用户名: 密码: 验证码:
秦岭伏牛山构造带的变质—变形分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秦岭造山带是地球表层变形最强烈的地区之一,是扬子和华北两大板块俯冲、碰撞及陆间造山作用的结果。板块汇聚作用引起了华北板块南缘强烈变形,且最终被卷入秦岭造山带中成为造山带的重要组成部分。研究区伏牛山构造带就位于这个特殊的位置,它记录了造山带形成和演化的全部过程。所以,对其变质变形作用细节研究可以恢复板块俯冲碰撞作用、反演古板块的汇聚方式和运动学过程,对建立大陆造山带的结构、演化和动力学模式有重要意义。
     本文以构造矿物学和板块构造学为指导,以秦岭伏牛山构造带内的洛栾和瓦乔两条断裂带及其影响岩石为标志体,以其构造岩石的宏观、微观及超微变质-变形特征为主要研究内容,以9条横穿伏牛山构造带的横剖面和1条沿构造带的纵剖面为主线,通过重点地段的地质填图、剖面绘制、运动学涡度分析、有限应变测量等构造解析常规方法,分析有关的面理、线理组构、运动学矢量、剪切类型和方式等内容;利用矿物变形与应力关系研究构造岩相带变形的应力、应变状态,估算构造岩相带变形的古应力大小;利用岩石学手段结合不同尺度分析,研究变质岩的矿物成分、结构、构造特征,并确定其分布规律,分析变质相与构造带的关系;利用特征变质矿物研究分析断裂带及两侧变形岩石中特征变质矿物种类、数量及组合关系,解析变形时期构造环境;利用矿物变形特征研究构造岩的变形方式和变形机制,揭示矿物塑性变形序列,特别是特征变质矿物的脆-塑性转换变形机制及影响脆-塑性转换温度、压力、应变速率等因素;通过对变形过程中产生的同构造变质流体的变形特征、成分特征进行分析,探讨其来源及其形成年代;通过对构造带岩石变质与变形特征研究,划分构造带岩石的变质相和变形相,分析同一构造背景下构造带岩石形变与相变之间的关系,建立构造带岩石的变质相-变形相的关系模式。
     针对秦岭伏牛山构造带的特点,通过大量阅读相关资料和对前人成果的分析总结,了解区域地质背景和研究现状,分析存在的问题,采取大量野外现象观测、室内分析测试和综合研究,尝试用矿物学与构造地质学相结合的研究思路和宏观、微观、超微观变形技术相结合的研究手段和方法,在变形变质岩石学、构造矿物学、构造地质学和地质-热事件年代学等方面做相应的研究,并取得以下创新性研究成果:
     (1)伏牛山构造带的宏观地质特征
     伏牛山构造带位于北秦岭北部,北界为洛栾断裂带,南界为瓦乔断裂带。
     洛栾断裂带作为北秦岭与秦岭北缘的界线,宽十几公里,是由一系列韧性剪切带和夹在其间的岩片组成的构造带。断裂带西窄东宽,总体走向290°,倾向NNE,倾角多为60°。具有四期变形,早期由南向北俯冲,随后产生大规模的左行剪切作用,形成大量的糜棱岩,这期的糜棱岩是本文研究的重点。第三期为弱糜棱岩化作用,最后一期是岩片产生由北向南的逆冲作用。糜棱岩自东向西由粗粒糜棱岩向中粒糜棱岩-细粒糜棱岩变化,分别对应于中下部地壳的变形、上部地壳的下构造层和上部地壳的中上构造层的变形。
     瓦乔断裂带为伏牛山构造带的南界,是二郎坪岩群与宽坪岩群的界线,宽几公里至十几公里不等,也是由多条韧性剪切带组成。各剪切带产状基本一致,走向290。,倾向NNE,倾角约50°。断裂带内广泛发育糜棱岩、超糜棱岩,糜棱岩矿物σ、δ残斑、石英脉体形态等特征指示其具有由北向南逆冲兼左行平移的特征。
     (2)伏牛山构造带的显微变形特征
     伏牛山构造带的岩石主要有糜棱岩、构造片岩、糜棱岩化岩石等。其中糜棱岩按原岩成分的不同分为:长英质糜棱岩、碳酸盐质糜棱岩、镁铁质糜棱岩。通过大量的显微观察和分析,发现整个构造带的矿物组合和矿物变形特征自东向西明显不同,且具有一定的规律。
     ①石英的动态重结晶型式自东向西由高温边界迁移式逐渐转变为亚颗粒式、膨凸式动态重结晶,再往西部又转变为亚颗粒式。
     ②长石的动态重结晶型式自东向西由亚颗粒-膨凸式重结晶逐渐转变为膨凸式重结晶,直至显微碎裂变形,再往西部又转变为塑性变形,出现膨凸式重结晶现象。
     ③黑云母自东向西由浅棕-棕红色半自形细小的片状转变为绿色-棕绿色眼球状残斑,蚀变增强。与此同时,白云母、绿泥石和绿帘石也由少变多。
     ④东部大理岩(碳酸盐)质糜棱岩中的方解石产生了膨凸式重结晶形成了核幔构造,西部的大理岩(碳酸盐)质糜棱岩,只产生了细粒化,并没有明显的重结晶现象。在栾川县庙子出露的灰岩糜棱岩因剪切作用生热而导致隐晶质方解石在强变形域晶体有增大的现象。
     ⑤镁铁质糜棱岩中的角闪石多产生了强烈塑性变形,但动态重结晶现象只有栾川县庙子剖面才能见到,东部角闪石大多数产生绿帘石、绿泥石化,西部角闪石几乎全部阳起石化,显示出韧性剪切使原岩产生了退变质作用。
     ⑥岩石结构和构造自东向西由粒状(柱-粒状)变晶结构、片麻状构造逐渐转变为糜棱结构,片状构造。
     ⑦糜棱岩的类型自东向西也由高温斜长石-钾长石超塑性糜棱岩依次向中温石英-斜长石塑性糜棱岩和中温石英塑性糜棱岩转变,在VII剖面又转向中温石英-斜长石塑性糜棱岩。
     ⑧构造带构造片岩特别发育。东部的构造片岩内残留有较多糜棱结构,说明构造片岩原为糜棱岩经重结晶作用演变成,具有典型的塑性变形特征。而西部的构造片岩则以强烈的构造压扁变形特征为主,兼有剪切作用,矿物颗粒脆性裂纹十分常见,是在脆-韧性条件下形成的半塑性构造岩。说明东段岩石相对西段遭受构造作用的时间更长,层次更深。
     伏牛山构造带中糜棱岩及构造片岩的矿物变形特征和动态重结晶型式均反映出构造带的温压条件自东向西由高到低,说明伏牛山构造带的东部抬升高于西部。
     (3)构造岩的变形机制、变形相和矿物塑性变形序列
     长英质糜棱岩是伏牛山构造带出现最多的一类糜棱岩。东部石英的变形机制为位错攀移成为重要的蠕变机制,为高温塑性变形机制,西部石英则以脆性微破裂、位错滑移与重结晶为主。东部长石的变形机制为位错蠕变为主;西部则以微裂隙、双晶与重结晶为主。因此,东部长英质糜棱岩的形成机制为中地壳偏深的环境下的晶质塑性变形、高温扩散蠕变为主的塑性变形机制;西部则为上地壳下部-中地壳上部环境下的低温扩散蠕变、颗粒边界滑移以及晶质塑性变形控制的塑性变形机制。
     伏牛山构造带中矿物塑性变形序列为:方解石、黑云母、石英、斜长石、钾长石。
     伏牛山构造带长英质糜棱岩的变形相变化为:自东向西,依次为二长石变形相、石英斜长石变形相、石英变形相。
     (4)伏牛山构造带的形成环境
     1)变质相
     通过岩石的矿物共生组合分析伏牛山构造带变质相:东部为低角闪岩相,往西逐渐转变为高绿片岩相和低绿片岩相。
     2)变质变形温度
     通过变质相、石英动态重结晶型式、石英脉包裹体测温、糜棱岩中的动态重结晶石英分维数、石英组构分析、斜长石和角闪石地质温度计等多种方法的分析和计算,得出伏牛山构造带的形成温度为中温偏高的条件,东部的温度高于西部。洛栾断裂带形成温度范围为300~550℃:瓦乔断裂带形成温度范围为500~550℃。
     3)压力和应变条件
     ①糜棱岩的动态重结晶石英分维数计算的洛栾断裂带差异应力为0.32~0.41GPa,应变速率值为3.92917E-11~3.17713E-16;瓦乔断裂带的差异应力为32.417~33.524MPa,应变速率值为3.45769E-14~2.14687E-16。两条断裂带的差异应力均表现为自东向西逐渐增大趋势,属于中等应变速率条件。
     ②同构造石英脉的石英晶体位错特征显示:洛栾断裂带具有先挤压后叠加较强剪切改造的特征:瓦乔断裂带则表现出先强烈挤压后叠加弱剪切力为辅的特征。根据位错密度计算的差异应力为:0.71~0.87Gpa,应变速率值为:2.34445E-11~4.05872E-11。
     ③利用角闪石全铝压力计获得洛栾断裂带的压力为:0.75~0.95GPa,瓦乔断裂带的压力为:0.60~0.85GPa。
     ④利用Massonne多硅白云母压力计计算出伏牛山构造带的压力为0.27~0.87GPa。
     通过上述不同方法得出伏牛山构造带岩石的变质变形的温压条件基本相同,均表现出东部温压条件高于西部。说明东段抬升强,西段抬升弱。
     (5)构造带运动学特征
     伏牛山构造带两条主要断裂带的岩石有限应变测量结果显示其运动学特征各自不同:洛栾断裂带单剪作用较强,而瓦乔断裂带以纯剪作用为主。
     洛栾断裂带岩石的付林系数K值为:1.68-15.13,应变椭球体的形态属于雪茄状,反映出其以剪切拉伸变形为主,且西段强于东段:涡度分析(WK>0.75)显示洛栾断裂带具有简单剪切为主的性质。
     瓦乔断裂带的付林参数K在0-1之间,应变椭球体为扁椭球状,属压扁型应变。反映出瓦乔断裂带的岩石变形以压扁为主。涡度分析也显示瓦乔断裂带以纯剪性质为主。
     (6)伏牛山构造带年代学特征
     同构造石英脉的ESR测年结果显示:在372.9±30.0Ma时洛栾断裂带产生剪切走滑作用,瓦乔断裂带韧性剪切走滑的年龄是275.0±20.0Ma。所测218.0±20.0Ma、120Ma、71.6±7.0Ma的年龄则反映了扬子、华北两大板块印支晚期全面闭合以及燕山期的构造-热事件在北秦岭也产生了一定的影响。北秦岭各构造带在时代上自北向南依次变新,说明是自北向南演化的。
     (7)伏牛山构造带岩石变质相与变形相的对应关系
     伏牛山构造的岩石变质相和变形相有明显的对应关系:长英质糜棱岩变形相自东向西依次为二长石变形相、石英斜长石变形相、石英变形相。在地壳层次上表现为从中地壳到上地壳层次。矿物共生组合显示出东部岩石的变质相为低角闪岩相,往西逐渐转变为高绿片岩相和低绿片岩相。从东往西,变质变形条件由高到低。
     总之,本文以伏牛山构造带中具有特殊构造作用的洛栾断裂带、瓦乔断裂带和受其影响的宽坪岩块、二郎坪岩块北缘、栾川岩片、陶湾岩片、石人山岩块南缘为切入点,通过分析伏牛山构造带岩石的变形细节和应变特征,确定华北板块南缘的变形作用、构造型式,恢复其所在岩相带、主压应力方位及作用方式;通过研究伏牛山构造带岩石的变质特点、形成方式、机理、环境,分析断裂带对其周边岩石的变质-变形影响,建立岩石变质相-变形相的耦合关系等,从构造矿物变质-变形过程、形成方式的角度进一步认识秦岭造山带中大型剪切带在造山过程中的应力、应变状态及演化,利用矿物学-岩石学-微观构造地质学的研究内容和方法,建立板块运动与大陆边缘变质-变形模式,为探索大陆造山带的结构、演化和动力学问题,提供可靠的、精细的支撑数据和资料。
Qinling orogenic belt is one of the most intense areas of deformation on the earth surface.It's the result of the collision and the intracontinental orogeny between Yangtze and North China Blocks. The southern margin of the North China Block strongly deformed because of the plate convergence,and everntually be involved in Qinling orogenic belt as an important part. The study area-Funiushan tectonic belt located here, which records the whole process of the orogenic belt's formation and evolution.So the detail study of its metamorphic and its deformation can help to restore the subduction collsion,to inverse the way the paleoplate converged and moved, which is very important for the establishment of the structure, evolution and dynamics mode in the continental orogenic.
