
    贾虎森,李德全,韩亚琴,等.2000.高等植物光合作用的光抑制研究进展.植物学通报,17(3):218-224
    蹇洪英,邹寿青.2003.地毯草的光合特性研究.广西植物,23(2):181-184
    姜慧芳,任小平.2004.干旱胁迫对花生叶片SOD活性和蛋白质的影响.作物学报,30(2):169-174
    蒋高明.2001.当前植物生理生态学研究的几个热点问题.植物生态学报,25(5):514-519
    蒋瑜.2004.诊断平衡施肥对八角林的增产效果试验.广西农业科学,35(4):317-318
    靳凤云,武孔云,张连富,等.2002.红茴香叶精油化学成分的研究.中草药,33(5):403
    李保国,王永蕙.1990.果树光合作用研究进展.河北林学院学报,5(3):254-261
    李合生主编.2000.植物生理生化实验原理和技术.北京:高等教育出版社
    李合生主编.2000植物生理生化实验原理和技术.北京:高等教育出版社
    李吉跃,Blqk., T J. 1999.多重复干旱循环对苗木气体交换和水分利用效率的影响.北京林业大学学报,21(3):1-8
    李吉跃.1991.太行山区主要造林树种耐旱性的研究(Ⅲ-Ⅵ).北京林业大学学报,13(增2):230-279
    李吉跃.1991.植物耐旱性及其机理.北京林业大学学报,13(3):92-100
    李嘉瑞,王民柱.1996.干旱对果树光合的影响及水分胁迫信息传递.干旱地区农业研究,14(3):69-72
    李昆,曾觉民.1999.金沙江干热河谷主要造林树种蒸腾作用研究.(3):25-31
    李萍萍,胡永光.2001.叶用莴苣温室栽培单株光合作用日变化规律.园艺学报,28(3):240-245
    李树华,许兴,米海莉,等.2003.水分胁迫对牛心朴子植株生长及渗透调节物质积累的影响.西北植物学报,23(4):592-596
    李西文,陈士林.2008.遮荫下高原濒危药用植物川贝母光合作用和叶绿素荧光特征.生态学报,28(7):3438-3446
    李燕,孙明高,孔艳菊,等.2006.皂角苗木对干旱胁迫的生理生化反应.华南农业大学学报,27(3):66-69
    李燕,薛立,吴敏.2007.树木抗旱机理研究进展.生态学杂志,26(11):1857-1866
    李芸瑛,窦新永,彭长连.2008.三种濒危木兰植物幼树光合特性对高温的响应.生态学报,28(8):3789-3797
    梁春,林植芳.1997.不同光强下生长的亚热带树苗的光合—光响应特性的比较.应用生态学报,8(1):7-11
    林祁,尹五元.1995.中国八角科植物拾零.云南植物研究,17
    林祁.1995.八角科植物的地理分布.热带亚热带植物学报,3(3):1-11
    林祁.1989.八角属花粉形态研究.植物研究,9(1):115-124
    林祁.1997.防毒巧识八角科.植物杂志,1:30-31
    林祁.2002.八角属药用植物资源.中草药,33(7):654-657
    林祁.2002.八角属药用植物资源.中草药,33(7):654-657
    林祁.2000.八角属植物的分类学订正.植物分类学报,38 (2):167-181.
    
    林祁.2001.八角属植物分类.植物研究,21(2):161-174
    刘奉觉,郑世锴.1992.杨树水分生理研究.北京:北京农业大学出版社
    刘慧,杨春澍.1989.七种八角果实挥发油成分分析.植物分类学报,27(4):317
    刘嘉森,周倩如.1988.红茴香毒性成分和62 Deoxyp seudoanisatin的结构研究.药学学报,23(3):221-223
    刘建伟,刘雅荣.1993.水分胁迫下不同杨树无性系苗期的光合作用.林业科学研究, 6(1):65-69
    刘建伟,刘雅荣.1994.不同杨树无性系光合作用与其抗旱能力的初步研究.林业科学,30(1):83-87
    刘清玮,王秀全,杨雨春,等.2008.不同产地产地及生长势五味子净光合速率对光和CO2的响应.中药材,31(10):1461-1464
    刘旭峰.1993.猕猴桃幼树光合特性的研究.园艺学报,20(4):329-333
    刘雪松.1991.烟草叶片比叶重及净光合速率的变化.植物生理学通讯,27(4):279-281
    刘宇锋,萧浪涛,童建华,等.2005.非直线双曲线模型在光合光响应曲线数据分析中的应用.农业基础科学,21(8):76-79
    卢从明,张其德.1994.水分胁迫对光合作用影响的研究进展.植物学通报,11(增刊):9-14
    芦站根,赵昌琼,韩英,等.2003.不同光照条件下生长的曼地亚红豆杉光合特性的比较研究.西南师范大学学报(自然科学版),28(1):117-121
    陆佩玲,于强,罗毅,等.2001.冬小麦光合作用的光响应曲线的拟合.中国农业气象,22(2):12-14
    吕成群,黄宝灵,牟继平.2000.稀土对八角种子萌发及幼苗生长的生理效应.广西科学,7(3):228-231,240
    吕富华,吴熙瑞,李章文.1955.莽草实中枢神经兴奋作用的研究.中华医学杂志,10:936.
