用户名: 密码: 验证码:
面向工程实践的北京市交叉口信号控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的高速发展,城市化进程加快,汽车保有量迅速增加,道路拥挤等交通问题日显突出。特别是以北京市为代表的特大城市,交通堵塞现象时常发生,不仅明显降低了人们日常的工作效率,并且严重影响了城市的正常运转,由此带来的损失不可估计。寻找多种有效疏导城市车辆、减少交通堵塞的方法是一项具有巨大现实意义的工作。对于北京市而言,高峰时段快速路、主干路及部分次干路拥堵严重,城市道路的瓶颈在交叉口,交叉口的信号控制是影响城市道路交通运行效率的重要因素,信号控制的再设计是目前进行北京市交叉口优化设计,解决或缓解交通拥堵的重要手段之一。
     本文以北京市公安局公安交通管理局近期优化的110个交叉口为研究对象,针对110个交叉口信号控制设计过程中遇到的难点问题,研究面向工程实践的城市交叉口信号控制方法,涉及三个层次:定时控制、感应控制和自适应控制。在进行北京市交叉口信号控制现状与发展分析的基础上,首先从北京市普遍应用的定时控制入手,研究了基于Synchro的城市干线协调控制建模方法;然后,从北京市交叉口信号控制的长远出发,研究了基于VAP的感应控制建模方法;最后,针对感应控制的缺陷,引入智能算法实施自适应控制,研究了基于Matlab和VAP的模糊控制建模方法。具体内容如下:
     (1)研究了基于Synchro的城市干线协调控制建模方法,从车道利用修正、待驶区保护型左转修正、许可型左转修正、最短绿灯时间四个方面入手,结合实际的交通调查,提出了适用于北京市交叉口点控与线控的Synchro参数修正方法,并以北京市大兴区亦庄新区的荣华路为例,进行了实证研究。实证表明,优化方案效果明显,参数修正方法弥补了基于Synchro软件的缺陷。
     (2)研究了基于VAP的城市交叉口感应信号控制建模方法,解决了VAP基本参数设置和左转待驶区设计等基本建模问题,并以北京市南中轴BRT专线为例,从全感应控制、公交感应控制、半感应控制三个方面,进行了北京市交叉口公交信号优先设计与仿真的实证研究。实证表明,定时控制、全感应控制、公交感应控制、半感应控制均具有一定的优势和劣势,应结合相关的交通政策进行方案的确定。
     (3)研究了城市交叉口模糊控制设计与仿真建模方法,基于Matlab设计了四种城市交叉口模糊控制器,研究了基于神经网络的模糊控制方法,并试图将模糊控制引入VAP的建模中,提出了基于VAP的城市交叉口模糊控制设计与仿真建模方法,进行了实证研究。实证表明,控制效果与成本成反比,即神经网络模糊控制效果最优,两级模糊控制次之,感应控制效果稍差于两级模糊控制,定时控制最差。
     总的来说,本文从工程实践角度出发,旨在解决北京市110个交叉口信号控制优化过程中遇到的难点问题,研究了目前迫切需要实现的基于Synchro的定时控制方法,从交叉口信号控制的长远出发,探索性的研究了基于VAP的交叉口感应信号控制与模糊控制的建模方法,解决了交叉口模糊控制中VAP与Matlab的交互问题。
With China's rapid economic development, urbanization gets fast in progress, car ownership increases rapidly, thus traffic problems like road congestion are getting more obvious each day. Particularly, in mega-cities represented by Beijing, traffic jams occur frequently, which not only significantly reduce people's daily work efficiency, but also has seriously affected the normal operation of the city, resulting in losses impossible to estimate. It is work of great practical significance to look for a variety of effective ways to disperse vehicles on the roads and reduce congestions. For Beijing, city expressways, major roads and part of the secondary roads are seriously congested during peak hours, and the bottlenecks locate in the urban road intersections. The intersection traffic signal control is an important factor to affect the operating efficiency of urban road network and traffic control signal re-design is one of the important means to optimize intersection design, solve or alleviate the traffic congestion in Beijing.