     This article is based on structural mineralogy and plate tectonics.lt takes Luoluan and Waqiao fault belts,among Qinling-Funiu mountain tectonic belt,and those influenced rocks as markers. The major studies are the macro,micro and ultra-micro metamorphic and deformation characteristics of crystalline rock in this area.Thi-s article focuses on nine cross sections and a longitudinal section-of petrologic combining the analysis of diverse scales to study mineral composition, minerals structure and texture of metamorphic rocks and find out its regularities of distribution to analysi-s the relation between metamorphic facies and tectonic belts. Study diagnostic metamorphic mineral in deformation rocks among fault zone and its two sides,to analysis its type,counts and symbiotic relationship and finally resolving tectonic setting during M-etamorphosis Period.Take advantage of mineral deformation characteristics to study the deformation pattern and mechanism of the tectonic rock, to reveal mineral plastic deformation sequence,especially the diagnostic metamorphic mineral's crisp-plastic convert deformation mechanism and its influencing factors,such as the temperature,pressure,strain rate and other factors.With the analysis of the deformation and compositional characteristics of the syntectonic metamorphic fluid which formed during the deformation process.we try to get its source and formation age.Through the study for tectonic rock's metamorphism and deformation characteristics,we divided the metamorphism and deformation facies in the tectonic belt,and we analyzed the relationship between deformation and phase transition of the tectonic rock in the context of syntectonic,and then establish their relationship schema.
     For the features of the Qinling-Funiushan tectonic belt, reading a lot and summarying the previous research achievements, we understood the regional geological background, the research status and the existing problems.With a large number of wild phenomenon observations and laboratory analysises,we tried a combination of mineralogical and structural geology and a combination of macro,micro and ultra-micro deformation technology to do the researches.And so we achieved the following innovative research results on deformation-metamorphic petrology,tectonic mineralogy,structural geology and geological-hot chronology of events:
     (1) macro geological characteristics of Funiushan tectonic belt
     Funiushan tectonic belt is located on the north margin of the North Qinling, bounded by Luo-Luan fault in the north and Wa-Qiao fault belt in the south.
     As the boundary fault of north Qinling and the northern margin of Qinling tectonic belt, Luoluan fault zone is a tectonic belt composed by a serious of ductile shear zone and the pieces of rock stuck in between with a dozen kilometers wide. It general strike in290°,trend NNE, and inclination to60°and has four phases of deformation. Early subduction from south to north followed by large scale left-lateral slip with many mylonites forming. The third deformation is weak mylonitization and the last deformation is thrusting from north to south. From east to west, the fine-grained mylonite gradually changed into medium-grained and coarse-grained mylonite, which respectively compare to the mylonite in the middle and lower structural layer of the crust, the lower structural layer of the upper crust, and the middle and upper of the upper crust.
     As the boundary of the Erlangping group and Kuanping group, the Waqiao fault is located in the southern margin of Funiushan tectonic belt with a dozen kilometers wide and it is also composed by many ductile shear zones and brittle-ductile shear zones, which basically have the same occurrence(crosspitch:290°,trend:NNE, inclination:50°). Mylonite, ultramylonite, mylonite mineral σ、δ porphyroclastics,the quartz veins and many other features extensively developed in the fault zone, indicating that the fault zone thrust from the north to the south with sinistral component.
     (2) microscopic deformation characteristics of Funiushan tectonic belt Rocks in Funiu tectonic belt are mainly mylonite, tectonic schist, mylonitization rock. According to the different components of original rocks, Mylonites are divided into felsic mylonite, carbonate mylonite, mafic mylonite. Through microscopic observation and analysis, we found the entire structure with mineral assemblages and mineral deformation characteristics significantly different from east to west, and with some regularity.
     ①Types of quartz dynamically recrystallization from east to west change from grain boundary migration recrystallization to subgrain rotation recrystallization, then to bulging recrystallization, but transformed into subgrain rotation recrystallization in the west part.
     ②Types of feldspar dynamically recrystallization from east to west change from subgrain rotation recrystallization to bulging recrystallization, but transformed back to s bulging recrystallization in the west part.
     ③Biotite from east to west changes from a light brown-brown hypidiomorphic into tiny flakes green-brownish green augen porphyroclasts, alteration increased. At the same time, muscovite, chlorite and epidote increased.
     ④The calcite in eastern marble (carbonate) mylonite occurred bulging recrystallization formed the core-mantle structure, but only found fine graining in western marble (carbonate) mylonite, and no significant recrystallization. Aphanitic calcite crystals in Limestone mylonite in Miaozi strong fields has increased due to heat caused shear effect at Miaozi area in Luanchuan County.
     ⑤Hornblende in mafic mylonite occurred a strong plastic deformation, but the dynamic recrystallization only observed in Miaozi profile. Most of the eastern amphibole occurred epidotization and chloritization, Almost all western amphibole occurred actinolition, showing retrograde metamorphism of the original rocks due to ductile shear.
     ⑥Rock texture and structure from east to west change from granoblastic texture and gneiss ic structure gradually into mylonitic texture, schistose structure.
     ⑦Types of mylonite from east to west change from a high-temperature plagioclase K-feldspar superplastic mylonite to the medium temperature quartz-plagioclase plastic mylonite and medium temperature quartz plasticity mylonite, then turn back to the medium temperature quartz-plagioclase plastic mylonite
     ⑧Tectonic schists are particularly developed. Eastern schists have more remaining mylonitic structure inside, indicating tectonic schists are mylonite originally by recrystallization, with the typical plastic deformation. The western schists subjected intense flattening and shearing, brittle crack of mineral particles are very common, are semiplastic tectonic rocks formed under the brittle-ductile conditions. It indicates that eastern schists are suffered tectonism longer and deeper.
     Mineral deformation characteristics and types of dynamic recrystallization of mylonite and schist in Funiushan tectonic belt shows the temperature and pressure conditions are decreasing from east to west, indicating the eastern uplift is higher than the west in Funiushan tectonic belt.
     (3) Deformation mechanism, deformation facies and mineral plastic deformation sequence of tectonic rocks.
     Felsic mylonite is the most common in Funiushan tectonic belt. Dislocation climb creep has become an important deformation mechanism of eastern quartz. It is a high-temperature plastic deformation mechanisms. However the deformation mechanism of western quartz is based brittle microfracture, dislocation glide and recrystallization. The deformation mechanism of eastern feldspar is dislocation creep in main; but microfractures, twinning and recrystallization are common in western feldspar. Therefore, the deformation mechanism of felsic mylonite in east part is formed in the middle crust environment, which mainly contain crystalline plastic deformation and high-temperature diffusion creep; in the western, the plastic deformation mechanism is formed in the lower part of the upper crust and the upper part of the middle crust, controlled by low temperature diffusion creep, grain's boundary slip and plastic deformation of crystalline. The mineral plastic deformation sequence in Funiushan tectonic belt is:calcite-biotite-quartz- plagioclase-K-feldspar.
     Deformation phase of felsic mylonite in the Funiushan tectonic belt changes from east to west, followed by two-feldspar deformation phase, quartz-plagioclase deformation phase, quartz deformation phase.
     (4) The environment of deformation in the Funiushan tectonic belt.
     1) metamorphic facies
     Mineral assemblages suggested that the metamorphic phase in the east is lower amphibolite phase and to the west it gradually transformed into high greenschist phase and low greenschist. From east to west, the condition of metamorphic-deformation became lower.
     2) the temperature of metamorphism and deformation
     Through calculations and analyze with the methods including metamorphic phase, recrystallization types of quartz, inclusions'temperature in the quartz veins, the fractal dimension of dynamically recrystallized quartz in mylonite, fabric analysis of quartz, geothermometer of plagioclase and hornblende, and so on, we realize that the formation temperature of Funiushan tectonic belt is in medium-high temperature condition, and it higher in the east than in the west. The formation temperature of Luoluan fault is300-550℃, and the Waqiao fault belt is500-550℃.
     3) pressure and strain condition
     ①mylonite dynamically recrystallized quartz fractal dimension calculation shows the different stress of Luoluan fault belt is0.32~0.41GPa, strain rate is3.92917E-11~3.17713E-16; the different stress of Waqiao fault belt is32.417~33.524MPa, strain rate is3.45769E-142.14687E-16. Two faults are expressed as differential stress increases gradually from east to west trend, belong to medium strain rate conditions.
     ②syntectonic quartz vein quartz dislocations characterized show the Luoluan fault belt has the characteristics of compression first and later superimposed strong shearing; Waqiao fault belt suffered intense compression first, then supplementary weak shearing. According to the dislocation density calculated differential stress is:0.71~0.87Gpa, strain rate is:2.34445E-11~4.05872E-11.
     ③the pressure calculated by the hornblende aluminum geobarometer shows the pressure of Luoluan fault belt and the Waqiao fault belt are0.75-0.95Gpa and0.60-0.85Gpa respectively.
     ④using Massonne Phengite geobarometer calculated the Funiushan tectonic zone pressure is0.27-0.87GPa.
     Through the different methods calculated the rock metamorphism and deformation temperature and pressure conditions are basically the same of Funiushan tectonic belt, all those results shown the conditions of temperature and pressure is higher in east than the west. They alse suggest the east part uplifts strong, and the west part uplifts weak.
     (5) the dynamics characteristic of the Funiushan tectonic belt
     The finite strain analysis of Funiushan tectonic belt displayed a strong simple shear in the Luoluan fault belt, but pure shear in the Waqiao fault belt. The Fulin coefficient(K) of Luoluan fault is1.68-15.13, strain ellipsoid is cigar-shaped, reflecting shearing extension feature primarily and west part is stronger than east part. Vorticity analysis(WK>0.75) displayed that the Luoluan fault belt possessed dominating simple shear.