    吕建林,陈如凯.1998.甘蔗净光合速率、叶绿素和比叶重的季节变化.福建农业大学学报,20(2):11-13
    马小英,焦根林.2008.紫花含笑和苦梓含笑光合生理特性的研究.广东林业科技,24(2):10-13
    马怡,孙建宁,徐秋萍,等.2000.莽草酸对血小板聚集和凝血的抑制作用.药学学报,35(1):1
    毛明策,郭东伟,梁银丽.2001.水分处理对油茶叶位光合速率、蒸腾速率及水分利用效率的影响.中国生态农业学报,9(1):49-51
    孟庆伟,邹琦.1997.小麦和大豆叶片的气孔不均匀关闭现象.植物生理学报,23(1):53-60
    潘瑞炽.2001.植物生理学.第4版.北京:高等教育出版社,55-57;91-95
    彭方仁,陈茂铨.1998.密植板栗光合作用生理生态的初步研究.南京林业大学学报, (3):40-46
    戚继忠,宋嘉葆.1995.叶绿素含量与气象因子关系的灰关联分析.吉林林学院学报,11(3):13-18
    秦银林,方兴,陶建平,等.2009.三峡库区两种阔叶树幼苗对不同栽培方式下的生长和形态响应.重庆师范大学学报(自然科学版),26(2):125-128
    邱国雄.1992植物光合作用效率.见:余叔文.植物生理与分子生物学.北京:科学技术出版社
    
    盛海燕,李伟成,常杰.2006.伞形科两种植物幼苗生长对光照强度的可塑性响应,生态学报,26(6):1854-1862
    史晓华,徐本美,黎念林,等.1999.披针叶茴香种子萌发的研究.种子,6:3-5
    宋永昌,王祥荣.1995.浙江天童国家森林公园的植被和区系.上海:上海科学技术文献出版社
    苏东凯,周永斌.2006.不同杨树品种光合生理生态特性的研究.西北林学院学报,21(2):39-41
    孙国荣,彭永臻,阎秀峰,等.2003.干旱胁迫对白桦实生苗保护酶活性及脂质过氧化作用的影响.林业科学,39(1):165-167
    孙浩元,王玉柱,杨丽,等.2006.毛叶枣不同产地砧木的抗旱性评价.林业科学,22(7):146-149
    孙华.2005.土壤质量对植物光合生理生态功能的影响研究进展.中国生态农业学报,13(1):116-118
    孙快麟,李润荪.1990.若干莽草酸衍生物的合成和生物活性研究.药学学报,25 (1):73
    汤爱仪,陶建平,刘欣,等.2008.常绿阔叶林两种树种幼苗对不同栽培方式下的适应—关于生长特征和光合色素含量的研究.西南大学学报(自然科学版),30(1):109-113
    汤景明,翟明普.2006.木荷幼苗在林窗不同生境中的形态响应与生物量分配.华中农业大学学报,25(5):559-563
    陶建平,钟章成.2003.光照对苦瓜形态可塑性及生物量配置的影响.应用生态学报,14:336-340
    田大伦,罗勇,项文化,等.2004.樟树幼苗光合特性及其对CO2浓度和温度升高的响应.林业科学,40(5):88-92
    同小娟,李俊,王玲.2008.农田光能利用效率研究进展.生态学杂志,27(6):1021-1028
    王博轶,冯玉龙.2005.生长环境光强对两种热带雨林树种幼苗光合作用的影响.生态学报,25(1):23-31
    王嘉琳,杨春澍,达武荣,等.1994.地枫皮果挥发油的气相色谱-质谱分析.中国中药杂志,19(7):422
    王嘉琳,杨春澍,闫汝南,等.1994.闽皖八角倍半萜内酯成分的研究.药学学报,29(9):693
    王敬敏.2008.浅析红松人工林透光抚育.黑龙江生态工程职业学院学报,21(2):21-22
    王俊峰,冯玉龙.2004.光强对两种入侵植物生物量分配、叶片形态和相对生长速率的影响.植物生态学报,28(6):781-786
    王丽华,姜春玲,冯玉龙.1999.不同地理产地长白落叶松生理生态特性的研究.植物研究,19(2):165-172
    王丽华.1999.不同地理产地长白落叶松生理生态特性的研究.植物研究,19(2):165-171
    王满莲,韦霄,蒋运生,等.2007.野生与栽培黄花蒿净光合速率对光强和CO2浓度的响应.热带亚热带植物学报,15(1):45-49
    王淼,代力民,姬兰柱,等.2002.干旱胁迫对蒙古柞表观资源利用率的影响.应用生态学报,13(3):275-280
    王琴,蒋林,温其标.2005.八角茴香研究进展.粮食与油脂,5:42-44
