用户名: 密码: 验证码:
小麦重要基因的分子标记实用性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在小麦基因组上定位了涉及抗病、品质、发育等性状的大最基因/QTL。随着分子标记在小麦育种中应用日益广泛,有两个关键问题亟待解决:(1)现有分子标记用于标记辅助选择(MAS)是否有效。(2)如何提高分子标记在育种上的利用效率。据此,作者从以下几方面开展了研究:(1)评价了101个小麦抗病、品质和发育性状相关的分子标记用于MAS的有效性,为科学地利用分子标记提供依据。(2)分析了我国136个小麦品种的基因和表型特征,比较了部分基因与表型的相关性,为合理地配制亲本组合提供参考。(3)研究了不同类型分子标记在基因转育和聚合上的选择效率,为开展MAS育种提供借鉴。主要结论如下:
     1、不同分子标记用于MAS的有效性存在明显差异从实用性上,供试的101个标记可分为三类:(1)可用于MAS的标记51个,占供试标记的50.5%,如(?)Pm21D/Pm21E、WE173F/WE173R等。此类标记可直接用于分子标记辅助选择育种。(2)可做为MAS参考的标记22个,占供试标记的27.7%,如Xcfd81-5DF/Xcfd81-5DR, Pm4a/bF/Pm4a/bR等。对于该类标记可用不同遗传背景的亲本与对照品种杂交,观察不同遗传背景下携带标记多态性的后代表现型,来进一步验证标记的有效性。(3)不能用于MAS的标记28个,占供试标记的21.8%,如Whs3501F/Whs350R、Whs3501F/Whs350S等。需要继续寻找与目标基因/QTL更加紧密连锁的标记。
     2、应尽快提高优异基因在推广品种中的利用率在品质性状上,1B/1R在我国主推品种中仍然占很大比例,约占供试品种的73.5%。一些对品质改良有积极作用的优异基因和QTL尚未得到充分利用,如Bxl4+By15、Bx17+Byl8, QPhs.ocs.3A-1、Wx-A1b、Wx-D1b等。在抗病性状上,小麦抗白粉病基因Pm8在品种中分布很广,占供试品种的47.8%。已鉴定的优异抗病基因在现有品种很少,如抗白粉病基因Pm4、 Pm6、Pml2、Pm13、Pml7、Pm21、Pm24,抗条锈病基因Yr26,抗叶锈病基因Lr34/Yrl8、Lr24-Sr24。对发育相关基因的检测表明,春化反应敏感等位基因Vrn-D1在我国品种中分布广泛,占供试品种的34.6%;株高等位基因Rht-B1b、Rht-D1b和Rht8是目前调控我国小麦品种“降杆”的3个主要基因,分别占供试品种的36.8%、44.1%和22.8%。Rht-B1b在北部冬麦区品种中没有检测到,而Rht-D1b基因则分布较广泛。光周期反应敏感等位基因Ppd-D1b仅在春性品种克旱16、克旱21存在,其他品种均为光周期反应不敏感的Ppd-D1a类型。尽快向主推品种中转育上述优异的抗病、优质基因对提高我国小麦育种水平具有重要意义。
     3、品种的表现型受基因功能、组成比例和互作决定春化等位基因组成与抗冻性有密切关系,含有Vrn-Al、 Vrn-B1的品种抗冻性都很差。只有少数抗逆性(抗旱、耐瘠薄)突出的品种尽管含有Vrn-Al、 Vrn-D1基因但耐寒性较好。供试品种的株高基因主要存在4种类型:RhtB1b、RhtD1b、RhtBlb+Rht8、 RhtD1b+Rht8。3个株高基因的降杆作用大小依次为RhtD1b>RhtB1b>Rht8,株高降低可导致穗粒数减少而千粒重增加。在RhtB1b或RhtD1b背景下,携带Rht8与否对株高降低无明显影响;同时携带RhtD1b和RhtB1b,对穗粒数和千粒重均有负作用。品种品质的差异主要受相关基因组成数量和比例决定,多个基因间的协同作用远大于单一“优异”基因的作用。对特定筋力类型品种而言,转育Dx5+Dy10与否对品质的改良无明显影响。以强调品质为首要育种目标时,强筋品种应尽量选择不携带1B/1R的后代材料。淘汰高分子量麦谷蛋白亚基和Pinb-D1b可做为弱筋小麦育种的选择指标。本研究中的品种抗病基因组成和表型鉴定表明,除Pm21基因外,其他抗病基因与表型间没有明显的规律。在抗病育种过程中应避免选择表型和基因型鉴定都感病的亲本。
     4、提出了实际育种中转育和聚合优良基因的MAS策略分子标记检测的效率与标记类型和待检的基因类型均有密切关系。在F2代,利用显性标记检测显性基因或利用共显性标记检测隐性基因,含目标基因的概率约为20%~60%;利用显性标记检测隐性基因,含目标基因的概率约为10%~30%。共显性标记较显性标记可以大大提高对隐性基因的检测效率。在F3代选择到目标基因的概率较F2代显著降低。因此,对目标基因的选择应尽量在早期分离世代进行。基因聚合效率的高低与选择的目标基因和标记类型有密切关系。3个基因聚合出现目标基因的概率较2个基因聚合明显降低,现阶段应以聚合2个基因为佳。
In recent years, a large number of genes and QTLs related to disease resistance, quality, development and other traits have been mapped in wheat genome. Despite the widespread use of molecular markers in wheat improvement has been report; we have not yet seen their impact on wheat breeding through varieties release for several reasons. Firstly, the molecular markers for MAS in wheat are effective or not? Secondly. How to improve the efficiency of MAS in wheat breeding? Accordingly, the objective of the current study was to evaluate the utility of101molecular markers in MAS, and identify the genetic and phenotypic characteristics of136Chinese wheat varieties, then compare the correlation of some genes and phenotypes. At last, we investigated the different selection strategies and consideration of when to screen, what proportion to retain and the impacts of domaint vs.codominant marker. The mainly progresses were showed as follows:
