用户名: 密码: 验证码:
黄河中游地区粗山羊草遗传多样性、高分子量谷蛋白亚基基因的克隆及纹枯病抗性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粗山羊草(Aegilops tauschii, 2n = 2x = 14,DD)是六倍体普通小麦D基因组的供体种,由于仅有特定区域的少数粗山羊草基因型参与了普通小麦的起源,其遗传变异类型远比普通小麦D染色体组丰富。我国黄河中游地区自然分布着粗山羊草,但对其系统收集及规模性深入研究尚未见报导。本研究利用SSR标记比较了我国黄河中游(河南、陕西)粗山羊草与新疆、中东粗山羊草的多样性及遗传分化状况,并针对黄河中游居群粗山羊草的高分子量谷蛋白亚基(high molecular weight glutenin subunit, HMW-GS)的组成、克隆及纹枯病抗性进行了系统研究。
     (1)选用分布在粗山羊草14条染色体上的32对SSR引物,对来自中国河南、陕西、新疆和中东地区共147份粗山羊草材料进行遗传分化及多样性分析,结果表明在26个多态性位点中,等位基因数平均为4.15,Nei基因多样性指数(He)平均为0.243,多态性信息含量指数(PIC)平均为0.226;居群间遗传变异差异明显,中东粗山羊草居群具有丰富的遗传变异(He =0.607,PIC =0.551),而来自陕西和河南的粗山羊草资源遗传多样性较低(He =0.055,PIC =0.047)和(He =0.024,PIC =0.021)。AMOVA分子变异分析显示,居群间遗传变异占总变异的52%,达到显著水平;河南粗山羊草和陕西粗山羊草间发生了一定的遗传分化(Fst =0.210),为研究黄河中游粗山羊草资源的起源与分化问题提供了有用的信息与证据,并为小麦品质改良育种提供丰富的遗传资源。
     (2)利用十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)技术分析了黄河中游地区161份粗山羊草的HMW-GS,发现3种编码序列未知的y-型亚基,即Dy10.5t、Dy10.4t和Dy10.5*t亚基。通过AS-PCR扩增、克隆、测序和氨基酸序列推导,发现3种未知序列均具有典型HMW-GS的序列结构特征且较为相似,仅Dy10.4t与Dy10.5t亚基存在一个氨基酸重复单元的缺失,Dy10.5t与Dy10.5*t亚基在信号肽部位有一个氨基酸的替换(L-F)。通过对这3种HMW-GS体外表达及与32个已知氨基酸序列的HMW-GS多序列比对和系统进化关系分析,证实Dy10.5t、Dy10.4t和Dy10.5*t 3个亚基是D基因组编码的高分子量谷蛋白y-型亚基家族的新成员,同时为研究小麦族的起源和进化提供有用的信息和证据。深入研究黄河中游地区粗山羊草HMW-GS,特别是对其编码基因的测序,对于进一步研究其结构功能以及在小麦品质改良中的应用具有非常重要的意义。
     (3)利用改进的纹枯病菌接种法,于2007-2008年两个小麦种植年度,对我国黄河流96份粗山羊草材料纹枯病抗性进行田间鉴定,结果显示,稳定表现近免疫(I)的材料28个,高抗(HR)材料37个,中抗(MR)材料30个,仅SX-6表现中感(MS)。并根据所有供试材料在不同生长期和不同年份的相对抗病指数,对所调查的材料进行抗性多样性聚类分析,综合分析得出共有76份材料表现为较强的纹枯病抗性,是我国小麦改良育种很好的纹枯病菌抗源。系统地调查黄河中游地区粗山羊草的纹枯病特性,从中筛选出的抗性种质为小麦的改良提供了抗源材料。
Aegilops tauschii (2n = 2x = 14,DD), the donor of the D genome of hexaploid wheat (Triticum aestivum, AABBDD), has been found to possess many valuable genes what have been used to improve the quality and biotic stress resistance of bread wheat. Ae. tauschii ,which has a few of region-specific genotypes involved in the origin of hexaploid wheat, contains much wider genetic background than wheat’s. There is no a large-scale investigation of Ae. tauschii in the Middle reaches of the Yellow River in China where many kinds of Ae. tauschii accessions have been found. In this work, the genetic diversity of different Ae. tauschii populations were investigated by SSR assay, and then the molecular cloning of high molecular weight glutenin subunit genes and resistance to wheat sharp eyespot were focused on the Ae. tauschii from the middle reaches of the Yellow River.
     (1)The genetic diversity and differentiation of 147 Aegilops tauschii accessions from Henan, Shannxi, Xinjiang in China and the Middle East, were investigated by SSR assay with 32 pairs of primers homogeneously distributed on 14 chromosomes of Ae. tauschii. The results demonstrated that 26 loci were polymorphic, with an average of 4.15 alleles on each locus. Nei’s genetic diversity index (He) and polymorphism information content (PIC) value were 0.243 and 0.226, respectively. Genetic variations among different populations varied greatly. The maximal diversity values were found in Middle East population (He =0.607, PIC =0.551), which was much higher than those in Shannxi (He =0.055, PIC =0.047) and Henan (He =0.024, PIC =0.021) populations. Analysis of molecular variance (AMOVA) showed that the genetic differentiation among the geographical populations was significant (P<0.05) and accounted for about 52% of the total genetic variation. Meanwhile,the genetic differentiation was obvious between the populations of Henan and Shannxi(Fst =0.210). These results would offer useful information and evidence for further understanding the origin and evolution of the Ae. tauschii from the Middle reaches of the Yellow River, and provided genetic resources for wheat breeding.
