用户名: 密码: 验证码:
菜粕芥子碱降解及其作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着育种技术的进步,菜粕中的毒性物质硫苷的含量显著降低,酚类物质成为影响菜粕利用的重要的抗营养因子。芥子碱是菜粕中最重要的简单酚类物质,占菜粕简单酚类的70-85%,而目前国内外关于芥子碱的降解研究尚不深入,存在产物具有潜在食用安全风险和降解效率不高的问题。针对这一现状,本论文通过研究加工工艺对芥子碱含量的影响、芥子碱酶解动力学和降解机理、芥子碱在生物发酵过程中的变化等,探明芥子碱在热和酶作用下的变化规律,为高效安全的芥子碱降解提供理论指导,为推动菜粕生物改良技术的进步提供理论支撑。具体研究结果如下:
     1、采用两样本配对t检验法对回流萃取法和超声辅助提取法对芥子碱提取效率的影响进行了研究,发现超声辅助提取法效率更高。研究确定了芥子碱提取的最佳溶剂比为100:1的无水甲醇。建立了用于芥子碱含量快速测定的紫外分析方法和精确测定的高效液相色谱法。
     2、进行了微波处理对菜粕芥子碱含量和菜籽细胞结构影响的研究。通过透射电镜观察发现菜籽经微波处理后大部分油小体消失,油小体和其他细胞器的膜结构被破坏,为油脂的提取提供了良好的条件,经过4mins的微波处理菜籽饼中的油分含量与未处理相比减少了50.8%。微波处理对菜籽芥子碱的含量也产生了显著影响,微波处理7分钟后,芥子碱的含量下降了16.7%。通过了双样本配对t检验发现压榨和溶解提取两种油脂提取方法对饼粕中芥子碱含量具有显著影响(p≤0.05),芥子碱和芥子酸更易于被溶剂浸出。
     3、采用紫外、薄层层析等研究了漆酶和酪氨酸酶对芥子碱的酶解作用,发现漆酶可快速降解芥子碱,而酪氨酸酶对芥子碱基本无作用。选取了两种结构与芥子碱类似的底物化合物Ⅰ(1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone)和底物化合物Ⅱ(sodium (E)-3-(4-hydroxy-3,5-dimethoxyphenyl)acrylate)进行漆酶酶解对比实验,发现漆酶作用芥子碱的位点为苯环上的酚羟基。通过TLC、UPLC和NMR的分析发现漆酶酶解芥子碱后生成了以低聚物为主的产物。
     4、根据酶解产物的特点结合文献报道,推测漆酶酶解芥子碱的过程为:首先漆酶与氧气结合形成活性中间体,然后中间体与芥子碱中较为活泼的羟基氢反应,得到一个芳基氧自由基;少部分自由基发生迁移和重排,得到结构较为简单的产物;大部分的芳基氧自由基发生了聚合反应,形成结构较为复杂的低聚物。
     5、芥子碱酶解速率受酶用量、底物浓度、温度和pH等的显著影响,通过不同条件下的酶解全过程监测,得出芥子碱在底物和酶的质量比20:1、温度55℃、pH值5.5、底物浓度0.01895mg/mL的条件下可以实现芥子碱的快速酶解。氧气作为芥子碱酶解的底物之一对反应速率也产生显著影响,但是通常水中溶解的氧气已可满足反应的需要。漆酶酶解菜粕芥子碱的Km值为0.00013mol/L,表明漆酶与芥子碱亲和力强,反应迅速。
     6、通过接种酿酒酵母的含芥子碱培养基的液态和固态发酵发现,引起固态发酵过程中芥子碱降解的一个重要原因是热的作用。芥子碱在湿热条件下易于降解,其含量降低速率和水分的流失呈显著正相关。云芝菌所产漆酶对芥子碱具有显著的酶解作用,在云芝菌发酵过程中,随着漆酶的产生,芥子碱含量显著下降。
With the development of breeding technology, the content of glucosinolates in rapeseed meal weresignificantly decreased, but phenols have been become the important factors on the value of rapeseedmeal. Sinapine is one of the most important simple pehenols in rapeseed meal, accounting for70-85%of simple phenols in rapeseed meal. So the degradation of sinapine should be studied further to avoidthe potential food security risks. The objective of this dissertation is to reveal the dynamics andmechanisms involved in the degradation of sinapine through the heat and enzymatic treatment; andtherefore to provide theoretical guidance for the sinapine safety degradation. This work will focus onthe study of microwave treatment on the content of sinapine, enzymatic kinetics and mechanism ofsinapine catalyzed by polyphenol oxidase,the effect of fermentation on the content of sinapine. Theresults are as follows:
     1. Two-sample paired t-test was used to evaluate the efficiency of reflux and ultrasonic assistedextraction on sinapine extraction from rapeseed meal. It was found that ultrasound-assisted extractionmethod is most efficient. The best solvent ratio to extract sinapine was100:1anhydrous methanol.Ultraviolet (UV) analysis method was established for rapid determination of the content of sinapine.Ultra Performance Liquid Chromatography was established to determine the content of sinapineprecisely.