     1. There are significance differences in the utility of101molecular markers for MAS. According to the utility, the101markers can be classified into three types:51markers, accounting for50.5%of the total markers, can be directly used in MAS, such as Pm21D/Pm21E and WE173F/WE173R.22markers, accounting for27.2%, can be used as reference marker in MAS, such as Xcfd81-5DF/Xcfd81-5DR and Pm4a/bF/Pm4a/bR. The effects of such markers can be further evaluated through hybridization between the control carrying target gene and other varieties with different genetic backgrounds.28markers, accounting for21.8%, can not be used in MAS, such as Whs3501F/Whs350R and Whs3501F/Whs350. More closely linked markers to the target gene or QTL should be identified in future.
     2. Some excellent genes should be transferred into Chinese major varieties as soon as possible. The Results indicated that lB/lR and Pm8is still high portion; dominate with frequencies of73.5%and47.8%, respectively. Some excellent genes and QTLs, which have a positive effect on quality and disease resistance, have not yet been fully utilized in wheat breeding. These genes include14+15,17+18, QPhs.ocs.3A-l, Wx-Alb, Wx-Dlb, Pm4, Pm6, Pm12, Pm13, Pm17, Pm21, Pm24, Yr26, Lr34/Yrl8, Lr24-Sr24, and so on. Four alleles related to development traits, including Vrn-Dl.Rht-Blb, Rht-Dlb and Rht8, are widely distributed, accounting for34.6%,36.8%,44.1%and22.8%. Interestingly, the dwarfing allele Rht-Blb was not detected in Northern China Plain Winter Wheat Region. The photoperiod sensitive allele Ppd-Dlb was only detected in the spring varieties Kehan16and Kehan21, all other genotypes carried the photoperiod insensitive allele Ppd-Dla. It is very important to transfer above disease resistance, high-quality genes into Chinese major varieties as soon as possible.
     3. The phenotypes of varieties are controlled by not only gene function but also gene composition and gene interaction. The results indicated that the composition of vernalization genes is closely related to cold tolerance of varieties. Varieties with Vrn-Al and Vrn-Bl alleles are always poor low-temperature tolerance. Only few varieties with excellent abiotic stress tolerance, although with Vrn-Al or Vrn-Dl alleles, are still good cold-tolerance. The wheat varieties mainly contain four types of semi-dwarfing alleles:Rht-Blb, Rht-Dlb, and Rht-Blb+Rht8, and Rht-Dlb+Rht8genes. The effect of RhtDlb and RhtBlb on plant height reduction is obviously higher than Rht8. Additionally, plant height reduction improves kernel weight, while resulting in reduce number of grains per spike. Under the background of RhtBlb or RhtDlb, the plant height of varieties was not significantly affected by Rht8. Varieties carry with RhtDlb and RhtBlb, lead to reduce not only kernel weight but also number of grains per spike.The quality attributes is mainly determined by the composition and proportion of quality-related genes, not few "excellent" genes. To varieties with special glutein attributes, the high molecular mass glutenin subunits5+10had no obvious effect on the quality improvement. While the1BL/1RS translocation caused a significant decrease in technological properties of bread wheat. Elimination of the high molecular mass glutenin subunits and Pinb-Dlb alleles can be used as selection criterion for soft wheat breeding. In addition to Pm21, no certain rules can be found between other resistance genes and phenotypes. Therefore, the susceptible parents, both identified by phenotypic and genotypic selection, should not be used in disease resistance breeding.