     (2)To detect HMW-GS genes in Ae. tauschii resources in the Middle reaches of the Yellow River and to understand its structure and function by sequencing, 161 Ae. tauschii accessions collected in July 2006 were used in this study with Yumai 49 as a control. Through sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) technique, three y-type subunits were observed, named as Dy10.5t, Dy10.4t , and Dy10.5*t. Genes of the three subunits were amplified, cloned and sequenced by allele-specific PCR. The results revealed that the deduced amino acid sequence had typical characters of HMW-GS and a general resemblance to each other, but Dy10.4t had a repeated amino acid motif deletion to Dy10.5t, and Dy10.5*t had an amino acid substitution sites in signal peptide domain to Dy10.5t (L-F). From multiple sequence alignment and phylogenetic analysis of storage protein gene family, it is concluded that the subunits Dy10.5t、Dy10.4t and Dy10.5*t of Ae. tauschii are similar to the Glu-1 locus found in wheat and related species, and are new members of y-type HWM glutenin family. It would offer useful information and evidence for further understanding the origin and evolution of Triticum species, and it is potentially a elite gene resources for quality improvement of bread wheat.
     (3)The disease resistance of 128 Ae. tauschii to R. cerealis in middle reaches of yellow river of China was identified in fields by an improved method of inoculations during 2007,2008 planting seasons. The resistance to R. cerealis of varieties were different. 28 immunity, 37 high resistant, 30 middle resistant, only SX-6 is middle susceptible were identified among 96 Ae. tauschii varieties. The diversification analysis of Ae. tauschiis resistance to wheat sharp eyespot according to the relative resestance index of four phases revealed that, seventy-six varieties have a higher resistance to R. cerealis and would be used in wheat engineering in future. Investigating the resistance of Ae. tauschii in the middle reaches of yellow river to R.cerealis, will increase the genetic variability and germplasm resources for the improvement of wheat.
引文
陈延熙,唐文华,张敦华,等.我国小麦纹枯病病原学的初步研究.植物保护学报, 1986, 13(2): 39-44.
    丁春邦,周永红.小麦×节节麦杂种发育的胚胎学研究.广西植物, 1999, 19(2) : 143-145.
    董艳敏,李小辉,晏月明.小麦贮藏蛋白分子结构及其研究技术进展.麦类作物学报, 2007, 27(6): 1143-114.
    杜春芳,刘惠民,李润植.单核苷酸多态性在作物遗传及改良中的应用.遗传, 2003, 25(6): 735-739.
    冯毅,闵东红,孙道杰,等.黄淮麦区部分推广小麦品种高分子量麦谷蛋白亚基组成分析.麦类作物学报, 2006, 26(2): 68-71.
    高居荣,李兴锋,封德顺,等.国内外小麦种质材料高分子量谷蛋白亚基组成分析.麦类作物学报, 2006, 26(4): 51-55.
    高翔,仝胜利,张改生. 150个小麦品种高分子量谷蛋白亚基组成与蛋白质含量和沉降值关系的研究.西北植物学报, 2005, 25(2): 299-303.
    贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学, 1996, 29(4): 1-10.
    贾继增,张正斌, Devos K, Gale MD.小麦21条染色体RFLP作图位点遗传多样性分析.中国科学C辑, 2001, 31: 13-21.
    阂跃中,陈宇.小麦纹枯病态势与产量关系的研究.西南农业大学学报, 1993, 15(2): 121-124.
    黄承彦,杨平平,楚秀生,等.中国小麦育种研究进展,庄巧生、杜振华主编,北京:中国农业出版社, 1996, 274-279.
    胡健,王国英.植物抗病基因的研究进展.农业生物技术学报, 1999, 10(3): 41-47.
    孔令让,董玉琛.粗山羊草(Aegilops tauschii)有效利用的研究进展.山东农业大学学报, 1998, 29(4): 543-548.
    孔令让,董玉琛,贾继增.粗山羊草随机扩增多态性DNA研究.植物学报, 1998, 40(3): 223-227.
    孔令让,董玉琛,贾继增.普通小麦与粗山羊草属间杂种的染色体构型及其后代的育性特征.实验生物学报, 1999, 30(1): 35-48.
    孔令让,董玉琛.粗山羊草(Aegilops tauschii)遗传多样性的研究进展.山东农业大学学报, 1999, 30(4): 465-471.
    兰秀锦,魏育明,王志容.中国节节麦与中东节节麦的醇溶蛋白遗传多样性比较研究.四川农业大学学报, 1999, 17(3): 245-248.
    兰秀锦,刘登才,魏育明,等.节节麦的酯酶同工酶分析.广西植物, 2001, 21(1): 77-80.
    兰秀锦,郑有良,刘登才,等.节节麦抗穗发芽的染色体定位和及抗性机理.中国农业科学, 2002, 35(1): 12-15.