     This thesis chooses recently optimized110intersections by the Beijing Traffic Management Bureau as the research objects. For the difficult problems encountered in the signal control design process of the110intersections, engineering-practice-oriented urban traffic signal control methods are studied, which involves three levels:timing control, inductive control and self-adaptive control. Based on the analysis of status and development of intersection signal control in Beijing, this thesis starts from the universally applied timing control in Beijing, and studies the city major roads coordinated control modeling method based on Synchro; then from the long-term perspective of intersection signal control in Beijing, this thesis studies inductive control modeling approach based on VAP; finally, focusing on the shortcomings of inductive control, the thesis induces intelligent algorithm to implement self-adaptive control, and studies fuzzy modeling method based on Matlab and VAP. Details are as follows:
     (1) City major road coordinated control modeling method is studied based on Synchro, and this thesis goes deeper in four aspects namely driveway utilization amendment, protective left-turn amendment in left-turn waiting area, permitted left-turn amendment and the minimum green time. Combined with actual traffic survey, the thesis proposes the point control and line control parameter correction method applicable for intersections in Beijing based on Synchro, and take Ronghua Road in Yizhuang New Area, Daxing District for example, to carry out an empirical study. As the result indicates, the optimization effect is obvious, and the parameter correction method compensate for the defects based on Synchro.
     (2) Urban intersection inductive signal control modeling method based on VAP is studied, and fundamental model problems of basic parameter settings and left-turn waiting area design in VAP are solved. The South Axis BRT Line of Beijing is taken as an example and intersection bus signal priority design and simulation of empirical research is carried out from three aspects namely full-inductive control, bus-inductive control, semi-inductive control. As the results show, timing control, full-inductive control, bus-inductive control, and semi-inductive control each has certain advantages and disadvantages and the method should be decided according to related transport policy.
     (3) The thesis studies the urban intersection fuzzy control design and simulation modeling method, designs four kinds of urban intersection fuzzy controller based on Matlab, studies the fuzzy control method based on neural network, attempts to induce fuzzy control to the modeling of VAP and proposes urban intersection fuzzy control design and simulation modeling method based on VAP, which is tested by empirical study. As the empirical evidence shows, the control effect and the cost is inversely proportional, that is to say, the neural network fuzzy optimal control method is the most effective, the two-level fuzzy control goes after it, followed by the inductive control and timing control is the worst in efficiency.
     In conclusion, starting from the perspective of engineering practice, the thesis aims to solve the difficult problems encountered in signal control optimization process of the chosen110intersections in Beijing, and studies the implementation of timing control method based on Synchro, which is in urgent need. From the long-term perspective of intersection signal control, the thesis carries out and exploratory study of intersection inductive signal control and fuzzy control modeling methods based on VAP, which solves the interaction of VAP with Matlab in urban interaction fuzzy control.
引文
[1]Paulson S L. Managing Traffic Flow Through Signal Timing [J]. Public Roads, 2002, 65(4): 6-9.
    [2]北京交通发展研究中心.2011年4月停车价格调整交通运行监测[R].北京:北京市交通委员会,2011.
    [3]刘智勇.智能交通控制理论及其应用[M].北京:科学出版社,2003.
    [4]全永燊.城市交通控制[M].北京:人民交通出版社,1989.
    [5]于泉.城市交通信号控制系统动态协调关键问题研究[D].北京:北京工业大学,2005.
    [6]Bullock D, Urbanik T. Traffic Signal Systems:Addressing Diverse Technologies and Complex User Needs [A]. Transportation in the New Millennium [C]. Washington DC:Transportation Research Board,2000. 1-9.
    [7]National Electrical Manufacturers Association. Standards Publication No.TSl [R]. Washington D.C.,1989.