     4. A reasonable strategy of MAS selection in gene transfer and gene pyramiding was proposed. The results indicated that the probability of F2generation containing the target gene about20%to60%, when dormant gene was detected by dominant marker, or recessive gene was detected by codominant marker. Using dominant markers to detect recessive genes, the probability of F2generation containing the target gene about10%to30%. Therefore, Co-dominant markers can be more efficiency than dominant markers for the detection of recessive genes. The probability of selection to the target gene in F3generation was significantly lower than the F2generation. The choice of the target gene should be carried out in the early generation as soon as possible. The efficiency of marker assisted gene pyramiding is closely related to the types of target gene and molecular marker. The probability of pyramiding three genes was significantly lower than that of two genes. As a result, pyramiding two genes should be preferred in wheat molecular breeding.
引文
[1]Bagge M, Lubberstedt T. Functional markers in wheat:technical and economic aspects. Mol. Breeding,2008,22:319-328.
    [2]Beales J, Turner A, Griffiths S, Snape J W, Laurie D A. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-Dla mutant of wheat (Triticum aestivum L.). TAG,2007,115:721-733.
    [3]Bernardo R. Molecular markers and selection for complex traits in plants:learning from the last 20 years. Crop Sci., 2008,48:1649-1664.
    [4]Bossolini E, Krattinger S G, Keller B. Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat using sequence information from rice and Aegilops tauschii. TAG,2006,113:1049-1062.
    [5]Briney A, Wilson R, Potter R H, Barclay I, Crosbie G, Appels R, Jones MGK.A PCR marker for selection of starch and potential noodle quality in wheat. Mol. Breeding,1998,4:427-433.
    [6]Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. PNAS,2011,108(19):7727-7732.
    [7]Cavanagh C, Morell M, Powell W. From mutations to MAGIC:resources for gene discovery, validation and delivery in crop plants. Curr. Opin. Plant Biol.,2008,11:215-221.
    [8]Cenci A, D'Ovidio R, Tanzarella O A, Ceoloni C, Porceddu E. Identification of molecular markers linked to Pml3, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. TAG,1999,98:448-454.
    [9]Chai J F, Zhou R H, Jia J Z, Liu X. Development and application of a new codominant PCR marker for detecting 1BL/1RS wheat rye chromosome translocations. Plant Breeding,2006,125:302-304.
    [10]Chefkowski J, Golka L, Stepien f . Application of STS markers for leaf rust resistance genes in near-isogenic lines of spring wheat cv. Thatcher. J. Appl. Genet,2003,44(3):323-338.
    [11]Chen X M, Luo Y H, X ia X C, Xia L Q, Chen X, Ren Z L, He Z H, Jia J Z. Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breeding,2005,124:225-228.
    [12]Chen X, Soria M A, Yan G, Sun J, Dubcovsky J. Development of sequence tagged site and cleaved amplified polymorph-hie sequence markers for wheat stripe rust resistance gene Yr5.2003, Crop Sci.,43:2058-2064.
    [13]Cloutier S, McCallum B D, Loutre C, banks T W, Wicker T, Feuillet C, Keller B, Jordan M C. Leaf rust resistance gene Lrl, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol. Bio., 2007,65(1-2):93-106.
    [14]Cuthbert P A, Somers D J, Thomas J, Cloutier S, Brule-Babel A. Fine mapping Fhbl, a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L.). TAG,2006,112:1465-1472.
    [15]D'Ovidio R, Porcedu D, Lafiandra D. PCR analysis of genes encoding allelic variants of high-molecular-weight glutenin subunits at the Glu-Dl locus. TAG,1994,88:175-180.
    [16]Dedryver F, Jubier M F, Thouverin J, Goyeau H. Molecular markers linked to leaf rust resistance gene Lr24 in different wheat cultivars. Genome,1996,39:830-835.
    [17]Distelfeld A, Uauy C, Fahima T, Dubcovsky J. Physical map of the wheat high-grain protein content gene Gpc-Bl and development of a high-throughput molecular marker. New Phytol.,2006,169:753-763.
    [18]Eagles H A, Bariana H S, Ogbonnaya F C, Rebetzke G J, Hollamby G J, Henry R J, Henschke P H, Carter M. Implementation of markers in Australian wheat breeding. Aust. J. Agric. Res.,2001,52:1349-1356.
    [19]Ellis M H, Spielmeyer W, Rebetzke G J, Richards R A. "Perfect"markers for the Rht-Blb and Rht-Dlb dwarfing genes in wheat. TAG,2002,105:1038-1042.
    [20]Ellis M H, Bonnett D G, Rebetzke G J. A 192bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica,2007,157:209-214.
    [21]Faricelli M E,Valarik M & Dubcovsky J. Control of flowering time and spike development in cereals:the earliness per se Eps-1 region in wheat, rice, and Brachypodium. Funct. Integr. Genomics,2010,10:293-306.
    [22]Feuillet C, Messmer M, Schachermayr G, Keller B. Genetical and physical characterization of the Lrl leaf rust resistance locus in wheat (Triticum aestivum L.). Mol. Gen. Genet.,1995,248:553-562.