    兰秀锦,郑有良,任晓波,等. RSP抗穗发芽基因育种利用研究初报.植物遗传资源学报, 2006, 6(2): 204-209.
    雷振生,林作揖,吴政卿,等.河南省小麦品质育种概况及若干问题探讨.河南农业科学, 2001, 6: 30-33.
    李保云,刘桂芳,王岳光,等.小麦高分子量谷蛋白亚基的遗传规律研究.中国农业大学学报, 2000, 5(1): 58-62.
    李保云,王岳光,刘凤鸣,等.小麦高分子量谷蛋白亚基与小麦品质性状关系的研究.作物学报, 2000, 26(3): 322-326.
    李浩兵,钟少斌,仲裕泉,等.节节麦的核型和C-带带型分析.江苏农学院学报, 1998, 19(1): 7-10.
    李洪连,袁红霞,刁晓葛,等.河南小麦主要品种纹枯病抗性评价.河南农业大学学报, 1998, 32(2): 107-111.
    李俊,魏会廷,胡晓蓉,等.利用SSR分子标记技术揭示“硬粒小麦-节节麦”人工合成六倍体小麦的遗传差异.西南农业学报, 2007, 20(2): 305-311.
    李强,王保通,金欣藻,等.小麦新品种(系)及中间材料抗纹枯病调查.陕西农业科学, 2000, 1: 12-14.
    李清铣.江苏几种作物病原丝核菌生物学特性研究.江苏农学院学报, 1988, 9 (3): 23-26.
    李涛,李兴峰,李常保,等.粗山羊草-硬粒小麦双二倍体农艺性状及细胞学特点研究.华北农学报, 2004, 19(3): 526-529.
    李斯深,王洪刚,刘爱新,等.小麦种质抗纹枯病性的鉴定和遗传分析.西北植物学报, 2001, 21(5): 1004-1008.
    李硕碧,任志龙,王光瑞,等.小麦品种出粉率与其品质性状关系的研究.西北植物学报, 1996, 16(6): 392-396.
    李锁平,胡玉欣,郭曙光,等.节节麦×普通小麦杂种的胚援救和胚愈伤组织再生植株.西北植物学报, 1993, (2): 134-139.
    李锁平,袁俊水,贺得先,等.节节麦远缘杂种胚的组织培养(简报).植物生理学通讯, 1999, 35(1): 13-14.
    李文才,李涛,陈于和,等.粗山羊草D组染色体对小麦若干产量性状的影响.麦类作物学报, 2005, 25(1): 26-29.
    李霞,郑有良,颜泽洪,等.节节麦及人工合成多倍体中Glu-D1位点高分子量谷蛋白组成及表达研究.麦类作物学报, 2003, 23(4): 85-88.
    李晓琴,罗辽复.氨基酸组成聚类、蛋白质结构型和结构型的预测.生物物理学报, 1998, 14(4): 729-736.
    李永强,李宏伟,高丽锋.基于表达序列标签的微卫星标记(EST-SSRs)研究进展.植物遗传资源学报, 2004, 5(1): 91-95.
    梁荣奇,张义荣,尤明山,等.利用高分子量谷蛋白亚基的特异PCR标记辅助选育优质面包小麦.农业生物技术学报, 2001, 9(4): 322-325.
    刘登才,房洪.中国节节麦在中国特有小麦系统演化中的作用.西南农业学报, 2003, 16(1): 32-35.
    刘登才,颜济,杨俊良.节节麦5D染色体上随体多态性的一个证据.遗传, 1997, 19: 5-71.
    刘广田,许明辉.普通小麦胚乳谷蛋白亚基的遗传研究.中国农业科学, 1988, 21(1): 56-60.
    刘艳华.小麦高分子量麦谷蛋白亚基组成分析聚合及分子标记研究.山东农业大学硕士论文, 2002.
    刘逸卿,汤其豹.小麦纹枯病株的空间分布型及应用.江苏农业学报, 1985, 1(2): 45-47.
    刘朝晖,张旭,李浩兵,等.小麦纹枯病和白粉病双抗抗源的初步鉴定.江苏农业研究, 1999, 20(3): 16-20.
    刘朝晖,张旭,李浩兵.小麦品种纹枯病抗性的初步研究.南京农业大学学报, 1999, 22(3): 5-8.
    路洁霏,伍碧华,郑雯,等.部分小麦低分子量谷蛋白亚基二级结构的预测与分析.四川农业大学学报, 2006, 24(1): 7-12.
    陆宁海,徐瑞富,吴利民,等.不同培养基对小麦纹枯病菌生长殖及致病力的影响.中国农学通报, 2005, 21(2): 262-263.
    马传喜,徐风,谭蕴之.在一对面包小麦杂交后代中Glu-B1控制的麦谷蛋白亚基17+18对烘烤品质的影响.作物学报, 1995, 21(1): 90-94.
    马传喜,吴兆苏.小麦胚乳蛋白质组分及高分子量麦谷蛋白亚基与烘烤品质的关系.作物学报, 1993, 19(6): 562-56.
    毛沛,李宗智,卢少源,等.小麦高分子量谷蛋白亚基对面包烘烤品质的效应分析.华北农学报, 1995, 10(增刊): 55-59.