     2. The content of sinapine in rapeseed meal and microsturcture of rapeseed effected by microwavetreatment was assessed. Microscopic work showed that most of the cellular oil bodies were notobserved, and the membranes of organelles damaged and the cell wall folded after microwave treatment.Almost all the oilbodies were absent in rapeseed cakes treated by microwave. It was shown thatmicrowave treatment provided good conditions for pressing and oil extraction. Four minutesmicrowave treatment resulted in the decreased oil content by50.8%. Microwave treatment also hassignificant effect on the content of sinapine in rapeseed and rapeseed meal. By seven minutes ofmicrowave treating, the content of sinapine in rapeseed exhibited the largest decrease of16.7%. Weemployed two sample paired t-tests for the means to analyze the difference between the meal anddefatted cold-pressed cake. The results indicated that the content of sinapine and sinapic acid indefatted cake was significantly higher than that in meal (p≤0.05).
     3. UV and Thin layer chromatography (TLC) was used to evaluate the effect of laccase andtyrosinase on the content of sinapine. It was found that laccase can catalyse sinapine quickly whiletyrosinase has no effect on the content of sinapine.1-(4-hydroxy-3,5-dimethoxyphenyl) ethanone) andsodium (E)-3-(4-hydroxy-3,5–dimethoxyphenyl was selected to judge the group site of laccasecatalyzed on sinapine. It was found that phenolic hydroxyl group was the right site and the product ofsinapine catalyzed by laccase was oligomers which was confirmed by analyses of TLC, UPLC andNMR.
     4. Combined the literature data and the characteristics of the catalysates of sinapine, the pathwayof sinapine catalysed by laccase could be as follows: First, after the combination of oxygen with the enzyme, the reactive intermediates was formed and reacted with hydroxyl hydrogen in sinapine, thenthe oxygen free radicals were obtained. Some of them were rearranged to form a relatively simplestructure compound. Most of the aryloxy radicals were polymerized forming subsequent oligomers.
     5. The catalytic velocity of sinapine catalysed by laccase was affected by enzyme concentration,substrate concentration, temperature and pH significantly. The reaction conditions were: substrate andenzyme ratio20:1,55°C, pH5.5. The oxygen is one of the substrates affecting the reaction speedsignificantly, and the dissolved oxygen in water could meet the needs of the reaction. Michaelisconstant was determined. The Km value is0.00013mol/L. The results indicated the strong affinitybetween laccase and sinapine.
     6. Liquid and solid fermentation was used to evaluate the effect of heat and laccase on the contentof sinapine. It was found that heat and moisture have significant effects on the content of sinapine; thedecreased content of sinapine was well related to the loss of moisture (with positive correlation).Laccase produced by Trametes sp. catalyses the degradation of sinapine in a fast manner. With theproducing of laccase, the content of sinapine was decreased rapidly.
引文
1.曹治云,郑腾,谢必峰,陆承平.漆酶工业应用的研究进展[J].生物技术通讯,2004,15(4):414-416.
    2.陈刚,彭健,刘振利,方正峰.中国菜籽饼粕品质特征及其影响因素研究[J].中国粮油学报,2006,21(1):95-99.
    3.陈俊,肖安风,倪辉,杨秋明,蔡慧农.紫外分光光度法测定发酵液中麦考酚酸含量[J].集美大学学报:自然科学版,2011,4:258-262.
    4.陈雨艳,钱蜀,张丹,李海霞.微波萃取在环境样品分析测试中的应用[J].环境保护与循环经济,2010,6:44-46.
    5.吴大清,刁桂仪,袁鹏.针铁矿纤铁矿催化降解苯酚动力学速率及其反应产物研究[J].生态环境,2006,15(4):714-719.
    6.董加宝,张长贵,王祯旭.食用菜籽蛋白研究及应用[J].粮食与油脂,2005,12:11-13.
    7.董秀玥.配对t检验与成组t检验优选方法研究[J].数理医药学杂志,2010,1:11-14.
    8.葛宏华,武赟,肖亚中.漆酶空间结构、反应机理及应用[J].生物工程学报,2011,27(2):156-163
    9.郭兴凤,周瑞宝,汤坚,谷文英.菜籽蛋白的制备[J].郑州工程学院学报,2001,22(1):60-62.
    10.黄德娟,黄德超,梁桂燕.大孔树脂纯化花椰菜芥子碱的研究[J].食品研究与开发,2008a,29(12):15-16.
    11.黄德娟,刘成佐,饶军,梁桂燕.花椰菜中芥子碱的热醇提取工艺优化[J].安徽农业科学,2008b,36(29):12541-12542
    12.黄海燕,彭飞燕.紫外分光光度法测定减肥茶中茶多酚的含量[J].西北药学杂志,2010,6:410-411.
    13.解蕊.一种潜在植物蛋白资源―菜籽蛋白的开发[J].农产品加工,2003,1:26-27.
    14.柯木根,吴国欣,林燕妮,陈密玉.芥子碱的研究概况[J].中草药,2007,38(9):1436-1439.
    15.李静,聂继云,李海飞,徐国峰,王孝娣,毋永龙,王贞旭.Folin-酚法测定水果及制品中总多酚含量的条件[J].果树学报,2008,1:126-131.
    16.林燕妮,陈密玉,吴国欣,吴翠萍,林清强.芥子碱提取工艺的研究[J].海峡药学,2006,18(6):15-18.
    17.林燕妮,陈密玉,吴国欣,李敏.芥子碱含量测定方法探讨[J].药物分析杂志,2007,27(2):260-263.
    18.刘丽芳,王宇新,李海燕,及莹.常用十字华科要用植物中芥子碱的分布研究[J].色谱,2006,24(1):49-51.
    19.钮琰星,黄凤洪,倪光远,黄茜,何江,刘睿,刘俊.菜籽粕的饲用现状和饲用改良技术发展趋势[J].中国油脂,2009,34(5):4-7.