    [23]Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lrl 0 from the hexaploid wheat (Triticum aestivum L.) genome. PNAS,2003,100(25):15253-15258.
    [24]Francis H A, Leitch A R, Koebner RMD. Conversion of a RAPD-generated PCR product, containing a novel dispersed repetitive element, into a fast and robust assay for the presence of rye chromatin in wheat. TAG,1995,90:636-642.
    [25]Fu D L, Szucs P, Yan L L, Helguera M, Skinner J S, Zitzewitz J V, Hayes P M, Dubcovsky J. Large deletions within the first intron in VRN-l are associated with spring growth habit in barley and wheat. Mol. Genet. Genomics,2005,273: 54-65.
    [26]Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science,2009,323(5919):1357-1360.
    [27]Giroux M J, Morris C F. A glycine to serine change in puroindoline b is asssociated with wheat grain hardness and low levels of starch-surface friabilin. TAG,1997,95:857-864.
    [28]Gold J J, Harder D E, Townley-Smith T F, Aung T and Procunier J D. Development of a molecular marker for rust resistance genes Sr39 and Lr35 in wheat breeding lines. Elec. J. of Bio.,1999,2(1):35-40.
    [29]Griffiths S, Sharp R, Foote T N, Bertin I, Wanous M, Reader S, Colas I, Moore G. Molecular characterization of Phl as a major chromosome pairing locus in polyploid wheat. Nature,2006,439(7077):749-752.
    [30]Gupta P K, Kumar J, Mir R R, Kumar A. Marker-assisted selection as a component of conventional plant breeding. Plant Breed Rev.,2009,33:145-217.
    [31]Gupta P K, Langridge P, Mir R R. Marker-assisted wheat breeding:present status and future possibilities. Mol. Breeding, 2010,26:145-161.
    [32]Gupta P K, Mir R R, Mohan A, Kumar J. Wheat genomics:Present status and future prospects. Int. J. Plant Genomics, 2008,1-36.
    [33]Gupta S K, Charpe A,Prabhu K V,Haque Q M R. Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat.TAG,2006,113(6):362-367.
    [34]He X Y, Zhang Y L, He Z H, Wu Y P, Xiao Y G, Ma C X, Xia X C.Characterization of a phytoene synthase 1 gene (Psyl) located on common wheat chromosome 7A and development of a functional marker. TAG,2008,116:213-221.
    [35]Helguera M, Khan I A, Dubcovsky J. Development of PCR markers for the wheat leaf rust resistance gene Lr47. TAG, 2000,100:1137-1143.
    [36]Huang L, Brooks S A, Li W, Fellers J P, Trick H N, Gill B S. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics,2003,164(2):655-664.
    [37]Huang X Q, Hsam S L K, Zeller F J, Wenzel G, MohlerV. Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. TAG,2000,101:407-414.
    [38]Ishikawa G, Nakamura T. A new co-dominant PCR-based marker to identify the high-molecularweight glutenin subunit combination"5+10"of common wheat. Wheat Information Service,2007,103:1-3.
    [39]Ji J H, Qin B, Wang H Y, Cao A Z,Wang S L, Chen P D, Zhuang L F, Du Y, Liu D J, Wang X E. STS markers for powdery mildew resistance gene Pm6 in wheat. Euphytica,2008,163:159-165.
    [40]Jia G F, Chen P D, Qin G J, Bai G H, Wang X E, Wang S L, Zhou B, Zhang S Z, Liu D J. QTLs for Fusarium head blight response in a wheat DH population of Wangshuibai/Alondra's'. Euphytica,2005,146:183-191.
    [41]Joshi R K and Nayak S. Gene pyramiding-A broad spectrum technique for developing durable stress resistance in crops. Bio.& Mol. Bio. Rev,2010,5(3):51-60.
    [42]Knox A K, Li C, Vagujfalvi A, Galiba G, Stockinger E J, Dubcovsky J. Identification of candidate CBF genes for the frost tolerance locus Fr-Am2 in Triticum monococcum. Plant Mol. Biol.,2008,67(3):257-270.
    [43]Kota R S, Spielmeyer W, Mclntosh R A, Lagudah E S. Fine genetic mapping fails to dissociate durable stem rust resistan ce gene Sr2 from pseudo-black chaff in common wheat(Triticum aestivum L.). TAG,2006,112(3):492-499.
    [44]Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P, Huerta-Espino J, McFadden H, Bossolini E, Selter L L, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science,2009,323 (5919):1360-1363.
    [45]Kuchel H, Fox R, Reinheimer J, Mosionek L, Willey N.Bariana H, Jefferies S. The successful application of a marker-assisted wheat breeding strategy. Mol. Breeding,2007,20:295-308.
    [46]Kuchel H, Ye G Y,Fox R and Jefferies S. Genetic and economic analysis of a targeted marker-assisted wheat breeding strategy. Mol. Breeding,2005,16:67-78.