    倪中福,张义荣,梁荣奇,等.从CIMMYT引进的人工合成六倍体小麦D染色体组微卫星分子标记的遗传差异.遗传学报, 2002, 29(6): 542-548.
    史建荣,王裕中,陈怀谷,等.小麦纹枯病品种抗性鉴定技术及抗病资源的筛选与分析.麦类作物学报, 2000, 27(2): 107-112.
    史建荣,王裕中,陈怀谷,等.小麦纹枯病菌的菌丝融合群及其致病力测定.江苏农业科学, 1993(增1): 25-29.
    宋希云,高文淑,刘新,等.小麦胚乳贮藏蛋白高分子量麦谷蛋白亚基抗体的制备.莱阳农学院学报, 1997, 14(3): 157-163.
    孙广宇,张荣,彭友良.随机扩增多态性DNA的重复性和可靠性问题.植物保护, 2003, 29(4): 44-46.
    孙辉,刘志勇,李保云,等.利用PCR技术鉴别普通小麦Glu-1位点的某些等位基因.作物学报, 2002, 28(6): 734-737.
    檀根甲,季伯衡.小麦纹枯病的研究进展.安徽农业大学学报, 1998, 25(1): 70-75.
    汤颋.小麦纹枯病的抗性遗传与QTL定位研究.扬州大学, 2004.
    王亚娟,王耀勇,张德华.节节麦农艺性状及高分子量谷蛋白亚基遗传多样性研究.西北植物学报, 2007, 27(10): 1967-1972.
    王银萍,李勇超,魏燕燕,等.黄淮麦区小麦品种高分子量谷蛋白亚基组成及遗传多样性分析. 麦类作物学报, 2006, 26(5): 69-73.
    王裕中,杨新宁,史建荣.麦类纹枯病防治.江苏农业学报, 1986, 2(4): 29-36.
    王裕中,吴志凤,史建荣,等.江苏省小麦纹枯病发生规律与病害消长因素分析.植物保护学报, 1994 , 21(2): 109-114.
    王裕中,吴志凤,史建荣,等.小麦纹枯病流行规律研究.江苏农业科学, 1993, (麦类纹枯病专辑): 48-53.
    魏会廷,李俊,胡晓蓉,等.节节麦遗传多样性的SSR标记分析.西南农业学报, 2007, 20(2): 270-274.
    吴芳,董惠,韩兆雪,等.中国小麦品种高分子量谷蛋白亚基和低分子量谷蛋白亚基组成分析. 麦类作物学报, 2006, 26(3): 82-86.
    吴昊,何勇刚,陈鹏,等.粗山羊草(Aegilops tauschii)中Pinb基因的克隆和表达分析.武汉植物学研究, 2007, 25(6): 535-538.
    吴纪中,颜伟,蔡士宾,等.小麦纹枯病抗性的主基因+多基因遗传分析.江苏农业学报, 2005, 21(1): 6-11.
    肖建国,李华荣,林佳芸,等.小麦纹枯抗病性鉴定.西南农业大学学报, 1989, 11(4): 340-342.
    许树军,董玉琛,周荣华.小麦与山羊草双二倍体抗病性的研究与利用.作物学报, 1990, 16(2): 106-111.
    徐乃瑜.小麦的分类、起源与进化.武汉植物学研究, 1988, 6(2): 187-194.
    姚金保,姚国才,杨学明,等.中国小麦抗纹枯病育种研究进展.江苏农业学报, 2007, 23(3): 248-251.
    颜济,杨俊良,崔乃然,等.新疆伊犁地区的节节麦(Aegilops tauschii).作物学报, 1984, 10(3): 1-8.
    颜泽洪,郑有良,万永芳,等.粗山羊草高分子量麦谷蛋白新型亚基的筛选和鉴定.四川农业大学学报, 2001, 19(3): 197-200.
    晏本菊,任正隆.我国部分小麦新品种(系)的高分子量谷蛋白亚基遗传变异分析.四川农业大学学报, 2001, 19(4): 380-383.
    杨官品, Saghaimaroof M A,张启发,等.水稻-多拷贝微卫星多态性分析.遗传, 1998, 2: 27-30.
    杨烈.鹅观草与粗山羊草遗传多样性研究. 2005,四川农业大学博士论文.
    杨武云,余毅,胡晓蓉,等.节节麦及其在小麦生物技术育种中的研究与应用.西南农业学报, 1999, 12: 19-25.
    杨武云,余毅,胡晓蓉,等.节节麦抗白粉病基因直接转移及遗传表达.西南农业学报, 2000, 13(4): 15-20.
    杨武云,陆春明,卢宝荣,等.源于节节麦的高抗条锈小麦新材料的醇溶蛋白带谱分析.西南农业学报, 2003, 16(4): 4-7.
    杨武云,胡晓蓉,余毅,等.硬粒小麦-节节麦人工合成种的高分子量谷蛋白亚基组成分析.西南农业学报. 1998, 11: 163-166.
    叶平扬,董姗姗,卢宝荣,等.普通野生稻小种群的交配系统与遗传多样性.生态学报, 2008, 28(4): 1608-1615.