     The Fulin coefficient(K) of the Waqiao fault belt is between0and, strain ellipsoid is flattened ellipsoid-shaped, reflecting flatten strain. Vorticity analysis (WK<0.75) showed Waqiao fault belt possessed dominating pure shear.
     (6) chronological characteristics of the Funiushan tectonic belt
     ESR dating of syntectonic quartz veins displayed the shear deformation time of the Luoluan and Waqiao fault belt are372.9±30.0Ma and275.0±20.0Ma respectively. The measured218.0±20.0Ma,120Ma,71.6±7.0Ma age reflect the Yangtze and North China plates converged in late Indosinian and Yanshanian structure thermal event also had some impact on the North Qinling tectonic belt. Chronology shows that the evolution from north to south is successive in each northern part of Qinling tectonic belt. Ages from north to south are gradually new.
     (7) the correspondence between metamorphic facies deformation phase of the Funiushan tectonic belt
     The metamorphism phase and deformation phase have obvious correspondence relationships, for example, from the east to the west,felsic mylonite's deformation phase gradually changed from two-feldspar deformation phase to quartz-plagioclase deformation phase and then to the quartz deformation phase,which corresponds to the changes from the middle crust to the upper crust.Mineral assemblages suggested that the metamorphic phase in the east is lower amphibolite phase and to the west it gradually transformed into high greenschist phase and low greenschist.From east to west, the condition of metamorphic-deformation became lower.
     In general, the article take the Luoluan fault belt, Waqiao fault belt and Kuanping group, north margin of Erlangping group, Luanchuan slice, Taowan slice, south margin of Shirenshan, which possess particular tectonism in Funiu mountain tectonic belt, as point cuts. The deformation and tectonic patterns in southern margin of North China plate is ascertained and its lithofacies belt, the direction and the way it functions of principal compressive stress is restored by analyzing details of deformation and the features of strain of Funiu mountain tectonic zone. Through studies of characteristics of metamorphism, formation mode, mechanism and environment, the effect in deformation-metamorphism on surrounding rock by fault belts is analysised and coupling between metamorphic facies and deformation facies is established. Stress, state of strain and evolution of Qinling orogenic belt and large shear zone during orogentic process are further recognized by studies of metamorphism and deformation in tectonic minerals and formation mode.Based on research contents and methods in mineralogy, petrology and micro-tectonics, plate movement and metamorphic-deformation patterns of continental margin is set up and it offers reliable and refined supporting datas and materials for exploring structure, evolution and kinetics problems of continental orogenic belt.
引文
[1]安三元,王档荣,苏春乾.陕西商南秦岭群角闪岩系的原岩恢复与多期变质作用[J].中国区域地质,1985,13:159-168.
    [2]陈柏林,董法先,李中坚.矿物中元素迁移变化的高温高压实验研究[J].地质力学学报,1998,4(1):72-77.
    [3]陈柏林.糜棱岩型金矿金元素丰度与构造变形的关系[J].矿床地质,2000,19(1):17-25.
    [4]陈能松,孙敏,杨勇,刘嵘,王勤燕.变质石榴石的成分环带与变质过程[J].地学前缘,2003,(3):315-320.
    [5]陈衍景.秦岭印支期构造背景、岩浆活动及成矿作用[J].中国地质,2010,37(4):854-862.
    [6]程昊,周祖翼.石榴石微区化学组成与结构关系及其意义[C].2004年全国岩石学与地球动力学研讨会论文摘要集,2004.
    [7]程裕淇.中国区域地质概论[M].北京:地质出版社,1994,313-384.
    [8]崔军文.哀牢山韧性平移剪切带特征[J].中国地质科学院院报,1989,19-21-35.
    [9]戴塔根,刘成湛.构造应力与元素迁移关系初探[J].桂林冶金地质学院学报,1990,10(3):247-250.
    [10]邓军,杨立强,孙忠实,彭润民,陈学明,杜子图.构造体制转换与流体多层循环成矿动力学[J].地球科学,2000,25(4):397-401.
    [11]第五春荣,孙勇,刘良,张成立,王洪亮.北秦岭宽坪岩群的解体及新元古代N-MORB[J].岩石学报,2010,026(07):2025-2038.
    [12]董云鹏,张国伟,朱炳泉.北秦岭构造属性与元古代构造演化[J].地球学报,2003,24(1):3-10.
    [13]董云鹏,张国伟,杨钊.西秦岭武山E-MORB型蛇绿岩及相关火山岩地球化学[J].中国科学,2007,37(增刊I):199-208.
    [14]董申保.中国变质作用及其与地质演化的关系[M].北京:地质出版社,1986.
    [15]杜远生,冯庆来,殷鸿福等.东秦岭-大别山晚海西-早印支期古海洋探讨[J].地质科学,1997,32(2):129-134.
    [16]甘盛飞,邱玉民,杨红英等.论糜棱岩的分类[J].现代地质,1994,8(2):73-78.
    [17]高山,张本仁,谢千里等.秦岭造山带元古宙陆内裂谷作用的沉积地球化学证据[J].科学通报,1990,19:1494-1494.
    [18]高山,赵志丹,骆庭川等.东秦岭河南伊川-湖北宜昌地学断面地壳岩石组成、化学成分和形成机制[J].岩石学报,1995,11(2):213-226.
    [19]高山,张本仁,金振民.秦岭-大别造山带下地壳拆沉作用[J].中国科学(D辑),1999,29(6):532-54.
    [20]高长林,秦德余,吉让寿,殷勇.东秦岭三类构造环境中的镁铁-超镁铁岩的地球化学特征.见:张本仁主编.秦巴区域地球化学文集.武汉:中国地质大学出版社,1990,106-127.
    [21]郭涛,吕古贤,邓军,李学军,孙之夫,郭初笋.构造应力对元素分配的控制作用—以 焦家金矿为例[J].地质力学学报,2003,9(2):183-190.
    [22]韩吟文,柳建华,许继锋.秦岭造山带前寒武纪地幔化学分区及壳幔物质循环-Pb、Nd同位素及微量元素证据[J].地球科学-中国地质大学学报,1996,12(5):457-463.
    [23]郝柏林,分形与分维.科学杂志,1985,38(1):9-17.
    [24]何建坤,刘福田,刘建华等.秦岭造山带莫霍面展布与碰撞造山带深部过程的关系[J].地球物理学报,1998,41(S1):79-85.
    [25]河南省地质矿产局,河南省区域地质志[M].北京:地质出版社,1989,6-7,258-291,617-626.
    [26]河南省地质矿产厅,河南省岩石地层[M].武汉:中国地质大学出版社,1997,4-5,265,268.
    [27]何建坤,刘福田,刘建华等.秦岭造山带莫霍面展布与碰撞造山带深部过程的关系[J].地球物理学报,1998,41(S1):79-85.
    [28]何绍勋,段嘉瑞,刘继顺等.韧性剪切带与成矿[M].北京:地质出版社,1996.
    [29]何世平,王洪亮,陈隽璐,徐学义,张宏飞,任光明,余吉远.北秦岭西段宽坪岩群斜长角闪岩锆石LA-ICP-MS测年及其地质意义[J].地质学报,2007,81(1):79-87.
    [30]何永年,林传勇,史兰斌.构造矿物学[M].北京:科学出版社,1988,35-60.
    [31]何永年,林传勇,史兰斌.构造岩石学基础[M].北京:地质出版社,1988.
    [32]何永年,史兰斌,林传勇.韧性剪切带及其变形岩石[J].地震地质,1988,10:69-76.
    [33]何永年.断层带岩石变形机制探讨[A].见:现代地壳运动[C].北京:地震出版社,1989.
    [34]贺同兴.变质岩岩石学[M].北京:地质出版社,1980,60-65.
    [35]黄汲清,陈炳蔚.中国及邻区特提斯海的演化[M].北京:地质出版社,1987,100.
    [36]胡玲.显微构造地质学概论[M].北京:地质出版社,1998,80-96.
    [37]胡玲,刘俊来,纪沫,曹淑云,张宏远,赵中岩等.变形显微构造识别手册[M].北京:地质出版社,2009,5-33,40-45,63-71.
    [38]胡受奚,林潜龙.华北与华南古板块拼合带地质和成矿[M].南京:南京大学出版社.1988.
    [39]IMA-CNMMN角闪石专业委员会全体成员.角闪石命名法——国际矿物学协会新矿物及矿物命名委员会角闪石专业委员会的报告[J].岩石矿物学杂志,2001,20(1):84-100.
    [40]贾承造,施央申,郭令智.东秦岭板块构造[M].南京:南京大学出版社,1988.
    [41]金泉林.超塑变形的力学行为与本构描述叨.力学进展,1995,25(2):260-275.
    [42]金守文.宽坪群和陶湾群的地层划分及时代问题[J].中国地质科技情报,1976,(1):1-10.
    [43]金守文.关于二郎坪群[J].河南地质,1985,3:49-54.
    [44]金守文.二郎坪群两点商议[J].河南地质,1994,12(1):36-39.
    [45]金昕,任光辉,曾建华等.东秦岭造山带岩石圈热结构及断面模型[J].中国科学(D辑),1996,16(S):13-22.
    [46]金振民.上地幔流变学.当代地质科学前沿-我国今后值得重视的前沿研究领域[M].中国地质大学出版社,1993,112-121.
    [47]嵇少丞,刘增岗.方解石多晶集合体的高速率简单剪切变形实验研究[J].地质科学,1987,22(3):282-290.
    [48]嵇少丞,部分熔融的构造地质意义:变形机制转变的实验研究[J].地质科学,1988,(4): 347-356.
    [49]嵇少丞,Maainp rice D.晶格优选定向和下地壳地震波速各向异性[J].地震地质,1989,11(4):15-23.
    [50]嵇少丞.斜长石塑性变形及其显微构造.矿物岩石地球化学通讯,1989,(1):3-5.
    [51]靳是琴,李鸿超.成因矿物学概论(上、下册)[M].长春:吉林出版社,1986.
    [52]李炳华.秦岭-桐柏-大别造山带深部构造及其与南北两侧陆块关系之探讨[J].陕西地质,2001,19(1):59-70.
    [53]李采一,马国建,陈瑞保等.对河南二郎坪群层序及时代的新认识[J].中国区域地质,1990,9:181-185.
    [54]李立,杨辟元,段波等.东秦岭岩石层的地电模型[J].地球物理学报,1998,41(2):189-195.
    [55]李荣西,安三元,胡能高等.河南西峡石界沟群变质作用特征及演化[J].西安地质学院学报,1994,16(2):11-17.
    [56]李三忠,张国伟,李亚林,赖少聪,李宗会.秦岭造山带勉略缝合带构造变形与造山过程[J].地质学报,2002,76(4):469-483.
    [57]李曙光,Hart S R,郑双根等.中国华北、华南陆块碰撞时代的钐-钕同位素年龄证据[J].中国科学(B),1989,(3):312-319.