    [47]Lagudah E S, McFadden H, Singh R P, Huerta-Espino J, Bariana H S, Spielmeyer W. Molecular genetic characterization of the Lr34/Yrl8 slow rusting resistance gene region in wheat. TAG,2006,114:21-30.
    [48]Lei Z S, Gale K R, He Z H, Gianibelli C, Larroque O, Xia X C, Butow B J, Ma W. Y-type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-Bl locus in hexaploid wheat. J. Cereal Sci., 2006,43:94-101.
    [49]Li G Q, Li Z F, Yang W Y, Zhang Y,He Z H, Xu S C, Singh R P, Qu Y Y and Xia X C. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. TAG,2006, 112:1434-1440.
    [50]Liu S X, Chao S M, Anderson J A. New DNA markers for high molecular weight glutenin subunits in wheat. TAG,2008, 118:177-183.
    [51]Liu S X, Pumphrey M O, Gill B S, Trick H N, Zhang X, Dolezel J, Chalhoub B, Anderson J A. Toward positional cloning of FHB1, a major QTL for fusarium head blight resistance in wheat.3rd Int. FHB Symposium,2008,195-201.
    [52]Liu S, Anderson J A. Marker assisted evaluation of Fusarium head blight resistant wheat germplasm. Crop Sci.,2003, 43:760-766.
    [53]Liu Z Y, Sun Q X, Ni Z F, and Yang T. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breeding,1999,118:215-219.
    [54]Liu Y, Liu D C, Zhang H Y, Wang J, Sun J A, Guo X L, Zhang A M. Allelic variation, sequence determination and microsatellite screening at the XGWM261 locus in Chinese hexaploid wheat (Triticum aestivum L.) varieties. Euphytica, 2005,145:103-112.
    [55]Lu H J, Fellers J P, Friesen T L, Meinhardt S W, Faris J D. Genomic analysis and marker development for the Tsnl locus in wheat using bin-mapped ESTs and flanking BAC contigs. TAG,2006,112(6):1132-1142.
    [56]Ma J X, Zhou R H, Dong Y S, Wang L F, Wang X M, Jia J Z. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica,2001,120: 219-226.
    [57]Ma W, Zhang W, Gale K R. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica,2003, 134:51-60.
    [58]Ma Z Q, Wei J B, Cheng S H. PCR-based markers for the powdery mildew resistance gene Pm4a in wheat. TAG,2004, 109:140-145.
    [59]Mago R, Bariana H S, Dundas I S, Spielmeyer W, Lawrence G L, Prior A J, Ellis J G. Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. TAG,2005,111:496-504.
    [60]Mago R, Speilmeyer W, Lawrence G J, Lagudah E S, Ellis J G, Pryor A J. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome IRS of rye using wheat rye translocation lines. TAG, 2002,104:1317-1324.
    [61]Mohler V, Hsaml L K, Zeller F J, Wenzel G. An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm 17 locus of common wheat. Plant Breeding,2001,120:448-450.
    [62]Mohler V, JahoorA. Allele-specific amplification of polymorphic sites for the detection of powdery mildew resistance loci in cereals. TAG,1996,93:1078-1082.
    [63]Myburg A A, Cawood M, Wingfield B D, Botha A M. Development of RAPD and SCAR markers linked to the Russian wheat aphid resistance gene Dn2 in wheat. TAG,1998,96:1162-1169.
    [64]Naik S, Gill K S, Prakasa R V S, Gupta V S, Tamhankar S A, Pujar S, Gill B S, Ranjekar P K. Identification of a STS marker linked to the Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat. TAG,1998,97:535-540.
    [65]Nakamura T, Vrinten P, Saito M, Konda M. Rapid classification of partial waxy wheats using PCR-based markers. Genome,2002,45:1150-1156.
    [66]Peng J H, Fahima T, Roeder M S, Huang Q Y, Dahan A, Li Y C, Grama A, Nevo E. High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat-Triticum dicoccoides. Genetica,2000,109(3):199-210.
    [67]Price A H. Believe it or not, QTLs are accurate.Trends Plant Sci.,2006,11(5):213-216.
    [68]Prigge V, Melchinger A E, Dhillon B S, Frisch M. Efficiency gain of marker-assisted backcrossing by sequentially increasing marker densities overgenerations.TAG,2009,119(1):23-32.
    [69]Prins R, Groene wald J Z, Marais G F, Snape J W, Koebner R M D. AFLP and STS tagging of Lrl9, a gene conferring resistance to leaf rust in wheat. TAG,2001,103:618-624.
    [70]Qiu Y C, Sun X L, Zhou R H, Kong X Y, Zhang S S & Jia J Z. Identification of microsatellite markers linked to powdery mildew resistance gene Pm2 in wheat. Cereal Rersearch Communications,2006,34:1267-1273.