    20.潘峰,朱慧杰.白腐真菌产酶反应器研究进展[J].环境污染治理技术与设备,2006,7(8):12-17.
    21.欧志敏,王普,王鸿,柳彩波.酪氨酸酶的应用研究进展[J].中国生物工程杂志,2005,增刊:163-169
    22.沈金雄,傅廷栋.我国油菜生产、改良与食用油供给安全[J].中国农业科技导报,2011,13(1):1-8.
    23.王汉中.中国油菜品种改良的中长期发展战略[J].中国油料作物学报,2004,26(3):98-101.
    24.王治华,孙成玉,王岩等.日粮添加脱毒菜粕对肉仔鸡生产性能的影响[J].安徽技术师范学院学报,2003,17(4):289-291.
    25.肖翼,王承明.米曲霉固态发酵脱除菜籽粕中芥子碱和多酚研究[J].中国粮油学报,2011,26(10):79-82
    26.熊志勇,夏伏建,陆师国.优质油菜籽粕蛋白质分类研究[J].武汉植物学研究,2001,19(3):259-261.
    27.许颖,兰进.真菌漆酶研究进展[J].食用菌学报,2005,12(1):57-64.
    28.谢朝晖,张梅,蒋立东.大孔吸附树脂对白芥子生物碱提取分离的应用研究[J].湖南中医杂志,2002,18(3):69-70.
    29.徐圣秋,雷雨,李伟东,柏璐. UV法测定不同采收期苍耳草中总酚酸含量[J].徐州医学院学报,2010,9:574-576.
    30.薛照辉,吴谋成,周志江.提高菜子分离蛋白得率的研究[J].农产品加工·学刊,2005(9):147-149.
    31.殷艳,王汉中.我国油菜产业发展成就、问题与科技对策[J].中国农业科技导报,2012,14(4):1-7.
    32.张华新,黄星,颜承农,梅平.酶催化反应动力学的荧光法研究进展[J].化学与生物工程,2006,23(3):4-6.
    33.张宗舟.菜籽饼脱毒微生物的筛选、分离、纯化与复配[J].甘肃科技纵横,2005,34(3):48-49.
    34.朱进,戴苏林.荧光扫描法测定莱菔子中芥子碱含量[J].中草药,.1990,21(2):13-14.
    35. Ahn, C. K., Cho B. K.and J. S. Kang. Study on the Development of Non-destructive EvaluationTechnique for Seed Viability for Hyperspectral Imaging Technique[R].retrieved Feb18,2013,from http://cirg.ageng2012.org/images/fotosg/tabla_137_C1198.pdf
    36. Austin, F.L. and I.A. Wolff. Sinapine and related esters in seed meal of Crambeabyssinica[J]. J.Agric. Food Chem.,1968,16:132-135.
    37. Azadmard-Damirchi, S., Habibi-Nodeh, F., Hesari, J., Nemati, M., and B. F.Achachlouei. Effectof pretreatment with microwaves on oxidative stability and nutraceuticals content of oil fromrapeseed[J]. Food Chem.,2010,121(4):1211-1215.
    38. Bao J., Krylova S. M., Reinstein O., Johnson P. E., and S. N. Krylov. Label-free solution-basedkinetic study of aptamer–small molecule interactions by kinetic capillary electrophoresis withuv detection revealing how kinetics control equilibrium[J]. Anal. Chem.,2011,83(22),8387–8390.
    39. Barneto A.G.,Aracri E.,Andreu G. and T. vidal.Investigating the structure-effect relationships ofvarious natural phenols used as laccase mediators in the biobleaching of kenaf and sisalpulps[J]. Bioresour Technol.,2012,112:327-335.
    40. Bell, J.M. Factors affecting the nutritional value of canola meal: a rewiew[J]. Can. J. Anim. Sci.,1993,73:679-697.
    41. Blair,R.,and R.D.Reichert. Carbohydrate and phenolic constituents in a comprehensive range ofrapeseed and canola fractions:nutritional significance for animal[J]. J Sci. Food Agr.,1984,35,29-35.
    42. Bouchereau, A., Hamelin, J., Renard, M. and P. Larher. Structural changes in sinapic acidconjugates during seedling development of rape[J]. Plant Physiol. Biochern.1992,30:467-475.
    43. Burel,C.,Boujard,T.,Kaushik,S.J., Boeuf, G., Geyten S. V. D., Mol K. A., Kühn E. R., Quinsac A.,Krouti M.and D. Ribaillier.Potential of plant-protein sources as fish meal substitute in diets forturbot(Psetta maxima):growth,nutrient utilization and thyroid status[J].Aquaculture,2000,188(3):363-382.
    44. Butler,E.J., Pearson,A..W.and N.M.Greenwood. Trimethylamine taint in eggs: The occurrence ofthe causative metabolic defect in commercial hybrids and pure breeds in relation to shellcolour[J]. J.Sci.Food Agric.,1984.35:272-278.
    45. Cai, R., Arntfield, S.D. and J.L.Charlton. Structural changes of sinapic acid during alkali inducedair oxidation and the development of color substances[J]. J. Am. Oil Chem.Soc.,1999,76:757-764.
    46. Cai R. and S.D. Arntfield. A Rapid High-Performance Liquid Chromatographic Method for theDetermination of Sinapine and Sinapic Acid in Canola Seed and Meal[J]. J. Am. Oil Chem.Soc.,2001,78:903–910.
    47. Chandra, R.P., and A.J.Ragauskas. Evaluating laccase-facilitated coupling of phenolic acids tohigh-yield kraft pulps[J]. Enzyme Microb Tech.,2002,30,855–861.