    [58]李曙光,陈移之,张国伟等.一个距今100 Ma侵位的阿尔卑斯型橄榄岩体:北秦岭晚元古代板块构造体制的证据[J].地质论评,1991,37(3):235-242.
    [59]李文,李兆麟,石贵勇.云南哀牢山变质流体特征[J].岩石学报,2000,16(4):649-654.
    [60]李文勇,夏斌,路文芬.东秦岭的地球物理、构造分带特征及演化[J].地质与勘探,2004,40(1):35-40.
    [61]李晓波,造山带的结构、过程及动力学.见:当代地质科学前沿——我国今后值得重视的前沿研究领域.北京:中国地质大学出版社,1993,26-39.
    [62]李昶,臧绍先.岩石层流变学的研究现状及存在问题[J].地球物理学进展.2001,16(2):99-106.
    [63]梁晓,王根厚,杨广全.滇西景谷地区澜沧江沿岸早古生代构造片岩中石英脉的成因与变形[J].地质通报,2009,28(9):1342-1349.
    [64]林德超,王世炎,杜建山,刘振宏,黄载环.河南省宽坪群及其边界特征(秦岭-大巴山地质论文集(一)变质地质,刘国惠,张寿广等主编)[M].北京科学技术出版社,1990,40-46.
    [65]林德超,裴放,李潇丽,左爱萍.河南省区域地质概况[M].中国区域地质,1998,17(4):337-345.
    [66]刘德良,杨晓勇.郯庐断裂带南段韧性剪切带糜棱岩的变形条件与组分迁移关系[J].岩石学报,1996,12(2):273-283.
    [67]刘德良,杨晓勇,杨海涛等.郯庐断裂带南段桴槎山韧性剪切带糜棱岩的变形条件和组分迁移系[J].岩石学报,1996,12(4):573-586.
    [68]刘国惠,张寿广,游振东等.秦岭造山带主要变质岩群及其变质演化[M].北京:地质出版社,1993,1-190.
    [69]刘俊来.方解石的韧性变形与大理岩韧性变形带[J].世界地质,1987,6(构造地质专辑): 41-48.
    [70]刘俊来.辽南早元古宙大理岩的超塑性流动变形[J].长春地质学院学报,1992,22(变质构造专辑):90-96.
    [71]刘俊来,岩石变形机制与流变学研究的近期发展—显微构造、变形机制与流变学国际会议简介[J].地质科技情报,1999,18(3):11-15.
    [72]刘俊来.实验变形岩石低温破裂作用的微观机制[J].地学前缘,1999,6(4):235.
    [73]刘俊来.WEBER K, WAL TER J.上部地壳的流体作用与大理岩的低温塑性[J].岩石学报,2000,17:499-505.
    [74]刘俊来.变形岩石的显微构造与岩石圈流变学[J].地质通报,2004a,23(9-10):980-984.
    [75]刘俊来.上部地壳岩石流动与显微构造演化-天然与实验岩石变形证据[J].地学前缘,2004b,11(4):503-508.
    [76]刘良,周鼎武,董云鹏,张宏法,刘养杰,张泽军.东秦岭松树沟高压变质基性岩石及其退变质作用的P-T-t演化轨迹[J].岩石学报,1995,11(2):127-136.
    [77]刘瑞峋.显微构造地质学[M].北京:地质出版社,1988,31-131.
    [78]刘喜山,李树勋,刘俊来.变形变质作用及成矿[M].北京:中国科学技术出版社,1992.
    [79]刘正宏,李殿东.糜棱岩的重结晶作用及显微构造[J].吉林地质,1999,18(4):32-40.
    [80]刘正宏,徐仲元,杨振升,陈晓峰.变质构造岩类型及其特征[J].吉林大学学报(地球科学版),2007,37(1):24-30.
    [81]刘顺,肖晓辉,钟大赉.长英质麻粒岩流变性质的实验研究[J].成都理工学院学报,1997,24(1):42-47.
    [82]刘祥, 吴新伟, 戴亚丽.大陆下部地壳变形、变质特征及其抬升机制分析—以内蒙古中部地区为例[J].吉林地质,2006,25(1):1-5.
    [83]陆松年,李怀坤,陈志宏,郝国杰,周红英,郭进京,牛广华,相振群.秦岭中-新元古代地质演化及对Rodinia超级大陆事件的响应[M].北京:地质出版社,2003.1-19.
    [84]陆松年,陈志宏,李怀坤等.秦岭造山带中-新元古代(早期)地质演化[J].地质通报,2004,23(2):107-112.
    [85]卢焕章.成矿流体[M].北京:北京科学技术出版社,1997,193-205.
    [86]卢欣祥.秦岭造山带花岗岩与构造演化[M].北京:中国环境科学出版社,1996,86-142.
    [87]卢欣祥.秦岭花岗岩大地构造图[M].西安:西安地图出版社,1999.1-27.
    [88]罗震宇,金振民.岩石超塑性变形及其地球动力学意义综述[J].地质科技情报,2003,22(1):17-22.
    [89]马宝林,张家声,杨主恩.中国地学大断面研究进展(1m寒武纪结晶基底研究中的几个基本问题.1988,15-20.
    [90]马宝林,刘若新,张兆忠.中国境内发现下地壳构造岩[J].矿物岩石地球化学通讯,1990a,(2):17-18.
    [91]马宝林,刘若新,张兆忠.中国华北地区深层次构造岩基本特征及层次划分[J].南京大学学报,(地球科学版)(2):1990,32-41.
    [92]马琳吉.糜棱岩中长石的动态重结晶及化学成分变化的初步研究[J].岩石学报,1986,2(2): 49-57.
    [93]苗培森,张振福.不同构造机制韧性剪切带研究[J].中国区域地质,1995,(4):353-359.
    [94]欧阳建平,张本仁.北秦岭微古陆形成与演化的地球化学证据.中国科学(D),1996,26(增刊):42-48.
    [95]欧阳建平.东秦岭地区华北地台南部大陆边缘地球化学研究[D].博士学位论文,武汉:中国地质大学.1989.
    [96]潘桂棠,陈智梁,李兴振等.东特提斯地质构造形式演化[M].北京:地质出版社,1997,1-218.
    [97]裴放.河南南召地区韧性剪切带及构造变形相[J].中国区域地质,1995,(4):323-333.
    [98]裴先治,胡能高,高进龙等.商南地区秦岭群中的韧性伸展构造[J].西安地质学院学报,1993,15(增):46-53.
    [99]裴先治,张维吉,王涛,王全庆,李伍平,李国光.北秦岭造山带的地质特征及其构造演化[J].西北地质,1995,16(4):8-12.
    [100]裴先治,王洋,王涛.北秦岭前寒武纪地壳组成及其构造演化.前寒武纪研究进展,1998,21(4):26-34.
    [101]裴先治,王涛,王洋,李厚民,李国光.北秦岭晋宁期主要地质事件及其构造背景探讨[J].高校地质学报,1999,5(2):137-147.
    [102]彭训才.离子地质学—研究地壳中离子运动及其与围岩的相互作用[J].地质地球化学,2000,28(4):88-95.
    [103]戚学祥,李海兵,张建新等,韧性剪切带的变形变质与同构造熔融作用-以中祁连宝库河韧性走滑剪切带为例[J].地质论评,2003,49(4):413-421.
    [104]戚学祥,李海兵,吴才来,陈松永,韧性剪切变形对岩石地球化学行为的制约——以北阿尔金巴什考供韧性剪切带为例[J].地质通报,2005,24(3):252-257.
    [105]戚学祥,许志琴,史仁灯,高喜马拉雅普兰地区东西向韧性拆离作用及其构造意义[J].中国地质,2006a,33(2):291-298.
    [106]戚学祥,唐哲民,阎玲.中国大陆科学钻探主孔(CCSD-PP2)榴闪岩的地球化学组成及其地质意义[J].地球科学,2006b,31(4):539-550.
    [107]戚学祥,许志琴,齐金忠,苏鲁构造单元南部南岗-高公岛韧性剪切带的变形记录、组分迁移和体积亏损[J].地质学报,2006c,180(12):1935-1943.
    [108]任纪舜.论华力西旋回后全球构造阶段之划分[J].地质学报,1987,(1):21-31。
    [109]任纪舜.中国东部及邻区大地构造演化的新见解[J].中国区域构造,1989,31(4):289-300.
    [110]任纪舜,张正坤,牛宝贵等,论秦岭造山带[A].见:叶连俊,钱祥麟,张国伟.秦岭造山带学术讨论会论文选集[C].西安:西北大学出版社,1991,99-110.
    [111]任纪舜,张正坤,牛宝贵等.论秦岭造山带.见:叶连俊,钱祥麟,张国伟主编.秦岭造山带学术讨论会论文选集.西安:西北大学出版社,1991,99-110.
    [112]任升莲,宋传中,李加好,陈泽超,黄文成,张浩然,张华.秦岭石人山岩块的构造岩石学特征及其意义[J].中国地质,2010,Vol.37(2):347-356.
    [113]任升莲,宋传中,LIN SHOUFA,李加好,张浩然,涂文传,章骏杰[J].地质科学,2011,46(2)P376-391.
    [114]单文琅,宋鸿林,傅昭仁等.构造变形分析的理论、方法和实践[M].武汉:中国地质 大学出版社,1991,90-91,103-104,1 17-119.
    [115]沈昆,张泽明,A.M.van den Kerkhof,肖益林,J.Hoefs.江苏东海预先导孔(CCSD-PP1)超高压岩石变质流体及其演化[J].地质学报,2003,77(4):522-532.
    [116]盛英明,郑永飞,吴元保.超高压岩石中变质脉的研究[J].岩石学报,2011,27(2):490-500.
    [117]宋传中,张国伟.东秦岭造山带的流变学及动力学分析[J].地球物理学报,1998,41(suppl):55-62.
    [118]宋传中,张国伟.伏牛山推覆构造特征及其动力学控制[J].地质论评,1999,45(5):492-497.
    [119]宋传中.东秦岭造山带地学断面的结构、流变学分层及动力学分析[M].合肥:中国科技大学出版社,2000,2-3,83.
    [120]宋传中.秦岭-大别山北部后造山期构造格架与形成机制[J].合肥工业大学学报,2000,23(2):221-226.
    [121]宋传中,刘国生,牛漫兰等.秦岭-大别造山带北缘新生代的构造特征及动力学探讨[J].地质通报,2002,21(8-9):530-535.
    [122]宋传中,张国伟等.秦岭造山带北缘的斜向碰撞与汇聚因子[J].中国地质,2006,33(1):48-55.
    [123]宋传中,张国伟,任升莲,李加好,黄文成.秦岭-大别造山带中几条重要构造带的特征及其意义[J].西北大学学报(自然科学版),2009,39(3):368-380.
    [124]宋传中,任升莲,李加好等.华北板块南缘的变形分解:洛南-栾川断裂带与秦岭北缘强变形带研究[J].地学前缘,2009,16(3):181-189.
    [125]宋鸿林,Dietrich D.剪切带中方解石构造岩的组构研究—以瑞士西部赫尔文特推覆体为例[J].构造地质学论丛,1986,(6):30-41.
    [126]宋鸿林.动力变质岩分类述评[J].地质科技报,1986,7:21-26.