    [71]Randhawa H S, Mutti 1 J S, Kidwell 1 K, Morris C F, Chen X M, Kulvinder S G. Rapid and targeted introgression of genes into popular wheat cultivars using marker-assisted background selection. PLoS ONE,2009,4(6):1-11.
    [72]Saito M, Vrinten P, Ishikawa G, Graybosch R, Nakamura T. A novel codominant marker for selection of the null Wx-Bl allele in wheat breeding programs. Mol. Breeding,2009,23:209-217.
    [73]Schachermayr G, Messmer M M, Feuillet C, Winzeler H, Winzeler M, Keller B. Identification of molecular markers linked to the Agropyron elongatum-derived leaf rust resistance gene Lr24 in wheat. TAG,1995,90:982-990.
    [74]Schachermayr G, Siedler H, Gale M D, Winzeler H, Winzeler M, Keller B. Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat. TAG,1994,88:110-115.
    [75]Schnurbusch T, Collins N C, Eastwood R F, Sutton T, Jefferies S P, Langridge P. Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bol boron toxicity tolerance locus of bread wheat.TAG,2007,115 (4):451-461.
    [76]Servin B, Martin O C, Mezard M, Hospital F.Toward a theory of marker-assisted gene pyramiding. Genetics,2004,168: 513-523.
    [77]Seyfarth R, Feuillet C, Schachermayr G, Winzeler M, Keller B. Development of a molecular marker for the adult plant leaf rust resistance gene Lr35 in wheat. TAG,1999,99:554-560.
    [78]Sherman J D, Yan L, Talbert L, Dubcovsky J. A PCR marker for growth habit in common wheat based on allelic variation at the Vrn-Al gene. Crop Sci.,2004,44:1832-1838.
    [79]Simons K J, Fellers J P, Trick H N, Zhang Z C, Tai Y S, Gill B S, Faris J D. Molecular characterization of the major wheat domestication gene Q. Genetics,2006,172(1):547-555.
    [80]Skinnes H, Semagn K, Tarkegne Y, Marey A G, Bj(?)rnstad A. The inheritance of anther extrusion in hexaploid wheat and its relationship to Fusarium head blight resistance and deoxynivalenol content. Plant Breeding,2010,129,149-155.
    [81]Song W, Xie H, Liu Q, Xie C J, Ni Z F, Yang T, Sun Q X, Liu Z Y. Molecular identification of Pm 12-carrying introgression lines in wheat using genomic and EST-SSR markers. Euphytica,2007,158:95-102.
    [82]Spielmeyer W, Sharp P J, Lagudah E S. Identification and validation of markers linked to broad spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop Sci.,2003,43:333-336.
    [83]Sun D J, He Z H, Xia X C, Zhang L P, Morris C F, Appels R, Ma W J, Wang H. A novel STS marker for polyphenol oxidase activity in bread wheat. Mol. Breeding,2005,16:209-218.
    [84]Talbert L E, Bruckner P L, Smith L Y, Sears R, Martin T J. Development of PCR markers linked to resistance to wheat streak mosaic virus in wheat. TAG,1996.93 (3):463-467.
    [85]Talbert L E, Blake N K, Chee P W, Blake T K, Magyar G M. Evaluation of "sequence-tagged-site" PCR products as molecular markers in wheat. TAG,1994,87(7):789-794.
    [86]Tommasini L, Yahiaoui N, Srichumpa P, Keller B. Development of functional markers specific for seven Pm3 resistance alleles and their validation in the bread wheat gene pool. TAG,2006,114(1):165-175.
    [87]Tuvesson S, Dayteg C, Hagberg P, Manninen O, Tanhuanpaa P, Tenhloa-Roininen T, Weyen J, Forster J, Schondelmaier J, Lafferty L, Marn M, Fleck A. Molecular markers and doubled haploids in European plant breeding. Euphytica,2006, http://dx.doi.org/10.1007/s 10681-006-9239-8.
    [88]Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science,2006,314(5803):1298-1301.
    [89]Vrinten P, Nakamura T, Yamamori M. Molecular characterization of waxy mutations in wheat. Mol. Genetics and Genomics,1999,261:463-471.
    [90]Wang C M, Zhang Y P, Han D J, Kang Z S, Li G P, Cao A Z, Chen P D. SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica,2008,159:359-366.
    [91]Wang J K, Singh R P, Braun H J, Pfeiffer W H. Investigating the efficiency of the single backcrossing breeding strategy through computer simulation.TAG,2009,118:683-694.
    [92]Wang L H, Zhao X L, He Z H, Ma W, Appels R, Pena R J, Xia X C. Characterization of low-molecular-weight glutenin subunit Glu-B3 genes and development of STS markers in common wheat (Triticum aestivum L.). TAG,2009,118:525-539.
    [93]William H M,Trethowan R, Crosby-Galvan E M. Wheat breeding assisted by markers:CIMMYT's experience. Euphytica,2007,157:307-319.