    48. Chandra, R.P., Lehtonen, L.K., and A.J.Ragauskas. Modification of high lignin content kraftpulps with laccase to improve paper strength properties.1.Laccase treatment in the presence ofgallic acid[J]. Biotechnol Progr.,2004,20,255–261.
    49. Chung, J.E., Kurisawa, M., Uyama, H., and S.Kobayashi.Enzymatic synthesis and antioxidantproperty of gelatin-catechin conjugates[J]. Biotechnol Lett.,2003,25:1993–1997.
    50. Clandinin, D. R. and A. R. Robblee. Rapeseed oil meal studies:4.Effect of sinapine, the bittersubstance in rapeseed oil meal, on the growth of chickens[J]. Poult. Sci..1961,40:484-487.
    51. Clausen,S., Larsen,L., Ploeger,A. and H.Sorensen. Aromatic choline esters in rapeseed[J]. WorldCrops,1985,11,61-72.
    52. Clauss, K, Roepenack-Lahaye, E, B ttcher, C, Roth, M.R., Welti, R., Erban, A., Kopka, J.,Scheel, D., Milkowski, C.and D.Strack. Overexpression of sinapine esterase BnSCE3in oilseedrape seeds triggers global changes in seed metabolism[J].Plant Physiol.,2011,155(3):1127-45.
    53. Cerretani, L., Bendini, A.,Rodriguez-Estrada, M.T., Vittadini, E.and E. Chiavaro. Microwaveheating of different commercial categories of olive oil:Part I. Effect on chemical oxidativestability indices and phenolic compounds[J]. Food Chem.,2009,115:1381–1388.
    54. Cummins, I., Hills, M., Ross, J. E., Hobbs, D., Watson, M., and D.Murphy. Differential, temporaland spatial expression of genes involved in storage oil and oleosin accumulation in developingrapeseed embryos: implications for the role of oleosins and the mechanisms of oil-bodyformation[J]. Plant Molecular Biology.,1993,23(5),1015-1027.
    55. Dabrowski,K.J.and F.W.Sosulski.Quantitation of free and hydrolysable phenolic acids in seeds bycapillary gas-liquid chromatography[J]. J. Agric.Food Chem.,1984,32:123-127.
    56. Dave H. Canola Meal Feed Industry Guide[R].Canada:Canadian International GrainsInstitute,2001:1-20.
    57. Deleu, M., Vaca-Medina, G., Fabre, J.-F., Ro z, J., Valentin, R., and Z.Mouloungui. Interfacialproperties of oleosins and phospholipids from rapeseed for the stability of oil bodies in aqueousmedium[J]. Colloid Surface B.,2010,80(2),125-132.
    58. El-Batal, A. I. and H. Abdel Karem. Phytase production and phytic acid reduction in rapeseedmeal by Aspergillus niger during solid state fermentation[J]. Food Res. Int.,2001,34(8):715-720.
    59. Eskin,N.A.M.,Hoehn,E.and C.Frenkel.A simple and rapid quantitative method for totalphenols[J].J.Agric.Food Chem.,1978,26:973-974.
    60. Fang J., Reichelt M., Kai M., and B. Schneider.Metabolic Profiling of Lignans and OtherSecondary Metabolitesfrom Rapeseed (Brassica napus L.)[J]. J. Agric. Food Chem.,2012,60:1052310529
    61. Fenton,T.W., Leung, J. and D.R.Clandinin.Phenolic components of rapeseed meal[J].J.FoodSci.,1980,45:1702-1705.
    62. Fenwick, G. R., Pearson, A. W., Greenwood, N. M. and E.J.Butler. Rapeseed meal tannin and eggtaint[J]. Anim.Feed Sci. Techol.,1981,6(4):421-431.
    63. Fleddermann,M., Fechner, A., R ler, A., B hr, M., Pastor, A., Liebert, F.,and G. Jahreis.Nutritional evaluation of rapeseed protein compared to soy protein for quality, plasma aminoacids, and nitrogen balance-A randomized cross-over intervention study in humans[J]. ClinNutr.,2012,1-8.
    64. Fillat A., Colom J. F.and T. Vidal. A new approach to the biobleaching of flax pulp with laccaseusing natural mediators[J]. Bioresour Technol.,2010,101:4104–4110.
    65. Fornal, J., Jaroch, R., Kaczyńska, B., and A.Ornowski. The Influence of Hydrothermal Treatmentof Rapeseeds on their Selected Physical Properties and Ability to Crush during Grinding[J].Lipid Science and Technology.,1992,94(5),192-196.
    66. Fu J.,Nyanhongo G.S.,Gubitz,G.M.,Cavaco-paulo A. and S.Kim.Enzymatic colouration withlaccase and peroxidases:Recent progress[J]. Biocatal Biotransfor.,2012,30(1):125-140.
    67. Goh,Y.K., Clandinin, D.R., Robblee,A.R.,and K.Darlington.The effect of level of sinapine in alaying ration on the incidence of fishy odor in eggs from brown-shelled egglayers[J].Can.J.Anim.Sci.,1979,59:313-316.
    68. Griffiths L.A...Metabolism of sinapic acid and related compounds in therat[J].Biochem.J.,1969,113:603-609.
    69. Gutfinger T. Polyphenols in Olive Oils[J]. J Am. Oil Chem. Soc.,1981,58(11):966-968.
    70. Hayat K., Zhang X., Farooq U., Abbas S., Xia S., Jia C., Zhong F.and J. Zhang. Effect ofmicrowave treatment on phenolic content and antioxidant activity of citrus mandarin pomace[J].Food Chem.,2010,123:423–429.