    易润华,梁承邺,朱西儒,等.不同品种水稻纹枯病菌遗传多样性及致病力分化.华南农业大学学报(自然科学版), 2002, 23(02): 22-26.
    袁虹霞,李洪连,王守正.小麦近缘属种纹枯病的抗性鉴定.华北农学报, 1998, 13(4): 26-29.
    张常娥,刘勇,方斌,等.粗山羊草高分子量谷蛋白亚基组成分析.麦类作物学报, 2007, 27(1): 80-83.
    张大乐.中国啤酒大麦品种RAPD、SSR标记的遗传多样性分析. 2005,河南大学硕士论文.
    张怀琼,任正隆.小麦纹枯病抗性及抗性遗传的初步研究.植物病理学报, 1999, 99(3): 199-202.
    张津立,李硕碧.小麦品种高分子量谷蛋白亚基组成的数量分析.麦类作物, 1998, 18(6): 21-24.
    张瑞奇,胡琳,许为钢,等.黄淮麦区不同时期大面积推广品种的高分子量麦谷蛋白亚基组成分析.麦类作物学报, 2006, 26(2): 63-67.
    张穗,刘卫群,陈汝梅,等.不同小麦品种对纹枯病的抗性机理的初步研究.中国农学通报, 1994, 10(6): 9-12.
    张小村.小麦抗纹枯病基因的遗传和分子标记分析.山东农业大学, 2004.
    张小村,李斯深,赵新华.小麦纹枯病抗性的QTL分析和抗病基因的分子标记.植物遗传资源学报, 2005, 6(3): 276-279.
    张艳贞.粗山羊草谷蛋白新亚基编码基因的分离表达及其遗传转化研究. 2007,首都师范大学博士学位论文.
    张学勇,杨欣明,董玉琛.醇溶蛋白电泳在小麦种质资源遗传分析中的应用.中国农业科学,1995, 28(4): 25-32.
    张维瑞,纪利坤,袁王俊,等.黄淮麦区小麦新品种(系)高分子量谷蛋白亚基组成分析.河南农业大学学报, 2008, 42(1): 6-10.
    张志清,郑有良,魏育明,等.四川主栽小麦品种遗传多样性的SSR标记研究.麦类作物学报, 2002, 22(2): 5-9.
    赵美琦,魏开锋,毕可政.小麦纹枯病流行预测的研究.植物保护学报, 1997, 24(4): 303-308.
    郑继刚.粗山羊草HMW-GS谷蛋白亚基的鉴定及编码基因的分子克隆与原核表达. 2004,首都师范大学硕士学位论文.
    周凯南,刘焕庭,范永华.小麦纹枯病研究初报.山东农业科学, 1982, 3: 33-36.
    周乐,殷宝法,杨生妹,等.青藏公路对高原鼠兔种内遗传分化的影响.生态学报, 2006, 26(11): 3572-3577.
    邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记.北京:科学出版社, 2001.
    朱金宝,刘广田,张树臻,等.小麦籽粒高低分子量谷蛋白亚基组成及其与品质关系研究.中国农业科学, 1996, 29(1): 34-39.
    朱振东,贾继增.小麦SSR标记的发展及应用.遗传, 2003, 25(3): 355-360.
    Akagi H, Yokozeki Y, Znagaki A, et al. Microsatellite DNA markers for rice chromosomes. Theor Appl Genet, 1996, 93: 1071-1077.
    Ammiraju JSS, Dholakia BB, Santra DK, et al. Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet, 2001, 102: 726-732.
    Anderson OD, Greene FC, et al. Nucleotide sequences of the two high-molecular-weight glutenin genes from the D-genome of a hexaploid bread wheat, Tiriticum aestivum L cv Cheyenne. Nucleic Acids Res, 1989b, 7: 461-462.
    Anderson OD, Abraham-Pierce FA, Tam A. Conservation in wheat high-molccular-weight glutenin gene promoter sequence: comparisons among loci and among alleles of the GLU-B1-1 locus. Theor Appl Genet, 1998, 96: 568-576.
    Asam J, Gresshoff PM. DNA amplification fingerprinting using very short aribitrary oligonucleotide primers. Biotechnology, 1991, 9: 553-557.
    Becker J, Henu M. Mapping of digested and undigested random amplified microsatellite polymorphisms in barley. Genome, 1995, 39: 991-998.
    Belton PS. On the elasticity of wheat gluten. J Cereal Sci, 1999, 29: 103-107.
    Blair ID. Studies on the growth in soil and the parasitic action of certain Rhizoctonia solani isolates from wheat. Can J Res C, 1942, 20: 174-185.
    Blanco A, Resta P, Simeone R, et al. Chromosomal location of seed storage protein genes in the genome of Dasypyrum villosum(L.)Candargy. Theor Appl Genet, 1991, 82: 358-362.
    Botstein D, White RL, Skolnick M, et al. Construction of a genetic linkdage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314-331.
    Branlard G, Dardevet M. Diversity of grain protein and bread wheat quality.Ⅱ.Correlation between high molecular weight subunits of glutenin and flour quality characteristics. J Cerael Sci, 1985, 3: 345-354.
    Brett GW, Mills ENC. Monoclonal antibodies that recognize the repeat motif of the spoor prolamins. J Cerael Sci, 1990, 12: 245-255.