    [94]Worland A J, Korzun V, Roder M S, Ganal M W, Law C N. Genetic analysis of the dwarfing gene Rht8 in wheat. Part Ⅱ. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. TAG,1998,96:1110-1120.
    [95]Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J.,2004,37(4):528-538.
    [96]Yan L L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. PNAS,2006,103 (51):19581-19586.
    [97]Yan L L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J. Allelic variation at the VRN-1 promoter region in polyploidy wheat. TAG,2004,109:1677-1686.
    [98]Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science,2004,303 (5664):1640-1644.
    [99]Yang Y, Zhao X L, Xia LQ, Chen X M, Xia X C, Yu Z, He Z H and Roder M. Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting resistance in Chinese wheats.2007, TAG,115:971-980.
    [100]Zhang W, Gianibelli M C, Rampling L R, Gale K R. Characterization and marker development for low molecular weight glutenin genes from Glu-A3 alleles of bread wheat (Triticum aestivum L.). TAG,2004,108:1409-1419.
    [101]Zhang X, Zhou M, Ren L J, Bai G H, Ma H X, Scholten O E, Guo P G, Lu W Z. Molecular characterization of Fusarium head blight resistance from wheat variety Wangshuibai. Euphytica,2004,139:59-64.
    [102]Zhang Z Y, Xu J S, Xu Q J, Larkin P, Xin Z Y. Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker-assisted selection. TAG,2004,109:433-439.
    [103]蔡士宾,任丽娟,颜伟,吴纪中,陈怀谷,吴小有,张仙义.小麦抗纹枯病种质创新及QTL定位的初步研究.中国农业科学,2006,39(5):928-934.
    [104]陈松柏,蔡一林,周荣华,贾继增.小麦抗白粉病基因Pm4的STS标记.西南农业大学学报,2002,24(3):231-234.
    [105]陈晓红.小麦抗条锈病基因Yr5分子标记的鉴定,东北农业大学硕士学位论文,2003.
    [106]陈云芳,刘莉,杨文香,刘大群.33个小麦品种(系)抗叶锈基因Lr19分子检测.分子植物育种,2008,6(5):1015-1018.
    [107]程顺和,张伯桥,高德荣.小麦育种策略探讨.作物学报,2005,7(31):932-937.
    [108]董建力,张增艳,王敬东,惠红霞.3种小麦抗白粉病基闪聚合体的STS和SCAR标记.西北农业学报,2007,16(3):64-67.
    [109]高文娜.小麦抗锈基因的分子标记[D].重庆:西南农业大学,2003.
    [110]葛昌斌,廖平安,郭春强,秦索研,徐如宏,张庆勤.小麦贵农775抗条锈病新基因YrGA的研究.河南农业科学,2008,7:21-24
    [111]何中虎,夏先春,陈新民,庄巧生.中冈小麦育种进展与展望.作物学报,2011,37(2):202-215.
    [112]胡琳,许为钢,王根松,董海滨,张留臣,赵新西.小麦低分子量谷蛋白亚基品质效应的研究.麦类作物学报,2009,29(3):424-428.
    [113]郎淑平,王海燕,胥红研,肖进,张守忠,陈佩度,王秀娥.小麦抗赤霉病、优质高分子量麦谷蛋白亚基聚合体的分子标记辅助选育.麦类作物学报,2008,28(3):415-418.
    [114]李学军,李立群,王培,王小利,郑锦娟,王辉.黄淮麦区新选小麦品种(系)及农家种HMW2GS等位变异分析.西北农林科技大学学报(自然科学版),2010,38(5):68-72.
    [115]李振声.我国小麦育种的回顾与展望.中国农业科技导报,2010,12(2):1-4.
    [116]林风,徐世昌,张立军,苗青,翟强,李楠.小麦抗条锈病基闪Yr2的SSR标记.麦类作物学报,2005,25(1):17-19.
    [117]刘秉华,杨丽,王山荭,孟凡华.矮败小麦群体改良的方法与技术.作物学报,2002,28(1):69-71.
    [118]刘金元,刘大钧,陶文静,李万隆,陈佩度.小麦白粉病抗性基因Pm4的RFLP标记转化为STS标记的研究.农业生物技术学报,1999,7(2):113-116.
    [119]刘莉,陈云,杨文香,刘大群.小麦抗叶锈基因Lr1、Lr9、Lr10、Lr19的STS标记在近等基因系(NILs)上的特异性验证.分子植物育种,2011,9:1157-1161.
    [120]刘燕,张增艳,辛志勇,林志珊,杜丽璞,徐惠君,刘丽,陈孝,张改生.利用分子标记解析小麦新种质YW243的抗锈病基因.中国农业科学,2006,39(2):295-299.
    [121]刘迎春,朱惠兰,程顺和,马正强.小麦Wx-A1和Wx-D1位点的PCR分子标记.麦类作物学报,2005,25:1-5.