    71. Hu,J. and Z. Duvnjak.The production of a laccase and the decrease of the phenolic content incanola meal during the growth of the Fungus Pleurotus ostreatus in solid state fermentationprocesses[J].Eng.Life Sci.,2004,4(1):50-55.
    72. Huang J., Rozwadowski, K. and V.S. Bhinu. Manipulation of sinapine, choline and betaineaccumulation in Arabidopsis seed: Towards improving the nutritional value of the meal andenhancing the seedling performance under environmental stresses in oilseed crops[J]. PlantPhysiol. Bioch.,2008,46:647-654.
    73. Hüsken, A., Baumert, A., Strack, D., Becker, H.C., Mollers, C.and C.Milkowski.Reduction ofsinapate ester content in transgenic oilseed rape (Brassica napus)by dsRNAi-based suppressionof BnSGT1gene expression[J]. Mol. Breed.,2005,16:127–138.
    74. Ismail, F., Vaisey-Genser, M. and B. Fyfe. Bitterness and astringency of sinapine and itscomponents[J]. J. Food Sci.,1981,46:1241-1244.
    75. Jeon J. R., Kim E. J., Murugesan K., Park H.K., Kim Y.M., Kwon J.H., Kim W.G., Lee J.Y. andY.S. Chang. Laccase-catalysed polymeric dye synthesis from plant-derived phenols forpotential application in hair dyeing: Enzymatic colourations driven by homo-or hetero-polymersynthesis[J]. Microb Biotechnol.,2010,3(3),324–335.
    76. Jeon, J.R.,Baldrian P.,Murugesan, K.and Y.S.Chang.Laccase-catalysed oxidations of naturallyoccurring phenols:from in vivo biosynthetic pathways to green synthetic applications[J].Microb Biotechnol.,2012,5(3):318-332.
    77. Jeroch, H., Brettschneider, J.G,, Danicke,S.,Jankowski, J. and F.Schone. The effect of chemicallyand hydrothermally treated rapeseed on the performance and thyroid parameters of layers[J].Pol J Vet Sci.,2009,12(4):439-48.
    78. Jolivet, P., Deruyffelaere, C., Boulard, C., Quinsac, A., Savoire, R., Nesi, N., and T. Chardot.Deciphering the structural organization of the oil bodies in the Brassica napus seed as a mean toimprove the oil extraction yield[J]. Industrial Crop. Prod.,2013,44,549-557.
    79. Josefsson E. and B.Uppstrom.Influence of sinapine and p-hydroxybenzylglucosinolate on thenutritional value of rapeseed and white mustard meals[J].J.Sci.Food Agric.,1976,27:438-442.
    80. Josefsson E.and L.Munck.Influence of genetically determined differences in glucosinolatecontent on the nutritional value of rapeseed meal[J].J.Sci. Food Agric.,1973,24:1265-1271.
    81. Jung, H. C., Xu, F.and K. C.Li. Purification and characterization of laccase fromwood-degrading fungus Trichophyton rubrum LKY-7[J]. Enzyme Microb Tech.,2002,30(2):161-168
    82. Khan,M.K., Vian, M.A., Tixier,A.S.F., Dangles,O.and F. Chemat. Ultrasound-assisted extractionof polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel[J]. Food Chem,.2010,119:851–858.
    83. Khattab, R.,Eskin, M.,Aliani, M.and U.Thiyam. Determination of sinapic acid derivatives incanola extracts using High-Performance Liquid Chromatography[J]. J Am. Oil Chem. Soc,2010,87:147–155.
    84. Koschorreck K, Schmid RD and V.B, Urlacher. Improving the functional expression of a Bacilluslicheniformis laccase by random and site-directed mutagenesis[J]. BMC Biotechnol.,2009,,9:12
    85. Kozlowska, H., Rotkiewicz, D.A. and R. Zadernowski. Phenolic acids in rapeseed and mustard[J].J Am. Oil Chem. Soc.1983,60:1119-1123.
    86. Krygier,K., Sousulski,F. and L.Hogge.Free, esterified and insoluble-bound phenolic acids.2.Composition of phenolic acids in rapeseed flour and hulls[J]. J. Agric. Food Chem.1982,30:334-336.
    87. Lacki, K, and Z. Duvnjak. Modeling the enzymatic transformation of3,5-dimethoxy,4-hydroxycinnamic acid by polyphenoloxidase from the white-rot fungus Trametes ersicolor[J].Biotechnol. Bioeng,1996,51(3):249-259.
    88. Lacki, K. and Z.Duvnjak. Enzymatic transformation of sinapine using polyphenol oxidase fromTrametes versicolor. Effect of pH and temperature and model development[J]. Chem. Engi. J.,1997,65(1):27-36.
    89. Lacki, K. and Z. Duvnjak. Transformation of3,5-dimethoxy,4-hydroxy cinnamic acid bypolyphenol oxidase from the fungus Trametes versicolor: Product elucidation studies[J].Biotechnol. Bioeng,1998,57:694-703.
    90. Latorrea, M. E., Escalada-Pláa, M. F., Rojas, A. M.and L. N. Gerschenson. Blanching of red beet(Beta vulgaris L. var. conditiva) root. Effect of hot water or microwave radiation on cell wallcharacteristics[J]. Lwt-food Sci Technol.,2013,50(1):193-203.