    [127]宋述光,牛耀龄,张立飞,张贵宾.大陆造山运动:从大洋俯冲到大陆俯冲、碰撞、折返时限—以北祁连山、柴北缘为例[J].岩石学报,2009,025(09):2067-2077.
    [128]孙岩等.两类糜棱岩的特征、成因及其地质意义[J].地震地质,1986,8(4):63-69.
    [129]孙岩,舒良树,刘德良.论构造分层、流变分层和化学分层作用-以中下扬子区倾滑断裂系统为[J].南京大学学报,1997,33(1):82-90.
    [130]孙岩,朱文斌,郭继春等.论糜棱岩研究[J].高校地质学报,2001,7(4):339-373.
    [131]孙勇,卢欣样,韩松等.北秦岭早古生代二郎坪蛇绿岩片的组成和地球化学[J].中国科学D辑,1996,26(增刊):49-55.
    [132]索书田.造山带的变形分解作用.自游振东,造山带核部杂岩变质过程与构造解析[M].武汉:中国地质大学出版社,1991.
    [133]索书田.大陆岩石圈的流动特征.当代地质科学前沿-我国今后值得重视的前沿研究领域[M].中国地质大学出版社,1993,135-141.
    [134]索书田,钟增球,周汉文,游振东.大别-苏鲁超高压变质带内变形分解作用对榴辉岩透镜体群发育的影响[J].地质科技情报,2001,20(2):15-22.
    [135]万天丰.论碰撞作用时问[J].地学前缘,2011,18(3):48-55.
    [136]王国灿.中、下地壳中长石的塑性变形机制及其证据——长石的显微构造研究综述[J].地质科技情报,1993,12(3):18-24.
    [137]王鸿帧,徐成彦,周正国.东秦岭古海域两侧大陆边缘区的构造发展[J].地质学报,1982,(3):270-279.
    [138]王金贵,卢欣祥.伏牛山花岗岩体的岩石学特征[J].河南地质,1988,6(3):35-40.
    [139]王嘉荫.应力矿物学概论[M].北京:地质出版社,1978.
    [140]王绳祖,岩石脆性-延性转变及塑性流动网络[J].地球物理学进展,1993,8(4):25-37.
    [141]王涛,杨家喜,豫西狮子坪秦岭群流变型式及流变相探讨[J].西安地质学院学报,1993,15(增):54-60.
    [142]王涛,胡能高,裴先治等.秦岭造山带核部峡河岩群变质变形特征及构造演化[J].地质构造学刊,1995,5(2):11-8.
    [143]王涛,胡能高,裴先治,李伍平.秦岭造山带核部杂岩向西的运移[J].地质科学,1997,32(4):423-432.
    [144]王涛,张国伟,裴先治等.北秦岭新元古代北北西向碰撞造山存在的可能性及两侧陆块的聚合与裂解[J].地质通报,2002,21(8-9):616-522.
    [145]王学仁.河南西峡湾潭地区二朗坪群微体化石研究[J].西北大学学报,1995,25:353-358.
    [146]王小凤.构造矿物学.当代地质科学前沿-我国今后值得重视的前沿研究领域[M].中国地质大学出版社,1993,174-178.
    [147]王新社,郑亚东,杨崇辉等.用动态重结晶石英颗粒的分形确定变形温度及应变速率[J].岩石矿物学杂志,2001,20(1):36-41.
    [148]王永锋,金振民.岩石扩散蠕变及其地质意义[J].地质科技情报,2001,20(4):5-11.
    [149]王子潮,王绳祖.中、下地壳温度压力条件下岩石半脆性蠕变的实验研究[J].地震地质,1990,12(4):335-342.
    [150]王宗起,闫全人,闫臻等.秦岭造山带结构与造山作用过程.地质调查项目研究报告.中国地质科学院地质研究所,2006.
    [151]王宗起,高联达,王涛,姜春发.北秦岭陶湾群新发现的微体化石及其对地层时代的限定[J].中国科学(D辑),2007,37(11):1467-1473.
    [152]王作勋、姜春发、任纪舜等.小秦岭推覆构造与陶湾群变形.见:秦岭-大巴山地质文集(一).北京:北京科技出版社,1990,143-153.
    [153]魏春景,周喜文.变质相平衡的研究进展[J].地学前缘,2003,10(4):341-351.
    [154]吴军,郑辙.对矿物中位错和位错增殖的几点认识[J].矿物学报,2001,21(3):397-399.
    [155]吴正文,柴育成,黄万夫等.秦岭造山带的推覆构造格局[A].见:叶连俊,钱祥麟,张国伟.秦岭造山带学术讨论会论文选集[C].西安:西北大学出版社,1991,111-120.
    [156]肖思云,张维吉.北秦岭变质地层[M].西安:西安交通大学出版社,1988,45-58,256-283.
    [157]肖庆辉,李晓波,贾跃明等.当代造山带研究中值得重视的若干前沿问题[J].地学前缘,1995,2(1):43-50.
    [158]徐树桐,吴维平,刘贻灿,陆益群,汪德华.大别山造山带的糜棱岩[J].岩石矿物学杂志,2011,30(4):625-636.
    [159]徐学纯.内蒙古乌拉山地区韧性剪切退化变质作用与金矿的关系[J].矿产与地质,1991,21(5):107-113.
    [160]徐仲元,刘正宏.糜棱岩化作用和糜棱岩重结晶作用[J].长春科技大学学报,1996,26(2): 96-103.
    [161]许志琴,卢一伦,汤耀庆等.东秦岭复合山链的形成——变形、演化及板块动力学[M].北京:中国环境科学出版社,1988,1-185.
    [162]许志琴,李海兵,郭立鹤.动态蠕英石、动态重熔及地壳收缩至伸展的转化—辽南古老变质体上隆机制探讨.见《伸展构造研究》.北京:地质出版社,1994,109-119.
    [163]许志琴,崔军文.大陆山链变形构造动力学[M].北京:冶金工业出版社,1996,27-45.
    [164]许志琴,张建新,徐惠芬等.中国主要大陆山链韧性剪切带及动力学[M].北京:地质出版社,1997.
    [165]许志琴,杨经绥,姜枚等.大陆俯冲作用及青藏高原周缘造山带的崛起[J].地学前缘,1999,6(3):139-151.
    [166]许志琴,江枚,杨径绥.青藏高原北部的碰撞造山及深部动力学[J].地球学报,2001,22(1):1-10.
    [167]杨经绥,许志琴,马昌前等.复合造山作用和中国中央造山带的科学问题[J].中国地质,2010,37(1):1-10.
    [168]闫全人,王宗起,闫臻,王涛,张宏远,向忠金,姜春发,高联达.从华北陆块南缘大洋扩张到北秦岭造山带板块俯冲的转换时限[J].地质学报,2009,83(11):1565-1583.
    [169]杨巍然,张文淮.断裂性质与流体包裹体组合特征[J].地球科学,1996a,21(3):285-290.
    [170]杨巍然,张文淮.构造流体—一个新的研究领域[J].地学前缘,1996b,3(3-4):124-130.
    [171]杨晓勇,刘德良,王奎仁.郑庐断裂带南段中深层次韧性剪切带糜棱岩化过程成分变化规律研究[J].高校地质学报,1997,3(3):263-271.
    [172]杨晓勇,杨学明,刘德良,董树文,戴金星.郯庐断裂带南段韧性剪切带糜棱岩化过程中长石成分和结构状态变化特征的研究[J].地震地质,1998,20(4):332-341.
    [173]杨晓勇.论韧性剪切带研究及其地质意义[J].地球科学进展,2005,20(7):765-771.
    [174]叶会寿,毛景文,徐林刚,高建高,谢桂清,李向前,何春芬.豫西太山庙铝质A型花岗岩SHRIMP锆石U-Pb年龄及其地球化学特征[J].地质论评,2008,54(5):699-711.
    [175]游振东,钟增球,周汉文,区域变质作用中的流体[J].地学前缘,2001,8(3):157-163.
    [176]袁学诚,徐明才,唐文榜等.东秦岭陆壳反射地震剖面[J].地球物理学报,1994,37(6):749-758.
    [177]袁学诚.秦岭造山带地壳结构与楔入成山[J].地质学报,1997,71(3):227-235.
    [178]袁四化,潘桂棠等.大陆边缘增生造山作用[J].地学前缘,2009,16(3):31-42.
    [179]岳石,马瑞.实验岩石变形与构造成岩成矿[M].吉林:吉林大学出版社,1990.
    [180]曾佐勋,杨巍然,Franz Neubauer,刘立林,郭铁鹰.造山带挤出构造[J].地质科技情报,2001,20(1):1-7.
    [181]张本仁,张宏飞,赵志丹等.东秦岭及邻区壳、幔地球化学分区和演化及其大地构造意义[J].中国科学(D),1996,26(3):201-208.
    [182]张伯友,俞鸿年.糜棱岩、混合岩和花岗岩三者成因联系[J].地质论评,1992,38(5): 407-413.
    [183]张二朋,牛道韫,霍有光等.秦巴及邻区地质-构造特征概述[M].北京:地质出版社,1993,263-272.
    [184]张二朋.秦岭-大巴山及邻区地质图(1:100万)[M].北京:地质出版社,1992.
    [185]张国伟.秦岭造山带的形成演化[M].西安:西北大学出版社,1988a,1-68.
    [186]张国伟,梅志超,周鼎武等.秦岭造山带的形成与演化.见:秦岭造山带的形成及其演化.西安:西北大学出版社,1988b,1-16.
    [187]张国伟,于在平,孙勇等.秦岭商丹断裂边界地质体基本特征及其演化.见:张国伟主编.秦岭造山带的形成及其演化.西安:西北大学出版社,1988,29-47.
    [188]张国伟等.秦岭杂岩与秦岭造山带.秦岭-大巴山地质论文集(一).北京:科学技术出版社,1990.
    [189]张国伟,Kroner A,周鼎武等.秦岭造山带岩石圈组成、结构及演化特征.见:叶连俊,钱祥麟,张国伟主编.秦岭造山带学术讨论会论文选集.西安:西北大学出版社,1991,121-138.
    [190]张国伟.当代地质科学前沿-我国今后值得重视的前沿研究领域[M].中国地质大学出版社,1993,145-154.
    [191]张国伟,张宗清,董云鹏.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J].岩石学报,1995a,11(2):101-114.
    [192]张国伟,孟庆任,赖绍聪.秦岭造山带结构构造[J].中国科学(B),1995b,25(9):994-1003.
    [193]张国伟,郭安林,刘福田等.秦岭造山带三维结构及其动力学分析[J].中国科学(D),1996a,26(增刊):1-6.
    [194]张国伟,袁学诚,张本仁等.秦岭造山带岩石圈三维结构和造山过程[M].北京:科学出版社,1996b.
    [195]张国伟,孟庆任,于在平等.秦岭造山带的造山过程及其动力学特征[J].中国科学(D),1996c,26(3):193-200.
    [196]张国伟,孟庆任,刘少峰等.华北地块南部巨型陆内俯冲带与秦岭造山带岩石圈现今三维结构[J].高校地质学报,1997,3(2):129-143.