    王荣,郭志华.2007.木荷幼苗对常绿阔叶林不同栽培方式下的光合响应.林业科学研究,20(5):688-693
    王文章.1994.落叶松光合特性与初级生产力.东北林业大学学报,22(4):15-21
    王晓春,马继平,陈令新,等.2004.微柱高效液相色谱法分离八角茴香挥发油成分.分析测试学报,23(4):54-57
    
    王晓强,郭亚健,杨春澍.2001.高效液相法测定八角属部分植物果实中莽草酸的含量.中国中药杂志.26(7):447-449
    王旭军,吴际友,廖德志,等.2008.乐东拟单性木兰光合蒸腾及水分利用效率研究.中国农学通报,24(10):175-178
    韦莉莉,张小全,侯振宏,等.2005.杉木苗木光合作用及其产物分配对水分胁迫的响应.植物生态学报,29(3):394-402
    魏胜利,王文全,秦淑英,等.2004.桔梗、射干的耐阴性研究.河北农业大学学报,27(1):52-57
    吴国凯,秦德智,古立秀编译.1992.生态遗传学.北京:农村读物出版社,109-113
    武维华.2003.植物生理学.北京:科学出版社,426-462
    向言词,彭少麟,周厚诚,等.2002.广东南澳岛不同森林群落的林窗环境对移植树苗生长的影响.热带亚热带植物学报,10(4):340-347
    肖文发,徐德应,刘世荣,等.2002.杉木人工林针叶光合与蒸腾作用的时空特征.林业科学,38(5):38-46
    肖文发,徐德应.1999.森林能力利用与产量形成的生理生态基础.北京:中国林业出版社
    肖文发.1998.杉木人工林单叶至冠层光合作用的扩展与模拟研究.生态学报,18(6):621-628
    谢德隆,王苏,程伟志,等.1990.红茴香根皮中黄酮类化合物的分析.中草药,21(10):15-17
    谢岩黎,李元瑞,张广彬,等.2003.大蒜细胞溶质中超氧化物歧化酶的性质研究.食品科学,24(4):140-142
    熊文愈,汪计珠,石同岱.1993.中国木本药用植物.上海:上海科技教育出版社
    徐程扬.2001.不同栽培方式下下紫椴幼树树冠结构的可塑性响应.应用生态学报,12(3):339-343
    徐飞,郭卫华,徐伟红,等.2008.短期干旱和复水对麻栎幼苗光合及叶绿素荧光的影响.山东林业科技,38(4):1-4
    徐克章,张治安.1998.高粱叶片比叶重的变化与产出关系的研究.吉林农业大学学报,20(2):11-13
    徐坤,郑国生.2000.水分胁迫对生姜光合作用及保护酶特性的影响.园艺学报,27(1):47-51
    许大全,沈允钢.1998. The limit factor of photosynthesis//余叔文.植物生理及分子生物学,北京:科学出版社,223-236
    许大全,沈允钢.1997.植物光合作用效率的日变化.植物生理学报,23(4):410-416
    许大全,张玉忠.1992.植物光合作用的光抑制.植物生理学通讯,28(4):237-243
    许大全.1990.光合作用“午睡”现象的生理生态与生化.植物生理学通报, (6): 5-10
    许大全.1988.光合作用速率.植物生理学通讯,(5):1-7
    许大全.1987.毛竹叶光合作用的气孔限制研究.植物生理学报,13(2):154-160
    阎秀峰,李晶,祖元刚.1999.干旱胁迫对红松幼苗保护酶活性及脂质过氧化作用的影响.生态学报, 19(6):850-854
    燕丽萍,金芳,郑平生.2006.四种草莓光合特性研究.甘肃农业大学学报,39(6):620-624
    杨传平,姜静,唐盛松,等.2002.帽儿山地区21年生兴安落叶松产地试验.东北林业大学学报,2:1-5
    杨春澍,刘春生,王福成.1990.中国八角属植物挥发油的气相色谱-质谱分析.中国药学杂志,25(10):583
    杨春澍,刘慧,伍学钢.1992.中国八角属果实挥发油的气相色谱-质谱分析.中国药学杂志,27(4):206
    
    杨春澍,王嘉琳,张志亮,等.1991.野八角果毒性成分的研究.药学学报,26(2):128
    杨细明,洪伟,吴承祯,等.2008.雷公藤无性系苗木光合生理特性研究.福建林学院学报,28(1):14-18
    杨小波,王伯荪.1999.森林次生演替优势种苗木的光可塑性比较研究.植物学通报,16(3):304-309
    杨学军,韩蕾,孙振元,等.2008.耐荫地被植物山麦冬光合特性研究.草地学报,16(4):370-373