    [8]Liu D. Comparative evaluation of dynamic TRANSYT and SCATS-Based signal control systems using paramics simulation [D]. Kent Ridge: The National University of Singapore, 2003.
    [9]The "SCOOT" Urban Traffic Control System, website: www.scoot-utc.com.
    [10]Bretherton D. Current Developments in SCOOT: Version 3 [J]. Transport Research Record, 1996(1554):48-52.
    [11]Sims A G, Dobinson K W. The Sydney Coordinated Adaptive Traffic (SCAT) System Philosophy and Benefits [J]. IEEE Transactions on Vehicular Technology, 1980, VT-29(2):130-137.
    [12]ATS Technology (HK) Limited. SCATS Adaptive Traffic Control Introduction [R]. ATS Technology (HK) Limited, 2001.
    [13]李少明,陈冰.北京市交通信号控制系统发展规划研究[J].TS通讯,2002(1):12-18.
    [14]北京市交通信号控制系统发展历程http://www.tranbbs.com, 2008-12-21.
    [15]杨晓光.面向中国城市的先进的交通控制与管理系统研究[J].交通运输系统工程与信息,2004,4(2):79-83.
    [16]臧利林.城市交通信号优化控制算法研究[D].济南:山东大学,2007.
    [17]邓文.基于数据融合的交通控制方法研究[D].北京:北京交通大学,2006.
    [18]袁振洲,魏丽英等.道路交通管理与控制[M].北京:人民交通出版社,2007.
    [19]张飞舟,范耀祖.交通控制工程[M].北京:中国铁道出版社,2005.
    [20]刘小明,段海林.平面交叉口交通冲突技术标准化方法研究[J].北京工业大学学报,1997,14(3):29-34.
    [21]Transportation Research Board. Highway Capacity Manual [R]. Washington D C:TRB, National Research Council, 2000.
    [22]McShane W R, Roess R P. Traffic Engineering [M]. New Jersey: Prentice-Hall, 1990.
    [23]饭田恭敬.邵春福,杨海等译.交通工程学[M].北京:人民交通出版社,1994.
    [24]陆化普.交通规划理论系列教材:交通规划理论与方法(第2版).北京:清华大学出版社,2006.
    [25]袁晶矜,袁振洲.信号交叉口通行能力计算方法的比较分析[J].公路交通技术,2006,10(5):123-128.
    [26]徐林.北京城市道路交叉口通行能力研究[D].北京:北京工业大学,2009.
    [27]CJJ 37-1990城市道路设计规范[S].北京:中华人民共和国建设部,1991.
    [28]张起森,张亚平.道路通行能力分析[M].北京:人民交通出版社,2002.
    [29]孙辉.排队长度约束下的瓶颈交叉口协调控制方法研究[D].成都:西南交通大学,2010.
    [30]汪湛.信号控制交叉口服务水平研究[D].上海:同济大学,2009.
    [31]道路与交通工程研究学会.交通信号控制指南[M].北京:中国建筑工业出版社,2006.
    [32]陈宽民,严宝杰等.道路通行能力分析[M].北京:人民交通出版社,2003.
    [33]姜桂艳,李继伟等.城市主干路路段行程时间估计的BPR修正模型[J].西南交通大学学报,2010,45(1):124-129.
    [34]邵春福.交通规划原理[M].北京:中国铁道出版社,2010.
    [35]Akcelick, R. "Traffic signals:capacity and timing analysis" Research Report ARR NO. 123 [R]. Australian Road Research Board, 1986.
    [36]DGJ08.96.2001城市道路平面交义口规划与设计规程[S].上海:上海市建设委员会,2001.
    [37]马万经,杨晓光.单点公交优先感应控制策略效益分析与仿真验证[J].系统仿真学报,2008,20(12):3309-3313
    [38]郑亮,马寿峰等.基于驾驶员行为的元胞自动机模型研究[J].物理学报,2010,59(7):4490-4498.