    Bustos AD, Rubio P, Jouve N. Molecular characterization of the inactive allele of the gene Glu-A1 and the development of a set of AS-PCR markers for HMW glutenins of wheat. Theor Appl Genet, 2000, 100: 1085-1094.
    Chen X, Temnykh S, Xu Y. Development of a microsatellite framework map providing genome wide coverage in rice. Theor Appl Genet, 1997, 95: 558-567.
    Cho YG, Ishil T, Temnykh S, et al. Diversity of microsatellites derived from genomic librarics and Genebank sequences in rice (Oryza.Sativa L.). Theor Appl Genet, 2000, 200: 713-722.
    Ciaffi M, Lee YK, Tamas L, et al. The low-molecular-weight glutenin subunit proteins of primitive wheats. III.The genes from D-genome species. Theor Appl Genet, 1999, 98: 135-148.
    Cozzolino R, Giorgi SD, Fisichella S, et al. Matrix-assisted laser desorption/ionization mass spectrometry peptide mapping of high molecular weight glutenin subunits 1Bx7 and 1Dyl 0 in Cheyenne cultivar. Rapid Commun Mass Spectrom, 2001a, 15: 778-787.
    Cozzolino R, Giorgi SD, Fisichella S, et al. Proteomic of glutenin: mapping of subunit 1Ax2* in Cheyenne cultivar by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom, 2001b, 15: 1129-1135.
    Cunsolo V, Foti S, Saletti R, et al. Structural studies of the allelic wheat glutenin subunits 1Bx7 and 1Bx20 by matrix-assisted laser desorption/ionization mass spectrometry and high-performance liquid chromatography/electrospray ionization mass spectrometry. J Mass Spectrom, 2004, 39: 66-78.
    DeBustos A, Jouve N. Characterisation and analysis of new HMW-glutenin alleles encoded by the Glu-R1 locus of Secale cereale. Theor Appl Genet, 2003, 107: 74-83.
    DeBustos A, Jouve N. Characterization and phylogenetic analysis of the genes encoding for high molecular weightg lutenin subunits in three diploid species of Aegilops. Int J Plant Sci, 2006, 167: 359-366.
    DeBustos A, Rubio P, Jouve N. Characterisation of two gene subunits on the 1R chromosome of rye as orthologs of each of the Glu-1 genes of hexaploid wheat. Theor Appl Genet, 2001, 103: 733-742.
    Denery-Papipin S, Briand JP, Quillien L, et al. Immunological differentiation of various gliadins and low molecular subunits of glutenin using anti-peptide antisera. J Cerael Sci, 1994, 20: 1-14.
    D'ovidio R, Proceddu E, Cafiandra D. PCR analysis of genes encoding allelic variations of high-molecular-weight subunits at the Glu-D1 locus. Theor Appl Genet, 1994, 88: 175-180.
    D'ovidio R, Masci S, Proceddu E. Development of a set of oligonucleotide primers specific for genes at the Glu-1 complex loci of wheat. Theor Appl Genet, 1995, 91: 189-194.
    D'vorak J, Kasarda DD, Dietler MD, et al. Chromosomal location of seed storage protein genes in the genome of Elytrigia elongata. Can J Genet Cytol. 1986, 28: 818-830.
    D'vorak J, Luo MC, Yang ZL, et al. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet, 1998, 97: 657-670.
    Dyck PL, Kerber RR. Inheritance in hexap lo id wheat of adult plant leaf rust resistance derived from Aegilops squarrosa. Can J Genet Cytol, 1970, 12: 175-180.
    Eastwood RF, Lagudah ES, Appels R, et al. Triticum tauschii: a novel source of resistance to cereal cyst nematode (Heterodera avenae). Aust J Agri Res, 1991, 42: 69-77.
    Etkiewica E, Rajalski A, Labuda D. Relationships between the chromosomes of Aegilops umbellulata and wheat. Genomics, 1994, 20: 176-183.
    Forde J, Malpica JM, Halford NG, et al. The nucleotide sequence of a HMW glutenin subunit gene located on chromosome 1A of wheat (Triticum aestivum L.). Nucleic Acids Res, 1985, 13: 6817-6832.
    Friede B, Mukai Y, Gill BS. C-banding polymphisms in several accessions of Triticum tauschii; (Aegilops squarrosa). Genome, 1992, 35: 192-199.
    Feldman M. Wheats: Triticum spp.(Gramineae-Triticinae). In: Simmonds N.W. Ed. Evolution of Crop Plants. London: Longman Group Ltd. ,1976, 120-128.
    Galterio G, Cardarilli D, Codianni P, et al. Evaluation of chemical and technological charaeteristicsof new lines of Triticum turgidum ssp dicoccum. Nahrung / Food, 2001, 45: 263-266.
    Gianibelli MC, Larroque R, MacRitchie F, et al. Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chem, 2001, 76(6): 635-644.
    Gianibelli MC, Wrigley CW, Macritehie F. Polymorphism of low Mr Glutenin subunits in Triticum tauschii. Cereal Chem, 2002, 35: 277-286.
    Giles RJ, Brown TA. Glu-Dy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats. Theor Appl Genet, 2006, 112(8): 1563-1572.