    91. Leckbanda G., Frauena M. and W. Friedtb. NAPUS2000. Rapeseed (Brassica napus) breedingfor improved human nutrition[J]. Food Res. Int.,2002,35:273–278.
    92. Lee, D.J.W., Martindale, L. and I.R.Paton. Rapeseed meal and egg tainting:In vivo metabolismand excretion of14C-trimethylamine by tainter and non-tainter hens[J].Br.Poult. Sci.,1982,23(2):175-182.
    93. Liazid, A., Palma, M., Brigui, J.,and C.G.Barroso. Investigation on phenolic compounds stabilityduring microwave-assisted extraction[J]. J Chromatogr A.,2007,1140:29–34.
    94. Liburdy, R.P.and R.L.Magin.Microwave-stimulated drug release from liposomes[J].RadiatRes.,1985,103:266-275.
    95. Liu, Q., Wu, L., Pu, H., Li C, and Q.Hu. Profile and distribution of soluble and insolublephenolics in Chinese rapeseed(Brassica napus)[J].Food Chem.,2012,135(2):616-22.
    96. Liu, Y., A. Steg, B. Smits and S. Tamminga. Crambe meal: removal of glucosinolates by heatingwith additives and water extractiong[J]. Anim. Feed Sci.Technol.,1993,41:133-147.
    97. Llano, K. M., Haedo, A. S., Gerschenson, L. N., and A.M.Rojas. Mechanical and biochemicalresponse of kiwifruit tissue to steam blanching[J]. Food Res. Int.,2003,36(8),767-775.
    98. Lucht, H. W.. Reduction of glucosinolates and sinapine in rapeseed by technical treatment:description of the technical procedure and effectiveness evaluation. Proceedings of the thirdinternational workshop on ‘Antinutritional factors in legume seeds and rapeseed’[J]. EAAPPub.,1998,93:433-435.
    99. Ma,Y.Q.,Ye, X.Q.,Fang, Z.X., Chen, J.C.,Xu, G.H.and D.H.Liu. Phenolic Compounds andAntioxidant Activity of Extracts from Ultrasonic Treatment of Satsuma Mandarin (Citrusunshiu Marc) Peels[J].J.Agric.Food.Chem.,2008,56(14):5682-5690.
    100. Mailer R. J., A. McFadden, J. Ayton, and B. Redden. Anti-Nutritional Components, Fiber,Sinapine and Glucosinolate Content in Australian Canola(Brassica napus L.)Meal[J]. J Am OilChem Soc.,2009,85:937-944.
    101. Martin, C., Pecyna, M., Kellner, H., Jehmlich,N.,Junghanns,C.,Benndorf,D.,Bergen M.andD.Schlosser. Purification and biochemical characterization of a laccase from the aquatic fungusMyrioconium sp. UHH1-13-18-4and molecular analysis of the laccase-encoding gene[J]. ApplMicrobiol Biot.,2007,77(3):613-624.
    102. Michan, C., Daniels, C., Fernandez, M., Solano, J., Campa,A.M., and J.L.Ramos. Sugar (ribose),spice (peroxidase) and all thing nice (laccase hair-dyes)[J]. Microb Biotechnol.,2010,3:131–133.
    103. Mittasch J., Mikolajewski S., Breuer F., Strack D. and C. Milkowski. Genomic microstructureand differential expression of the genes encoding UDP-glucose: sinapate glucosyltransferase(UGT84A9) in oilseed rape (Brassica napus)[J]. Theor Appl Genet,2010,35:468-475.
    104. Mueller,M.M.,E.B.Ryl,T.Fenton, and D.R.Clandinin.Cultivar and growing location differences onthe sinapine content of rapeseed[J].Can.J.Anim.Sci.,1978,58:579-583.
    105. Naczk, M. and F. Shahidi. The effect of methanol-ammonia-water treatment on the content ofphenolic acids of canola[J]. Food Chem.,1989,31:159-164.
    106. Naczk, M., F. Shahidi, and A. Sullivan. Recovery of Rapeseed tannins by Various SolventSystems[J]. Food Chem.,1992,45:51–54.
    107. Naczk, M., Nichols, R., Pink, D. and F. Shahidi. Condensed tannins in canola hulls[J]. J Agr andFood Chem.,1994,42,2196-2200.
    108. Naczk, M., Amarowicz, R., Sullivan, A. and F. Shahidi. Current research developments onpolyphenolics of rapeseed/canola: a review[J]. Food Chem.,1998,62(4):489-502.
    109. Nagel,F., Danwitz, A.,Tusche,K., Kroeckel, S., Bussel C.G.J., Schlachter, M., Adem, H., Tressel,R.P. and C. Schulz. Nutritional evaluation of rapeseed protein isolate as fish meal substitute forjuvenile turbot (Psetta maxima L.)-Impact on growth performance, body composition, nutrientdigestibility and blood physiology[J]. Aquaculture.,2012,356–357:357–364.
    110. Palom ki,A.,. Pohjant hti-Maaroos, H., Wallenius, M., Kankkunen, P., Aro, H., Husgafvel, S.,Pihlava, J.M. and K.Oksanen. Effects of dietary cold-pressed turnip rapeseed oil and butter onserum lipids, oxidized LDL and arterial elasticity in men with metabolic syndrome[J]. LipidsHealth Dis.2010,9:137-114.
    111. Qiao, H.. Nutritional, Physiological and Metabolic Effects of Rapeseed Meal Simple Phenolics inBroiler Chickens [D].University of Saskatchewan, Saskatoon, Canada,2002.