    [39]韦影仪,陈志远.基于Agent的交通微观模拟[J].计算机工程与应用,2005,41(1):217-220.
    [40]PTV Planung Transport Verkehr AG. VISSIM User Manual-Version 5.20 [R]. PTV Corporation, 2009.
    [41]Traffic, Ltd. Synchro Studio 8 User Guide [R]. Traffic, Ltd, 2011.
    [42]杨兆升.新一代智能化交通控制系统关键技术及其应用[M].北京:中国铁道出版社,2008.
    [43]王静波.交通控制信号优化模型的仿真研究[J].计算机仿真,2011,28(4):353-357.
    [44]赵磊,唐慧佳.基于元胞自动机和模糊控制的交通仿真研究[J].信息技术,2010(11):135-138.
    [45]李佳奇,党建武.基于车头时距交通信号的模糊控制系统[J].电气传动自动化,2012,34(1): 22-26.
    [46]刘興漢.交通路綱之適應模糊代理人控制系统[D].新竹:國立交通大學,2006.
    [47]Tian Z, Urbanik T. System Partition Technique to Improve Signal Coordination and Traffic Progression [J]. Journal of Transportation Engineering, 2007, 133(2): 119-128.
    [48]李艳,樊晓平.基于模糊控制的城市交叉口群信号控制及仿真[J].交通工程学报,2003,3(2):117-119.
    [49]袁长亮.城市道路线协调控制模型与算法研究[D].上海:同济大学,2004.
    [50]Little J D C. The synchronization of traffic signals by mixed-integer linear programming [J]. Operations Research, 1996, 14(4): 568-594.
    [51]Wong S C. Derivatives of performance index for the tragic model from TRANSYT [J]. Transportation Research Part B:Methodological. 1995,29(5): 303-327.
    [52]王东.基于遗传算法的城市干线交通信号协调控制研究[D].西安:长安大学,2010.
    [53]闻育.复杂多阶段动态决策的蚁群优化方法及其在交通系统控制中的应用[D].杭州:浙江大学,2004.
    [54]陈艳萍.基于模糊控制的交通信号控制系统的研究[D].扬州:扬州大学,2009.
    [55]郭艳玲.基于Petri网的干道信号交叉口协调控制方法研究[D].长沙:长沙理工大学,2007.
    [56]刘小明.基于分层递阶与多智能体理论的城市交通协调控制研究[D].北京:中科院自动化研究所,2004.
    [57]沈国江,许卫明.交通干线动态双向绿波带控制技术研究[J].浙江大学学报(工学版),2008,42(9):1625-1630.
    [58]翟中民.道路交通组织优化[M].北京:人民交通出版社,2004.
    [59]Little J D C, Kelson M D, et al. MAXBAND: a program for setting signals on arteries and triangular networks [J]. Transportation Research Record, 1981(795): 40-46.
    [60]陈宁宁,何兆成等.考虑动态红灯排队消散时间的改进MAXBAND模型[J].武汉理工大学学报(交通科学与工程版),2009,33(5):843-847.
    [61]Texas Transportation Institute Transportation Operations Group. PASSER V-09 Guide[R]. Texas Transportation Institute, 2009.
    [62]Cohen S L. Concurrent use of MAXBAND and TRANSYT signal timing programs for arterial signal optimization [J], Transportation Research Record, 1983(906): 81-84.
    [63]周荣贵,荣建等.公路通行能力手册[R].北京:交通部公路科学研究院,2006.
    [64]Department of Transportation Minnesota. Mn/DOT Traffic Signal Timing and Coordination Manual [R]. Department of Transportation Minnesota, 2011.
    [65]Federal Highway Administrator. Manual on Uniform Traffic Control Devices [R]. U.S. Department of Transportation, 2009.
    [66]北京市公安局公安交通管理局Vissim仿真软件精度要求[R].北京市公安局公安交通管理局,2012.