    Gilbert SM, Wellner N, Belton PS, et al. Expression and characterization of a highly repetitive peptide derived from a wheat seed storage protein. Biochimica Biophysica Acta, 2000, 1479: 135-146.
    Gill BS, Raupp WJ, Sharma HC, et al.. Resistance in Aegilops squarrrosa to wheat leaf rust, wheat powery mildew, greenbug Hessian fly. Plant Dis, 1986, 70: 553-556.
    Gill BS, Hatchett JH, Raupp WJ. Direct genetic transfers from Aegilops squarrosa L. to hexaploid wheat. Crop Sci, 1987, 27: 445-450.
    Gloldsbrough AP, Bulleid NJ, Freedman RB, et al.. Conformational difference between wheat (Triticum aessivum) high-molecular-weight glutenin subunits are due to a short region containing six amino acid difference. Eiochem J, 1998, 263: 837-842.
    Gororo NN,. Eagles HA, Eastwood RF, et al. Use of Triticum tauschii to improve yield of wheat in low-yielding environments. Euphytica, 2002, 123: 241-254.
    Goryunova V, Kochieva EZ, Chikida NN, et al. Phylogenetic relationships and intraspecific variation of D-genome Aegilops L. as revealed by RAPD analysis. Russian J Genet, 2004, 40(5): 515-523.
    Translated from Genetika, 2004, 40(5): 642-651.
    Gupta RB , Paul JG, Cornish GB, et al. Allelic variation at Glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1 of common wheats I. Its additive and interaction effects on dough properties. J Cereal Sci, 1994, 19: 9-18.
    Gupta RB, Shepherd KW. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin.Ⅰ.Variation and genetic control of the subunits in hexaploid wheats. Theor Appl Genet, 1990, 80: 183-187.
    Gupta PK, Balyan HS, Edwards KJ, et al. Genetic mapping of 66 new microsatellite(SSR) in bread wheat. Theor Appl Genet, 2002, 105: 413-422.
    Halford NG, Forde J, Anderson OD, et al. The nucleotide and deduced amino acid sequences of aHMW glutenin subunit gene from chromosome 1B of bread wheat(Triticum acstivum L.) and comparison with those of genes from chromosome 1A and 1D. Theor Appl Genet, 1987, 75: 117-126.
    Hanada AS , Mcdonald CE , Sibbitt LD. Relationship of protein fraction of spring wheat flour to baking quality. Cereal chem, 1982, 59: 296-301.
    Harberd NP, Bartels D, Thompson RD. DNA restriction fragment variation in the gene family encoding high molecular weight(HMW) glutenin subunits of wheat. Biochem Genet, 1986, 24: 579-596.
    Hatchett JH, Gill BS. D-genome sources of resistance in Triticum tauschii to Hessian fly. J Hered, 1981, 72: 126-127.
    Hatchett JE, Martin TJ, Livers RW. Expression and inheritance of resistance to Hessian fly in synthetic hexaploid wheats derived from Triticum tauschii (Coss) Schmal. Crop Sci. 1980, 21: 731-734.
    Hsam SLK, Kieffer R, Zeller FJ. Significance of Aegilops tauschii glutenin genes on breadmaking properties of wheat. Cereal Chem, 2001, 78(5): 521-525.
    Huebner FR, Donaldson GL, Wall JS. Wheat Glutenin Subunits. II.Compositional differences. Cereal Chem, 1974, 51: 240-249.
    Humphris ADL, McMaster TJ, Miles MJ, et al. Atomic force microscopy (AFM) study of interactions of HMW subunits of wheat glutenin. Cereal Chem, 2000, 77: 107-110.
    Jaaska V. Aspartate aminotransferase and alcohol dehydrogenase isoenzymes: intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group. Plant Syst & Evol, 1981, 137(4):259?273.
    Jaekson EA, Holt LM, Payne PI. Characterisation of high-molecular-weight gliadin and low-moleeular-weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and chromosomal localization of their controlling genes. Theor Appl Genet, 1983, 66: 29-37.
    Johal J, Gianieelli MC, Rahman S. Characterization of low-molecular-weight glutenin genes in Aegilops tauschii. Theor Appl Genet, 2004, 109(5): 1028-1040.
    Jiang Q T, Wei Y M, Yan Z H, et al. Isolation and sequence analysis of HMW glutenin subunit 1Dy10.1 ecoding gene from Xinjiang wheat (Triticum petropavlovskyi Udacz. et Migusch). Agric Sci China, 2006, 5: 101-105.
    Kasarda DD. Contrasting molecular models for a HMW-GS, pp. 63-68. In: Proceedings of theInternational Meeting, Wheat Kernel Proteins, Molecular and Functional Aspects. S. Martinoal Cimino, Viterbo(Italy), 1994.
    Kalendar R, Tankanen J, Immonen S, et al. IRAP and REMAP: two new tetrotransposon-based DNA fingerprinting techniques. Theor Appl Genet, 1999, 98: 704-711.
    Kerber ER. Resistance to leaf rust in wheat: Lr32, a third gene derived from Triticum tauschii. Crop Sci, 1987, 27: 204-206.