    [197]张国伟等.秦岭造山带基本组成与结构及其构造演化[J].陕西地质,1997,(2)111.
    [198]张国伟,柳小明.关于“中央造山带”几个问题的思考[J].地球科学,1998,23(5):443-448.
    [199]张国伟,于在平,董云鹏等.秦岭区前寒武纪构造格局与演化问题探讨[J].岩石学报,2000,16(1):11-21.
    [200]张国伟,张本仁,袁学诚等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001a,1-8.655-724.
    [201]张国伟,董云鹏,姚安平.造山带与造山作用及其研究的新起点.西北地质,2001b,34(1):1-9.
    [202]张宏远,王宗起,刘俊来,闫全人,王涛,闫臻.北秦岭二郎坪群晚中生代伸展-走滑-收缩体制研究[J].地质力学学报,2009,15(1):56-68.
    [203]张家声.断裂带中的二相变形与地震成因讨论[J].地震地质,1987,9(4):63-70.
    [204]张建新,于胜尧,孟繁聪.北秦岭造山带的早古生代多期变质作用[J].岩石学报,2011, 27(04):1179-1190.
    [205]张进江,郑亚东,石铨曾.小秦岭变质核杂岩、拆离断层及其运动学特征的研究.见:岩石圈地质科学.北京:地震出版社,1996,42-52.
    [206]张儒瑗,从柏林.矿物温度计和矿物压力计[M].地质出版社,1983,123-173.
    [207]张寿广.秦岭宽坪杂岩的变形作用与变质作用(秦岭-大巴山地质论文集(一)变质地质,刘国惠,张寿广等主编).北京科学技术出版社,1991a,89-98.
    [208]张寿广,万渝生,刘国惠等.北秦岭宽坪群变质地质[M].北京科技出版社,1991b.
    [209]张思纯,唐尚文.东秦岭北部早古生代放射虫硅质岩的发现与板块构造[J].陕西地质,1983,(2):1-9.
    [210]张宗清,刘敦一,付国民.北秦岭变质地层同位素年代研究[M].北京:地质出版社,1994,1-191.
    [211]张宗清,张旗.北秦岭晚元古代宽坪蛇绿岩中变质基性火山岩的地球化学特征[J].岩石学报,1995,11(增刊):165-177.
    [212]张宗清,张国伟,付国民等.秦岭变质地层年龄及其构造意义[J].中国科学(D),1996,26(3):216-222.
    [213]赵敬世.位错理论基础[M].北京:国防工业出版社,1989,132.
    [214]赵中岩,方爱民.超高压变质岩的塑性流变显微构造和变形机制[J].岩石学报,2005,21(04):1109-1115.
    [215]郑亚东,常志忠.岩石有限应变测量及韧性剪切带[M].北京:地质出版社,1985,1-99.
    [216]郑亚东,Davis G A,王琮等.燕山带中生代主要构造事件与板块构造背景问题[J].地质科学,2000,74(4):289-302.
    [217]郑永飞.深俯冲大陆板块折返过程中的流体活动[J].科学通报,2004,49(10):917-927.
    [218]钟大赉,丁林,张进江,季建清.中国造山带研究的回顾和展望[J].地质论评,2002,48(2):147-152.
    [219]钟增球.构造岩研究的新进展[J].地学前缘,1994,1(1/2):162-169.
    [220]周国藩,罗孝宽,管志宁等.秦巴地区地球物理场特征与地壳构造格架关系的研究[M].武汉:中国地质大学出版社,1992.
    [221]周汉文,陈能松.豫西东秦岭造山带低压变质带的变质变形和变质反应[J].地球科学-中国地质大学学报,1994,19(1):9-18.
    [222]周喜文,魏春景,卢良兆.高温变泥质岩石中石榴石-黑云母温度计的应用——以胶北荆山群富铝质岩石为例[J].地学前缘,2003,8(3-4): 353-363.
    [223]周永胜,何昌荣.地壳岩石变形行为的转变及其温压条件[J].地震地质,2000,22(2):167-178.
    [224]Phinney R A, Brown L D, Eichelberger et al.,美国大陆动力学研究的国家计划.李晓波,白星碧,刘树臣,贾跃明,宋力生译.1989.
    [225]Allen M B, Ghassemi M R, Shahrabi M, Qorashi M. Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran[J] Journal of Structural Geology.2003,25,659-672.
    [226]Barker A T. Introduction in metamorphic texture and microstructure [M]. NewYork: Blackic and Son Ltd.1990.
    [227]Bell T H..Foliation development:the contribution geometry and significance of progressive bulk inhomogeneous shortenint[J].Tectonophysics,1981,75:273-296
    [228]Bell T H. Deformation partitioning and porphyroblast rotation in metamorphic rock:a radical reinterpretation[J].Metamorphic Geol.,1985,3:109-118
    [229]Bell T H, Fleming P D, Rubenach M J. Porphroblast nucleation growth and dissolution in regional metamorphic rocks as a function of deformation partitioning during foliation development[J].Metatorphic Geol.,1986,4(1):37-67
    [230]Bell T H, Johnson S E. Porphyroblast inclusion trails:the key to orogenesis[J]. Metatorphic Geol.,1989,7:279-310
    [231]Bell T H, Wang J. Linear indicators of movement direction versus foliation intersection axes in porphyroblasts(FIAs) and their relationship to direction of relative plate motion[J].Earth Science Frontiers,1999,6(3):31-47.
    [232]Bowman D, King, G, Tapponnier P, Slip partitioning by elastoplastic propagation of oblique slip at depth[J]. Science,2003,300:1121-1123.
    [233]Bottrell S H, Greenwood P B, Yardley B W D, et al. Metamorphic and post-metamorphic fluid flow in the low-grade rocks of the Harlech Dome, north Wales [J]. Metamorphic Geol,1990,8:131-143.
    [234]Bruhn D F, D L Olgaard and LN Dell'Angeolo. Evidence for enhanced deformation in two phase rocks:Experiments on the rheology of calcite-anhydrite aggregates[J]. Geophys Res, 1999,104:707-724.
    [235]Cesare B, Marchesi, Connolly J A D.Growth of myrmekite by contact metamorphism of granitic mylonites in the aureole of Cimadi Vila, Eastern Alps, Italy[J]. Meta.Geol.,2002, 20:203-213.
    [236]Cesare B..Synmetamorphic veining:origin of an dalusite-bearing veins in the Vedrette di Ries contact aureole, Eastern Alps, Italy[J]. Metamorphic Geol.,1994,12:643-653.
    [237]Chardon D. Strain partitioning and batholith emplacement at the root of a transpressive magmatic are[J]. Journal of Structural Geology,2003,25:91-107.
    [238]Dell'Angelo L N, Olgaard D L. Experimental deformation of fine grained anhydrite: Evidence for dislocation and diffusion creep[J]. Geophys Res,1995,100:15422-15438.
    [239]Dell'Angelo L N, Tullis J. Experimental deformation of partially melted granitic aggregates[J]. Journal of Metamorphic Geology,1988,6:495-515.
    [240]DeMets C, Gordon R G, Argus D F, Stein S. Current plate motions [J].Geophysical Journal International.1990,101:425-478.
    [241]Dimanov A, Dresen, G, Wirth R. High-temperature creep of partially molten plagioclase aggregates[J].Geophys Res,1998,103(B5):9655-9660.
    [242]Dresen GB Evans, and D L Olgaard. Effect of quartz in clusions on plastic flow in marble [J]. Geophys Res Lett,1998,25(8):1245-1248.
    [243]E rnst W G. Polymorphism in alkali amphiboles. American Mineralogist,1963,48:241-260.
    [244]Drury M R, Humpherys F J. Microstructural shear criteria associated with grain-boundary sliding during ductile deformaition [J]. Struct. Geo!.,1988,10(1):83-88.
    [245]Eiko Kawamoto, Toshihiko Shimamoto. The strength profile for bimineralic shear zones: an insight from high-temperature shearing experiments on calcite-halite mixtures[J]. Tectonophysics,1998,295:1-14.
    [246]Etheridge M A, Wall V J & Cox S F. High fliud pressures during regional metamorphism and deformation:implications for mass transport and deformation mechanism[J]. Geophys.Res.,1984,89:4344-4358.
    [247]Evans J P. Deformation mechanisms in granitic rocks at shallow crustal levels[J]. Struct Geol,1988,10:437-443.
    [248]Evans B, Fredrich T J, Wong T-f. The brittle-ductile transition in rocks:recent experimental and theoretic a progress, in The Brittle-Ductile Transition in Rocks, Geophys Monogr Ser, vol.56, Duba A G, Durham W B, Handin J W, Wang H F, eds.AGU, Washington, D C.1990,1-20.
    [249]Ferry J M. Infiltration of aqueous fluid and high fluid rock ratios during green schist facies metamorphism:A reply[J]. Petrol.,1986,27:695-712.
    [250]Fitz Gerald J D, Stunitz H. Deformation of granitoids at low metamorphic grade.Ⅰ: Reactions and grain size reduction[J].Tectonophysics,1993,221:269-297.
    [251]Fliervoet T F, White S H, Drury M R. Evidence for dominant grain-boundary sliding deformation in green-schist-and amphibolite-grade polymineralic ultramylonites from the Redbank Deformed Zone, Central Australia[J]. Struct Geol,1997,19:1495-1518.
    [252]Flinn D, On folding during three-dimentional progressive deformation[J]. Geol. Soc. London, Quart. J.,1962,118:385-433.
    [253]Fredrich J T, Evans B, Wong T-f. Micromechanics of the brittle to plastic transition in Carrara marble[J]. Geophys Res,1989,94:4129-4143.
    [254]Fyfe W S, Kerrich R. Fluid and thrusting. Chem. Geol.,1985,47:353-362.
    [255]Gillepie P A, Howard C B, Walsh J J et al. Measurement and characterization of spatial distributions of fractures[J]. Tectonophysics,1993,226:113-141.
    [256]Glaazner A F. Volume loss, fluid flow and state of strains in extensional mylonites from the central Mojave Desert, California[J] Journal of Structural Geology,1991,13(5):587-591.
    [257]Gleason G C, Tullis J, Heidelbach F. The role of dynamic recrystallization in the development of lattice preferred orientations in experimentally deformed quartz aggregates[J]. Journal of Structural Geology,1993,15:1145-1168.
    [258]Gleason G C, Tullis J. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell[J].Tectonophysics,1995,247:1-23.
    [259]Gleason G C, Bruce V, Green H W. Experimental investigation of melt topology in partially melten quartz-feldspathic aggregates under hydrostatic and nonhydrostatic stress[J]. Journal of Metamorphic Geology,1999,17:705-72.
    [260]Gower RJ W, Simpson C. Phase boundary mobility innaturally deformed, high-grade quartz-feldspathic rocks:evidence for diffusional creep [J].Journal of Structural Geology,1992, 14(3):301-313.
    [261]Grujic D, Casey M, Davidson C, et al. Ductile extrusion if the Higher Himalayan Crystalline in Bhutan:evidence from the quartz microfabrics[J]. Tectonophysics,1996,260:21-43.