    112. Newkirk, R.Canola Meal Feed Industry Guide[R].Canadian International Grains Institute,Canada,2009.
    113. Ratto, M., Ritschkoff, A.-C. and L.Viikari. Enzymatically polymerized phenolic compounds aswood preservatives[J]. Holzforschung,2004,58:440–445.
    114. René,U., Le, H., Nguyen, D. and H. Martin. Laccase from the medicinal mushroom Agaricusblazei: production, purification and characterization[J]. Appl Microbiol Biot.,2005,67(3):357-363
    115. Rozan, P., Villaume, C., and H. M. Bau. Detoxication of rapeseed meal by Rhizopus Oligosporussp-T3: A first step towards rapeseed protein concentrate[J]. Int J Food Sci Tech.,1996,31,85-90.
    116. Rubino, M.I., S. D. Arntfield, and J. L. Charlton. Conversion of phenolics to lignans: sinapic acidto thomasidioic acid[J]. J Am Oil Chem Soc.,1995,72:1465-1470.
    117. Sadhasivam, S., Savitha, S., Swaminathan, K.and Feng-Huei Lin. Production, purification andcharacterization of mid-redox potential laccase from a newly isolated Trichoderma harzianumWL1[J]. Process Biochem.,2008,43(7):736-742
    118. Sahin,S. and R.Samli. Optimization of olive leaf extract obtained by ultrasound-assistedextraction with response surface methodology[J].Ultrason Sonochem.,2013,20(1):559-602
    119. Sanchez-Ferrer, A.., Rodriguez-Lopez, J. N., Garcla-Cafinovas, F. and F.Garcia-Carmona.Tyrosinase: a comprehensive review of its mechanism[J]. Biochim BiophysActa.,1995,1247:1-11.
    120. Scheline,R.R. Decarboxylation and demethylation of some phenolic benzoic acid derivatives byrat cecal contents[J].J.Pharm.Pharmacol.,1966,18:664-669.
    121. Scheline,R.R. Metabolism of phenolic acids by the rat intestinal microflora[J]. Acta PharmacolToxicol.,1968,26:189-205.
    122. Schroeder, M., Aichernig, N., Guebitz, G.M., and V.Kokol.Enzymatic coating of lignocellulosicsurfaces with polyphenols[J]. Biotechnol J.,2007,2:334–341.
    123. Shahidi, F., M.Naczk, L.J.Rubin and L.L.Diosady.A novel processing approach for rapeseed andmustard seed-removal of undesirable constituents by methanol-ammonia[J].J.Food Protect.,1988,51:743-739.
    124. Shamis,Y.,Croft, R., Taube, A.,Crawford, R. J.and E. P. Ivanova. Review of the specific effectsof microwave radiation on bacterial cells[J]. Appl Microbiol Biotech.,2012,96:319–325.
    125. Shirsath, S.R.,Sonawane, S.H. and P.R.Gogate. Intensification of extraction of natural productsusing ultrasonic irradiations—A review of current status[J].Chemical Engineering andProce.,2012,53(3):10-23.
    126. Slawski, H., Adem, H., Tressel, R.-P., Wysujack, K., Koops, U., Kotzamanis, Y., Wuertz, S.andC.Schulz. Total fish meal replacement with rapeseed protein concentrate indiets fed to rainbowtrout (Oncorhynchus mykiss, Walbaum)[J]. Aquacult Int.,2012.,doi
    10.1007/s10499-011-9476-2
    127. Singh, G., Capalash, N., Goel, R. and P.Sharma. A pH-stable laccase from alkali-tolerantγ-proteobacterium JB: Purification, characterization and indigo carmine degradation[J]. EnzymeMicrob Tech.,2007,41(6):794-799.
    128. Singh G.,Bhalla A., Kaur P., Capalash N.and P. Sharma. Laccase from prokaryotes: a new sourcefor an old enzyme[J]. Rev Environ Sci Biotechnol.,2011,10:309–326
    129. Sosulski, W.F. Organoleptic and nutritional of phenolic compounds on oilseed protein products: areview[J]. J Am Oil Chem Soc.,1979,56:7ll-7l5.
    130. Spielmeyer, A, Wagner, A and G.Jahreis. Influence of thermal treatment of rapeseed on thecanolol content[J]. Food Chem.,2009,112:944–948.
    131. Strack, D. Sinapine as a supply of choline for the biosynthesis of phosphatidylcholine inRaphanus sativus seedlings[J]. Z. Naturforsch.,1981,36c:215–221.
    132. Sun, T., Tang, J., and J. R. Powers. Antioxidant activity and quality of asparagus affected bymicrowave-circulated water combination and conventional sterilization[J]. Food Chem.,2007,100(2):813-819.
    133. Szydlowska-Czerniak, A.., Trokowski, K., Karlovits, G.and E. Szlyk. Determination ofantioxidant capacity, phenolic acids, and fatty acid composition of rapeseed varieties[J]. J AgriFood Chem.,2010,58,7502-7509.
    134. Tanaka, T., Takahashia, M., Haginoa, H., Nudejimaa, S., Usuia, H., Fujiib, T.,and M.Taniguchia.Enzymatic oxidative polymerization of methoxyphenols[J].Chem Eng Sci.,2010,65:569–573.
    135. Tanii,H.,Takayasu,T.,Higashi,T.,Leng,S.and K.Saijoh.Allylnitrile:generation from cruciferousvegetables and behavioral effect on mice of repeated exposure[J]. Food Chem.Toxicol.,2004,42:453–458.