    叶功富,陈如凯,张水松,等.1999.水分胁迫对木麻黄细胞膜稳定性和细胞保护酶影响的研究.福建林业科技,26(增刊):6-8
    余龙江,刘彦,李为,等.2008.不同地质背景下黄荆的光合蒸腾及水分利用效率比较.生态环境,17(3):1100-1106
    俞新妥,傅瑞树.1991.不同产地马尾松光合能力的比较研究.福建林学院学报,12-19
    袁霞,何斌.2004.八角林地土壤酶活性和养分的分布特点及其相关分析.经济林研究,22(2):10-13
    曾小平,赵平,彭少麟,等.1999.三种松树的生理生态学特性研究.应用生态学报,10(3):275-278
    张教林,曹坤芳.2004.不同生态习性热带雨林树种的幼苗对光能的利用与耗散.应用生态学报,15(3):372-376
    张进忠,林桂珠,林植芳,等.2005.几种南亚热带木本植株光合作用对生长光强的响应.热带亚热带植物学报,13(5):413-418
    张如华.2006.马尾松不同产地光合特性研究.安徽农业科学,34(19):4921-4922
    张润花,郭世荣,樊怀福,等.2006.外源亚精胺对盐胁迫下黄瓜幼苗体内抗氧化酶活性的影响.生态学杂志,25(11):1333-1337
    张淑勇,周泽福,张光灿,等.2008.水分胁迫下天然次生灌木山桃和山杏光合气体交换特征.西北植物学报,28(12):2492-2499
    张小全,徐德应,赵茂盛,等.2000.CO2增长对杉木中龄林针叶光合生理生态的影响.生态学报, 3:390-396
    张小全,徐德应.2001.18年生杉木不同部位和叶龄针叶光响应研究.生态学报,21(3):409-414
    张小全,徐德应.2000.杉木中龄林不同部位和叶龄针叶光合特性的日变化和季节变化.林业科学,36(3):19-26
    张小全,徐德应.2002.温度对杉木中龄林针叶光合生理生态的影响.林业科学,38(3):27-33
    张玉洁.2002.香椿幼树光合作用及其影响因子研究.林业科学研究,15(4):432-436
    张志华.1993.核桃光合特性的研究.园艺学报, 20(4):319-323
    赵平,Kriebitzsch W,张志权.1999.欧洲3种常见乔木幼苗在两种栽培方式下下叶片的气体交换、叶绿素含量和氮素含量.热带亚热带植物学报,7(2):133-139
    赵溪竹,姜海凤,毛子军.2007.长白落叶松、日本落叶松和兴安落叶松幼苗光合作用特性比较研究.植物研究,27(3):361-377
    赵晓炎,王传宽,霍宏.2008.兴安落叶松光合能力及相关因子的产地差异.生态学报,288):3798-3806
    赵晓焱,王传宽,霍宏.兴安落叶松(Larix gmelinii)光合能力及相关因子的产地差异.生态学报,2008,28(8):3798-3807
    赵有华.1997.遮荫条件下栲树幼苗枝、叶构件统计学研究.渝州大学学报,14(1):28-33
    郑淑霞,上官周平.2007.不同功能型植物光合特性及其与叶氮含量、比叶重的关系.生态学报,27(1):172-181
    郑淑霞,上官周平.2007.黄土高原油松和刺槐叶片光合生理适应性比较.应用生态学报,18(1):16-22
    郑益兴,彭兴民,张燕平.2008.印楝不同产地对温度变化的光合生理生态响应.林业科学研究,21(2):131-138
    钟全林,胡松竹,贺利中,等.2008.刨花楠不同产地主要光响应指标分析.林业科学,44(7):118-123
    钟泰林,石柏林,将文伟,等.2004.日本莽草的扦插育苗试验.西部林业科学,33(2):55-57
    周瑞莲,王海欧,赵哈林.1999.不同类型沙地植物保护酶系统对干旱、高温胁迫的响应.中国沙漠,40:87-94
    朱春全.1992.树木光合作用、呼吸作用生理生态学研究的历史及发展趋势.哈尔滨:东北林业大学出版社
    朱万泽,王金锡,薛建辉.2004.台湾桤木引种的光合生理特性研究.西北植物学报,24(11):2012-2019
    朱万泽,王金锡.2001.四川桤木光合生理特性研究.西南林学院学报,21(4):196-207
    庄猛,姜卫兵,花国平,等.2006.金边黄杨与大叶黄杨光合特性的比较.植物生理学通讯,42(1):39-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700