    [262]Gursoy H, Piper J D A, Tater O, Temiz H.A palaeomagnetic study of the Sivas Basin, Central Turkey:crustal deformation during lateral extrusion of the Anatolian Block[J]. Tectonophysics,1997,157-163.
    [263]Hacker B R, Christie J M. Brittle-ductile and plastic-cataclastic transition in experimentally deformed and metamorphosed amphibolite, in The Brittle-Ductile Transition in Rocks, Geophys Monogr Ser, vol.56, Duba A G, Durham W B, Handin J W, Wang HF.AGU, Washington, D C.1990,127-147.
    [264]Hadizadeh J, Tullis. Cataclastic flow and semi-brittle deformation of anorthsite, J Struct Geol,1992,14:57-63.
    [265]Hammarstrom JM. Zen E. Aluminum in hornblende:an empirical igneous geobarometer[J]. American Mineralogist,1986,71:1297-1313.
    [266]Heidelbach F. Quantitative texture analysis of experimentally sheared anhydrite and albite aggregates[J].(abstract) in Proceedings of the Twelfth International Conference on Textures of Materials, edited by J A Szpunar,1999,1574-1579, NRC Res. Press, Ottawa, nt.
    [267]Heilbronner R, Tullis J. Evolution of c-axis pole figures and grain size during dynamic recrystallization:Results from experimentally sheared quartzite[J]. Journal of Geophysical Research,2006,111:B10202.
    [268]Hippertt J, RochaA, LanaC, et al. Quartz plastic segregation and ribbon development in high grade striped gneisses[J]. Journal of Structural Geology,2001,23:67-80.
    [269]HiroiY, Kishi S, NoharaT, et al. Cretaceous high temperature rapid loading and unloading in the Holland T, Blundy J. Nonideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry[J]. Contributions to Mineralogy and Petrology,1994, 116:433-47.
    [270]Hirth G, Tullis J.The effects of pressure and porosity on the micromechanics of the brittle-ductile transition in quartzite[J]. Geophys Res,1989,94:17825-17838.
    [271]Hirth G, Tullis J. Dislocation creep regimes in quartz aggregates[J]. Struct Geol,1992, 14:145-159.
    [272]Hirth G, Tullis J.The brittle-plastic transition in experimentally deformed quartz aggregates[J]. Geophys Res,1994,99:11731-11747.
    [273]Hippertt J F, Hongn F D.Deformation mechanisms in the mylonite-ultramylonite transition[J]. Struct Geol,1998,20:1435-1448.
    [274]Holdaway M J. Optimization of some key geothermobarometers for pelitic metamorphic rocks [J]. Mineralogical magazine,2004,68:1-14.
    [275]Hollister L S, Grisson G C, Peters E K et al..Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons[J].American Mineralogist,1987,72:231-239.
    [276]Hull D and Bacon D J.Introduction to Dislocations [M]. Pergamon Press,1984,57.
    [277]Ikeda T.Pressure temperature conditions of the Ryoke metamorphic rocks in Yanai district, SW Japan[J]. Contributions to Mineralogy and Petrology,2004,146:577-589.
    [278]Jessel M W.Grain boundary migration and fabric development in Experimentally deformed octachloropropane[J]. Journal of Structural Geology,1986,8:527-541.
    [279]Jiang D, Lin S, Williams P F.Deformation path in high-stian zones, with referece to slip partitioning in transpressional plate-boundary regions[J].Journal of Structural Geology, 2001,23:991-1005.
    [280]Johnson M C, Rutherford M J. Experimental calibration of an aluminum-in-hornblende geobarometer applicable to calc-alkaline rocks[J]. Geology,1989,17:837-841.
    [281]Jones R R, Tanner P W G.Strain partitioning in transpression zones[J]. Journal of Structural Geology,1995,6:793-802.
    [282]Kawamoto, Toshihiko Shimamoto.The strength profile for bimineralic shear zones:an insight from high-temperature shearing experiments on calcite-halite mixtures[J]. Tectonophysics,1998,295:1-14.
    [283]Kenneth J Falconer. Techniques in Fractal Geometry.Translation by Zeng Wenqu, Liu Shiyao, Dai Liangui, et al. Shenyang:Northeastern University of Technology press, 1991,58-66.
    [284]Kirby S H. Tectonic stresses in the lithosphere:Constraints provided by experimental deformation of rocks[J]. Geophys Res,1980,89:6353-6363.
    [285]Klepeis K A, Clarke G L, Gehrels G, et al. Processes controlling vertical coupling and decoupling between the upper and lower crust of orogens:results from Fiordland, New Zealand[J]. Journal of Structural Geology,2004,26:765-791.
    [286]K O'hara. Fluid flow and volume loss during mylonization:an origin for phyllonite in an overthrust setting, North Callifornia[J]. Tectonophysics,1988,156(1):21-36.
    [287]Kohn M J, Spear F. Retrograde net transfer reaction in surance for pressure-temperature estimates[J].Geology,2000,28:1127-1130.
    [288]Krantz R W.The transpressional strain model applied to trike-slip, oblique-convergent and oblique-divergent deformation[J] Journal of Structural Geology,1995,8:1125-1137.
    [289]Kruhl J H,Nega M, Milla H E. The fractal shape of grain boundary sutures:reality, model and application as a geothermometer.2nd Int. conf. on Fractal and Dynamic Systems in Geosciences. Frankfurt. Book of Abstracts,1995,84:31-32
    [290]Kruhl J H, Nega M.The fractal shape of sutured quartz grain boundaries:application as a geothermometer[J]. Geologishe Rundschau,1996,85:38-41
    [291]Lamieson R A et al. A metamorphic mylonite zone within the ophiolite aureale, St. Anthony complex, Newfoundland, Amer[J]. Sci,1981,281:264-281.
    [292]Lamerer B, Weger M.Footwall uplift in an orogenic wedge:the Tauern Window in the Eastern Alps of Europe[J]. Tectonophysics,1998,258:213-230.
    [293]Lasagea A C, RichardsonS M, Holland H D.The mathmatics of action diffusion and exchange between silicate minerals during retrograde metamorphism[A].Engergeticof Geolog-ical Processes [C].New York, Heidelberg, Berlin:Ver-lag,1977,353-386.
    [294]Linzer H G, Moser F, Nemes F, et al.. Build-up and dismembering of the eastern Northern Calcareous Alps[J].Tectonophysics.1997,272:97-124.
    [295]Little T A, Holcombe R.J,1g B R.Ductile, fabrics in the zone of active oblique convergence near the Alpine Fault.New Zwaland:identifying the neotectectonic overprint[J].Journal of Structural Geology,2002,24:193-217.
    [296]Malod A, Kemal B M. The Sumatra margin:oblique subduction and lateral displacement of the accretionary prism.In Hall R, et al., eds.Tectonic Evolution of SE Asia[J].Geol Soc London, Spec pub,1996,106:19-28.
    [297]Mark Harrison T. Diffusion of 40Ar in hornblende [J]. Contributions to Mineralogy and Petrology,1981,78(3):324-331.
    [298]Massonne H J, Zbigniew Szpurka. Thermodynamic properties of white micas on the basis of high-pressure experiments in the systems K2O-MgO-Al2O3-SiO2-H2O and K2O-FeO-Al2O3-SiO2-H2O[J]. Lithos,1997,41:229-250.
    [299]McCaffrey R. Oblique plate convergence, slip vectors, and forearc deformation [J]. Journal Geophysical Research,1992,97:8905-8915.
    [300]McCaffrey R. Global variability in subduction thrust zone-forearc systems [J]. Pure and Applied Geophysics,1994,142:173-224.
    [301]McClelland W C, Tikoff B, Manduca C A. Two-phase evolution of accretionary margins: examples from the North American Cordillera[J].Tectophysics,2000,326:37-55.
    [302]Michel G W, Waldhor M, Neugebauer J, Appel E. Sequential rotation of stretching axes and block rotations:a structural and palaeomagnetic study along the North Anatolian Fault[J].Tectonophysics,1995,243:97-118.
    [303]Miller R B. A mid-cristal contractional stepover zone in a major strike-slip system, North Cascades, Washington[J].Struct.Goel,1994,16:47-60.
    [304]Mitra G, Boyer S E.Energy balance and deformation mechanism of duplexes[J]. Stru Geol, 1986,8(3/4):291-304.
    [305]Nelson K D, Zhao W, Brown L D, et al. Partially molten middle crust beneath Southern Tibet:synthesis of project INDEPTH results[J]. Science,1996,274:1684-1688.
    [306]Neubauer F, Genser J, Kurz W, et al. Exhumation of the Tauern Window, Eastern Alps[J]. Phys, Chem.Earth(A),1999,24:675-680.
    [307]Neves S P, Da Silva J M R, Mariano G. Oblique lineations in orthogneisses and supracrustal rocks:vertical partitioning of strain in a hot crust(eastern Borborema Province, NE Brazil) [J]. Journal of Structural Geology,2005,27:1513-1527.
    [308]Newton R C.Metamorphic fluids in the deep crust [J]. Foreign Geological Science and Technology,1990,8:1-10.
    [309]Nicolas A and Poirier J P. Crystalline Plasticity and Solid State Flow in Metamorphic Rocks[J]. John Wiley & Sons.1976,80-245.
    [310]Nishikawa O, Saiki K, Wenk H R. Intra-granular strains and grain boundary morphologies of dynamically recrystallized quartz aggregates in a mylonite[J]. Journal of Structure Geology,2004,26:127-141
    [311]O'hara K. Fluid flow and volume loss during mylonization:an origin for phyllonite in an overthrust setting, North California[J]. Tectonophysics,1988,156(1):21-36.
    [312]O'hara K. Volume-loss model for trace-element enrichments in mylonizates[J]. Geology, 1989,19(9):893-896.
    [313]Passchier C, Trouw R. Microtectonics [M]. Berlin:Springer,2005,40-43.
    [314]Pattison D R M, Chacko T, Farquhar J et al. Temperatures of granulite facies metamorphism:constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange [J]. Journal of Petrology,2003,44:867-900.
    [315]Pichon X L, Rooke N C, Lallemant S. Geodetic determination of the kinematics of central Greece with respect to Europe:implications for eastern Mediterranean tectonics[J].Geophys, Res,1995,100:12675-12690.
    [316]Piper J D A, Moore J M, Tatar O, Gursoy H, Park R G. Palaeomagnetic study of crustal deformation across an intracontinental transform:the North Anatolian Fault Zone in Northern Turkey.in:A.Morris, D.H.Tarling(Eds.), Palaeomagnetism and Tectonics of the Mediterranean Region, Geol.Soc.london Spec.Publ.,1996,299-310.
    [317]Piper J D A, Tatar O, Gursoy H. Deformational behaviur of continental lithosphere deduced from block rotations across the North Anatolian fault zone in Turkey.Earth and Planetary[J]. Science Letter,1997,150:191-203.
    [318]Platt J P, Behrmann J H, Cunningham P C, et al.. Kinematics of the Alpine arc and the motion history of Adria[J].Nature,1989,337:158-161.
    [319]Plyusnina L P. Geothermometry and geobarometry pf plagioclase-hornblende bearing assemblages[J]. Contrib Mineral Petrol,1982,80:140-146.