    [122]慕美财,刘刃,郭小丽,张日秋,于凯,刘冬成,张爱民.山东小麦品种中矮秆基因Rht-B1b、Rht-D1b分布的分子鉴定.分子植物育种,2005,3(4):473-478.
    [123]牛吉山,梁清志,王保勤,刘瑞,郑磊.黄淮麦区部分小麦种质资源高分子量谷蛋白亚基组成分析.麦类作物学报,2007,27(2):245-249.
    [124]任晓利.我国主栽小麦品种(系)抗叶锈基因分析[D].北京:中国农业科学院,2011.
    [125]邵映田,牛永春.小麦抗条锈基因Yr10的AFLP标记.科学通报,2001,46(6):669-672.
    [126]申洪源.中国小麦市场的回顾与展望.现代面粉工业,2011,1:50-53.
    [127]宋健民,刘爱峰,姜国华,李豪圣,刘建军,赵振东.我国不同时期小麦品种高分子量麦谷蛋白亚基组成比较.农业生物技术学报,2006,14(5):728-735.
    [128]孙果忠,马民强,赵和,谢晓亮,柴建芳,王海波.小麦抗白粉病育种亲本及后代性状分析.河北农业大学学报,2000,23(04):20-22.
    [129]孙果忠,游光霞,武淑祯,张秀英,王海波,肖世和.小麦春化基因的遗传效应研究.华北农学报,2011,26(6):1-6.
    [130]王江春,李云鹏,王旭方,殷岩,辛庆国,姜鸿明,李林志,王洪刚.建国以来山东省小麦品种及其亲本Glu-1位点的亚基组成和多样性分析.中国农学通报,2008,24(5):186-191.
    [13l]王军.与小麦抗白粉病基因Pml2和Pml6基因紧密连锁的SSR标记建立[D].北京:中国农业大学,2004.
    [132]王瑞,刘红彦,李洪连,王俊美,伊艳杰.小麦抗白粉病基因Pm6的PCR标记鉴定.麦类作物学报,2007,27(3):421-424.
    [133]王晓波,马传喜,何克勤,司红起,张业伦.小麦2D染色体上多酚氧化酶(PPO)基因STS标记的开发与应用.中国农业科学,2008,41(6):1583-1590.
    [134]王欣,范三红,阎晓华,罗龙海,郭蔼光.小麦HMW-GS 1Bx14基因特异标记体系的建立.西北植物学报,2005,25:2189-2192.
    [135]王银萍,李勇超,魏燕燕,刘林丽,赵惠贤,郭蔼光.黄淮麦区小麦品种高分子量谷蛋白亚基组成及遗传多样性分析.麦类作物学报,2006,26(5):69-73.
    [136]魏新燕,杨文香,刘大群,孔俊英.150个小麦品种(系)抗叶锈基因Lr35分子检测.中国农业科学,2004,37(12):1951-1954.
    [137]翁东旭,徐世昌,蔺瑞明,万安民,李景鹏,吴立人.小麦条锈菌鉴别寄主抗条锈病基因Yr9的微卫星标记.遗传学报,2005,32(9):937-941.
    [138]肖世和.我国小麦品种改良趋势与粮食安全.2006,24(4):5-7.
    [139]徐兆华,夏兰芹,陈新民,夏先春,何中虎.中国冬小麦品种Waxy蛋白分析及分子标记研究.中国农业科学,2005,38(8):1514-1521.
    [140]杨芳萍,何心尧,何中虎,尚勋武,杨文雄,夏先春.中国小麦品种黄色素含量基因等位变异分子检测及其分布规律研究.中国农业科学,2008,41(10):2923-2930.
    [141]杨松杰,张晓科,何中虎,夏先春,周阳.用STS标记检测矮秆基因Rht-B1b和Rht-D1b在中国小麦中的分布.中国农业科学,2006,39(8):1680-1688.
    [142]杨文香Lr37、Lr44的AFLP分子标记及124个小麦品种(系)抗叶锈基因鉴定[D].保定:河北农业大学,2003.
    [143]杨文雄, 杨芳萍, 梁丹,何中虎,尚勋武,夏先春.中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测.作物学报,2008,34(7):1109-1113.
    [144]袁军海,陈万权.中国小麦主要抗叶锈病基因的有效性评价.麦类作物学报,2011,31(5):994-999.
    [145]张海萍.小麦种子休眠性的ABA反应蛋白分析及QTL定位[D].北京:中国农业科学院,2007.
    [146]张娜, 陈玉婷,李亚宁,张立荣,孟庆芳,张汀,杨文香,刘大群.小麦抗叶锈病基因Lr24的一个新STS标记.作物学报,2008,34(2):212-216.
    [147]周阳,何中虎,张改生,夏兰琴,陈新民,高永超,井赵斌,于广军1BL/1RS易位系在我国小麦育种中的应用.作物学报,2004,30(6):531-535.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700