    [67]李水友,刘智勇.城市交通感应控制综述[J].城市交通,2006,4(6):64-69.
    [68]何必胜,宋瑞等.交叉口公交优先预信号感应控制策略仿真实现[J].系统仿真学报,2011,23(9):1909-1914,1944.
    [69]马荣国.城市公共交通系统发展研究[D].西安:长安大学,2003.
    [70]Davol A P. Modeling of Traffic Signal Control and Transit Signal Priority Strategies in a Microscopic Simulation Laboratory [D]. Cambridge, MA: Massachusetts Institute of Technology, 2001.
    [71]PTV Planung Transport Verkehr AG. VISSIM User Manual-VAP Version 2.14 APPENDIX A: ADD-ON VAP [R]. PTV Corporation, 2003.
    [72]PTV Planung Transport Verkehr AG. VISSIM User Manual-VAP Version 2.14 APPENDIX B: ADD-ON VISVAP [R]. PTV Corporation, 2003.
    [73]杨佩昆,吴兵.交通管理与控制[M].北京:人民交通出版社,2003.
    [74]于泉,刘培华等.基于行人、自行车群设置初始绿灯时间的方法:中国,CN101819719A[P].2010-09-01.
    [75]郭谨一,刘爽等.基于Synchro的感应信号控制交叉口仿真研究[J].交通运输系统工程与信息,2004,4(4):68-71,85.
    [76]王玉鹏.多路口感应信号控制优化设计及其仿真[D].南京:河海大学,2006.
    [77]翟润平.交通感应控制的信号配时设计方法研究[J].中国人民公安大学学报(自然科学版),1998(3):43-46.
    [78]Dion F, Hellinga B. A Rule-based Real-time Traffic Responsive Signal Control System with Transit Priority: application to an isolated intersection [J]. Transportation Research Part B: Methodological, 2002, 36(4): 325-343.
    [79]Yin H, Wong S C, et al. Urban Traffic Flow Prediction Using a Fuzzy-neural Approach [J]. Transportation Research Part C:Emerging Technologies, 2002, 10(2): 85-98.
    [80]王磊,王为民.模糊控制理论及应用[M].北京:国防工业出版社,1997.
    [81]伍建国.平面交义口控制策略及仿真系统研究[D].西安:西安公路交通大学,2001.
    [82]石辛民,郝整清.模糊控制及其MATLAB仿真[M].北京:清华大学出版社,北京交通大学出版社,2008.
    [83]Pappis C P, Mamdani E H. A Fuzzy Logic Controller for a Traffic Junction [J]. IEEE Transactions on Systems, Man and Cybernetics, 1977, 7(10): 707-717.
    [84]张卫刚,刘亚萍等.十字口4相位信号灯模糊控制模型设计与仿真[J].长安大学学报(自然 科学版),2008,28(4):83-86.
    [85]李娜.城市交通信号模糊控制方法研究[D].北京:北京交通大学,2008.
    [86]李瑞敏,陆化普.公交优先的交通信号多层模糊控制模型[J].清华大学学报(自然科学版),2006,46(9):1510-1513.
    [87]万伟.城市交通信号模糊控制技术研究及系统设计[D].合肥:中国科学技术大学,2007.
    [88]李振宸.城市交通干道信号协调控制研究[D].兰州:兰州理工大学,2010.
    [89]刘耀武.交叉口信号模糊神经网络控制方法研究[D].长沙:中南大学,2007.
    [90]胡艳艳.基于模糊控制和遗传算法的交叉口智能控制[D].厦门:厦门大学,2007.
    [91]苏玉萍.基于模糊逻辑的路口交通灯控制算法的研究[D].兰州:兰州理工大学,2007.
    [92]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005.
    [93]Lee J H, Lee-Kwang H. Distributed and Cooperative Fuzzy Controllers for Traffic Intersections Group [J]. IEEE Transactions on System, Man and Cybernetics, Part C, Applications and Reviews, 1999,29(2):263-271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700