    [320]Powell R, Holland T J B. Optimal geothermometry and geobarometry [J]. American Mineralogist,1994,79:120-133.
    [321]Pryer L L. Microstructures in fieldspars from a major crustal thrust zone:the Grenville Front[J].Journal of Structural Geology,1993,15(1):21-36.
    [322]Ralser S, Hobbs B E, Ord A. Experimental derformation of a quartz mylonite[J]. Struct Geol, 1991,13:837-850.
    [323]Ramsay J G, Wood D S. The geometric effects of volume change during deformation processes[J]. Tecto nophysics,1973,16:263-277.
    [324]Ramsay J G, Huber M I.Strainanalysis. In:Techniques of modern structural geology,1983, 1.London:Acad.Press.
    [325]Ramsay J G. Shear zone geometry:A review[J]. Journal of Struct.Geol.,2(1):83-89.
    [326]R D McDonnell, C J Peach, H L M van Roermund and C J Spiers.Effect of varying enstatite content on the deformation behavior of fine-grained synthetic peridotite under wet conditions[J]. J Geophys Res,2000,105:13535-13553.
    [327]Richard J, Norris, Alan F.Cooper. Late Quaternary slip partitioning on the Alpine Fauit, New Zealand[J] Journal of Structural Geology.2000,23:507-520.
    [328]Ross J V, Lewis P D. Brittle-ductile transition:semi-brittle behavior[J].Tectonophysics, 1989,167:75-78.
    [329]Royden L H.The tectonic expression slab pull at continental convergent boundaries[J]. Tectonics,1993,12:303-325.
    [330]Sanderson D J, Marchini W R D. Transpression[J].Journal of Structural Geology 1984.6, 449-458.
    [331]Schidt M W.Amphibole composition in tonalite as a function of pressure:An exiperimental calibration of Al-in-hornblende barometer[J]. Contributions to Mineralogy and Petrology, 1992,110:304-310.
    [332]Schmid S M, Boland J N & Paterson M S. Superplastic flow in finegrained limestone. Tectonophysics,1977,43:257-291.
    [333]Shaocheng Ji, Richard Wirth, Erik Rybacki, Zhenting Jiang. High-temperature plastic deformation of quartz-plagioclase multilayers by layer-normal compression [J]. Geophys Res,2000,105:16651-16664.
    [334]Senger A M C, Natal'in B S.Paleotectonics of Asia:fagments of a syntjesis.In Yin A.et al., eds.The Tectonic Evolution of Asia[J].Cambridge University Press,1996,486-640.
    [335]Shido, MIYASHIRO A. Abukuma, Ryoke, and Sanbagawa Metamorphic Belts [in Japanese] [J] Journal of the Geological Society of Japan,1959,65(769):624-637.
    [336]Sibson R H. Fault rocks and faults mechanisms[J].Geol.soc., London,1977,133(1): 191-213.
    [337]Simpson C. Deformation of granitic rocks across the brittle-ductile transition[J] Journal of Structural Geology,1985,7(5),503-511.
    [338]Sinha K A, Hawwit D A, Rimstidt J D. Fluid interaction and element mobility in the development of ultramylonites[J]. Geology,1986,14:883-886.
    [339]Smith M P and Yardley B W D.Fluid evolution during metamorphism of the Otago Schist, New Zealand:(I) Evidence from fluid inclusions[J]. Metamorphic Geol.,1999,17:173-186.
    [340]Smulikowski W, Desmons J, Harte B, Sassi F P, Schmid R. Types, grade and facies of metamorphism [A]. Fettes D, Desmons J Metamorphic rocks:A classification and glossary of terms, recommendations of the international union of geological sciences subcommission on the systematics of metamorphic rocks [C]. Cambridge University Press.2007,16-23.
    [341]Song Chuanzhong, Zhang Guowei, Wang Yongsheng, Li Jiahao, Chen Zechao, Cai Zhichuan.. Luonan-Luanchuan tectonic deformation decomposition and age constraints in Qinling orogenic belt[J]. Science in China Series D(Earth Science),2009,39(2):144-156.
    [342]Spear F S.Metamorphic fractional crystallation and internal metasomatismby diffusional homogenization of zoned garnets[J]. Contrib Mineral Petrol,1988,99:507-517.
    [343]S.Takeuchi, A S Argon. Acta Metall,1976,24:883-889.
    [344]Stipp M, Stunitz H, Heilbronner R et al. The eastern Tonale fault zone:a "natural laboratory" for crystal plastic deformation of quartz over a temperature range from 250 to 700℃[J]. Journal of Structural Geology,2002,24:1861-1884.
    [345]Stunitz H, Rosenberg C.L.et al. Deformation and recrystallization of plagioclase along a temperature gradient:an example from the Bergell tonalite[J]. Journal of Structural Geology,2003,25(3):389-408.
    [346]Takahashi M, Nagahama H, Masuda T. Fractal analysis of experimentally, dynamically recrystallized quartz grains and its possible application as a strain rats meter[J]. Journal of structural Geology,1998,20(2/3):269-273.
    [347]Takeshita T, Wenk H R, Lebensohn R. Development of preferred orientation and microstructure in sheared quartzite:comparison of natural data and simulated results[J]. Tectonophysics,1999,312:133-155.
    [348]Tatar O, Piper J D A, Park R G, Gursoy H. Palaeomagnetic evidence for large block rotations in the Niksar overlaparea of the North Anatolian Fault Zone Turkey[J]. Tectonophysics. 1995,244:251-266.
    [349]Teyssier C, Tikoff B. Fabric stability in oblique convergence and divergence[J] Journal of Structural Geology.1999,21:969-974.
    [350]Tracy R J. Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Mas-sachusetts [J]. Amer Miner,1976,61:762-775.
    [351]Tullis J, Yund R A. Diffusion creep in feldspar aggregates:experimental evidence[J]. Journal of Structural Geology,1991,13:986-1000.
    [352]Tullis J, Yund R. The brittle-ductile transition in feldspar aggregates:An experimental study, in Fault Mechanics and Transport Properties of Rocks, Evans B, ed. Academic, San Diego, Calif,1992,51,89-117.
    [353]Vernon R H. Review of microstructural evidence of magmatic and solid-state flow[J]. Electronic Geosciences.2000,5:2.
    [354]Vernon R H. A practical guide to rock microstrue[D].Cambridge:Cambridge University Press,2004.
    [255]Vigneresse J L, Tikoff B. Strain partitioning during partial melting and crystallizing felsic magmas[J].Teconophysics,1990,312:117-132.
    [356]Viruete J E, Contreras F, Stein F et al. Transpression and strain Caribbear Island arc:Fabric development, kinematics and 39Ar-40Ar ages of syntectonic emplacement of the Loma de Cabrera batholith, Dominican Repnblic[J]. Journal of Structural Geology,2006,28: 1496-1519.
    [357]Voll G. Recrystallization of quartz, biotite, feldspars from Erstfeld to the Leventina Nappe, Swiss Alps, and its geological significance[J]. Schweizerische Mineralogische and Petrographische Mitteilungen,1976,56:641-647.
    [358]Voll and S. Kruhl J H. Anisotropy quantification:the application of fractal geometry methods on tectonic fracture patterns of a Hercyni-an fault zone in NW Sardinia[J]. Journal of Structural Geology,2004,26:1499-1510.
    [359]Wallance R E. The san andreas fault system California.U.S.Geol.Survey Prof.Paper,1990, 1515.
    [360]Wang T, Wang X, Li W. Evaluation of multiple emplacement mechanisms:the Huichizi granite pluton, Qinling orogenic belt, central China[J] Journal of Structural Geology,2002, 22:505-518.
    [361]Watterson J., Homogeneous deformation of the gneisses of Vesterland, SOUTH-West Greenland[M]. Medd.om Groonland175,1968, Nr.6:72.
    [362]Windley B F, Alexeiev D, Xiao W, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society,2007,164:31-47.
    [363]Woodcock N H. The role of strike-slipe fault systems at plate boundaries[J]. Phil Trans R soc Lond,1997, A317:13-29.
    [364]Xue F, Lerch F, KrEner A. et al. Tectonic evolution of the East Qinling Mountains, China, in the Paleozoic:A review and a new tectonic model [J]. Tectonophysics,1996,253: 271-284.
    [365]Yang Xiaoyong, Liu Deliang, Wagner G. A. Conditions of deformation and variations of compositional and struetural state of feldspars during mylonitizaton:exemplified from the duetile shear zones in south Tan-Lu fault belt of China, Neues Jahrbuch fuer Mineralogie, Monatshefte,2001, JgH(9-10):415-432.
    [366]Yardley B W D and Bottrell S H. Silica mobility and fluid movement during metamorphism of the Connemara schists, Ireland[J].Metamorphic Geol.,1992,10:453-464.
    [367]You.Z.D, Han Y.J., Suo S.T., Chen N.S.and Zhong Z.Q. Metamorphic history and tectonic evolution of the Qinling complex, eastern Qinling mountains[J]. Metamorphic Geology.1993,11 (4):549-560.
    [368]Yuan Honglin, Wu Fuyuan, Gao Shan, Liu Xiaoming, Xu Ping and Sun Deyou. LA-ICP-MS zircon U-Pb age and REE of Cenozoic pluton in NE China[J]. Chinese Science Bulletin.2003,48 (14):1511-1520(in Chinese with English abstract).
    [369]Zhang weiji, Ma Zhihe.The poly deformation of Kuangping Group at Mahe of Mangling, Shaanxi Province[J]. Journal of Xi'an college of geology,1988,10(4):33-42 (in Chinese with English abstract).
    [370]Zhang Guowei, Zhang Zongqing and Dong Yunpeng. Nature of main tectonic lithostratigraphic units of the Qinling orogen:Implications for the tectonic evolution[J]. Acta Petrologica Sinica,1995,11(2):101-114(in Chinese with English abstract).
    [371]Zhang Z M, Shen K, Xiao Y, van den Kerkhof A M, Hoefs J and Liou J C.Fluid composition and evolution attending UHP metamorphism:Study of fluid inclusions from drill cores, southern Sulu belt, eastern China[J]. International Geology Review,2005,47:297-309.
    [372]Zhang Zongqing, Liu Dongyi and Fu Guomin. Geochronology of the metamorphic strata in the North Qinling[M]. Beijing:Geological Publishing House,1994,8-161(in Chinese).
    [373]Zhang zongqing. Geochemistry of metamorphosed Late Proterozoic Kuanping ophiolite in the Northern Qinling, China[J].Acta Petrologica Sinica,1995, 11(supp.):165-177(in Chinese with English abstract).
    [374]Zhang Zongqin, Tang Suohan, Song Bao, Zhang Guowei. Strong Jinning geological events in the Qinling orogenic belt and it stectonic setting[J]. Acta Geoscientia Sinica,1997, 18(supp.):43-45(in Chinese with English abstract).
    [375]Zhou Jiyuan, Yu Zucheng. Tectonic stress, element activation and migration and mineralization——Theory and its significance to researches. Progress in Geosciences of China (1985-1988),1989, Paper to 28th IGC.Vol.1, Beijing:Geological Publishing House.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700