    136. Telkea A. A., Ghodakeb G. S., Kalyanic D. C., Dhanved R. S.and S. P. Govindware. Biochemicalcharacteristics of a textile dye degrading extracellular laccase from a Bacillus sp. ADR[J].Bioresource Technol.,2011,102(2):1752–1756.
    137. Thiessen, D.L., Maenz, D.D., Newkirk, R.W., Classen, H.L.and M.D. Drew. Replacement of fishmeal by canola protein concentrate in diets fed to rainbow trout (Oncorhynchus mykiss)[J].Aquacult Nutr.,2004,10:379–388.
    138. Thiyam, U., Stockmann, H., Felde, T. Z. and K. Schwarz. Antioxidative effect of the main sinapicacid derivatives from rapeseed and mustard oil by-products[J]. Eur. J. Lipid Sci.Technol.,2006,108:239-248.
    139. Thiyam U., Claudia P., Jan, U. and B. Alfred. De-oiled rapeseed and a protein isolate:characterization of sinapic acid derivatives by HPLC–DAD and LC–MS[J]. Eur Food ResTechnol.2009,229:825–831.
    140. Tzen, J., Cao, Y., Laurent, P., Ratnayake, C.and A.Huang. Lipids, Proteins, and Structure of SeedOil Bodies from Diverse Species[J]. Plant Physiol.,1993,101(1):267-276.
    141. Uquiche, E., Jeréz, M. and J. Ortíz. Effect of pretreatment with microwaves on mechanicalextraction yield and quality of vegetable oil from Chilean hazelnuts (Gevuina avellana Mol)[J].Innov Food Sci Emerg.,2008,9:495–500.
    142. Vaintraub, I. A., and N. A.Lapteva.Colorimetric determination of phytate in unpurifi ed extractsof seeds and the products of their processing[J]. Anal.Biochem.,1988,175:227–230.
    143. Valentová, O., Novotná, Z., Svoboda, Z., Schwarz, W.,&Ká, J. A. N.. Microwave Heatingand γ-Irradiation Treatment of Rapeseed (Brassica Napus)[J]. J Food Lipids,2000,7(4):237-245.
    144. Vig, A.P.and A.Walia.Beneficial effects of Rhizopus oligosporus fermentation on reduction ofglucosinolates,fiber and phytic acid in rapeseed (Brassica napus) meal[J]. BioresourceTechnol.,2001,78:309~312.
    145. Vuorela S., Meyer A.S.and M.Heinonen.Quantitative analysis of the main phenolics in rapeseedmeal and oils processed differently using enzymatic hydrolysis and HPLC[J].Eur Food ResTechnol.,2003,217:517-523.
    146. Wei, F., Yang, M., Zhou, Q., Zheng, C., Peng, J.-H., Liu, C.-S., Huang, F. H.and H.Chen.Varietal and processing effects on the volatile profile of rapeseed oils[J]. LWT-Food SciTechnol.,2012,48(2):323-329.
    147. Weier D., Juliane Mittasch, Dieter Strack and Carsten Milkowski. The genes BnSCT1andBnSCT2from Brassica napus encoding the Wnal enzyme of sinapine biosynthesis: molecularcharacterization and suppression[J]. Planta,2008,227:375–385.
    148. Widsten, P., Healthcote, C., Kandelbauer, A., Guebitz, G.,Nyanhongo, G.S., Prasetyo, E.N., andT.Kudanga.Enzymatic surface functionalization of lignocellulosic materials with tannins forenhancing antibacterial properties[J].Process Biochem.,2010,45:1072–1081.
    149. Wolfram K., Schmidt J. Wray V., Milkowski C., Schliemann W. and D.Strack. Profiling ofphenylpropanoids in transgenic low-sinapine oilseed rape (Brassica napus)[J].Phytochemistry,2010,71:1076–1084.
    150. Xu L. and L.L.Diosady.Rapid method for total phenolic acid determination in rapeseed/canolameals[J].Food Res Int.,1997,30(8):571-574.
    151. Yang M., Zheng C., Zhou Q., Huang F., Liu C. and H. Wang.Minor components and oxidativestability of cold-pressed oil from rapeseed cultivars in China[J].J Food Compos Anal.,2013,29(1):1-9.
    152. Zadernowski, R. Studies on phenolic compounds of rapeseed flours[J].Acta Acad Agric Technol.Oleiste (in Polish),1987,21:1-55.
    153. Zadernowski, R. and H. Nowak-Polakowska. The influence of rapeseed phemolic compounds onlipase and lipoxygenase activity[J]. Rosliny Oleiste (in Polish),1992,14:212-215.
    154. Zhadobov M., Sauleau R., Vié V., Himdi M., Coq L. L. and D. Thouroude. Interactions Between60-GHz Millimeter Waves and Artificial Biological Membranes:Dependence on RadiationParameters[J]. Ieee T Microw Theory.,2006,54(6):2534-2542.
    155. Zhou H., Huang Y.,Hoshi T., Kashiwagi Y. Anzai J.and G. Li.Electrochemistry of sinapine andits detection in medicinal plants[J]. Anal Bioanal Chem.,2005,382:1196–1201.
    156. Zouari-Mechichi, H., Mechichi, T., Dhouib, A., Sami,S.,Martinez A.T.and M.J.Martinez.Laccase purification and characterization from Trametes trogii isolated in Tunisia:decolorization of textile dyes by the purified enzyme[J]. Enzyme Microb Technol.,2006,39(1):141-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700