    Kihara H, Yamashita K, Yanaka M. Genomes of 6x species of Aegilops. Wheat Inf Serv, 1959, 8: 3-5.
    Kimber G, Zhao YH. The D of the Triticeae. Can J Genet Cyto1, 1983, 25: 581-589.
    Kumar A, Hirochika H. Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci, 2001, 6: 127-134.
    Lagadah ES, Appels R, Brown AHD. The molecular genetics analysis of Triticum tauschii: the D genome donor to hexaploid wheat. Genome, 1991, 34: 375-386.
    Lagudah ES, Macritchie F, Halloran GM. The influence of high-molecular-weight subunit of glutenin from Triticum tauschii on flour quality of synthetic hexaploid wheat. J Cerael Sci, 1987, 5: 129-138.
    Lagudah ES, Halloran GM. Phylogenetic relationships of Triticum tauschii the D-genome donor to hexaploid wheat. 1.Variation in HMW subunits of glutenin and gliadin. Theor Appl Genet, 1988, 75: 592-596.
    Lawrence GJ, Shepherd KW. Chromosomal location of genes controlling seed proteins in species related to wheat. Theor Appl Genet, 1981, 59: 25-31.
    Lee YK, Bekes F, Gupta R, et al. The low-moleeular-weight glutenin subunit proteins of primitive wheats.I. Variation in A-genomes pecies. Theor Appl Genet, 1999a, 98: 119-125.
    Li W, Wan Y, Iiu Z, et al.. Molecular characterization of HMW glutenin subunit allele 1Bx14: further insights into the evolution of Glu-B1-1 alleles in wheat and related species. Theor App1 Genet, 2004, 109: 1093-1104.
    Li G, Quiros CF. Sequence-related amplified polymorphism(SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 130: 455-461.
    Limin AE, Fowler B. Cold hardiness of some relatives of hexaploid wheat.Can J Cytol, 1981, 59: 572-573.
    Litt M, Luty JA. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle action gene. Am J Hum Genet, 1989, 44: 397-401.
    Liu Z, Yan Z, Wan Y, et al. Analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops species. Theor Appl Genet, 2003, 106: 1368-1378.
    Lu CM, Yang WY, Zhang WJ, et al. Identication of SNPs and development of allelic specic PCR markers for high molecular weight glutenin subunit Dx1.5t from Aegilops tauschii through sequence characterization, J Cereal Sci, 2005, 41: 13-18.
    Lubbers E, Gill KS, Cox TS, et al. Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome, 1991, 34: 354-361.
    Ma H, Singh RP, Mujeep-kazi A. Resistances tostripe rust in Triticum turgidum, T.tauschii and their syntheticaxapliods. Euphytica, 1995, 82: 117-124.
    Ma ZQ, Roder M, Sorrells ME. Frequencies and sequence charactertics of di2, tri2 and tetranucleotide microsatellites in wheat. Genome, 1996, 39: 123-130.
    Ma W, Appels R, Bekes F, et al. Genetic characterisation of dough heological properties in a wheat doubled haploid population: additive genetic effects and epistatic interactions. Theor Appl Genet, 2005, 111: 410-422.
    Ma H, Singh RP, Mujeeb- kazi A. Resistance to stripe rust in Triticum turgidum, T. tauschii and their synthetic hexaploids. Euphytica, 1995, 82: 117-124.
    Mackie AM, Lagudah ES, Sharp PJ, et al. Molecular and biochemical characterisation of HMW glutenin subunits from T.tauschii and the D genome of hexaploid wheat. J Cerael Sci, 1996a, 23: 213-225.
    Mackie AM, Sharp PJ, Lagudha ES. The nucleotide and derived amino acid sequence of a HMW glutenin gene from Triticum tauschii and comparison with those from the D genome of bread wheat. J Cerael Sci, 1996b, 24: 73-78.
    Manninen O, Kalendar R, Robinson J, et al. Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net bloth in barley. Theor Appl Genet, 2000, 264: 325-334.
    Marchylo BA, Lukow OM, Kruger JE. Quantitative variation in high molecular weight glutenin subunit 7 in some Canadian wheats. J Cerael Sci, 1992, 15: 29-37.
    Marchylo BA, Hatcher DW, Kruger JE, et al. Reversed-phase high-performance liquid chromatographic analysis of wheat proteins using a new, highly stable column. Cereal Chem, 1992, 69: 371-378.
    Margiotta B, Urbano M, Colaprico G, et al. Detection of y-type subunit at the Glu-A1 locus in some Swedish bread wheat lines. J Cerael Sci, 1996, 23: 203-221.
    Martin-Sanchez JA, Gomez-Colmenarejo M, Del Moral J, et al. González-Belinchón C, López-Bra?a I, Delibes A. A new Hessian fly resistance gene (H30) transferred from the wild grass Aegilops triuncialis to hexaploid wheat. Theor Appl Genet, 2003, 106: 1248-1255.
    McFadden ES, Sears ER. The artificial synthesis of Triticum spelta. Rec Genet Soc Am, 1944, 13: 26-27.
    Miles M, Carr HJ, McMaster TC, et al. Scanning tunneling microscopy of a wheat seed storage protein reveals details of an unusual super secondary structure. Proc Natl Acad Sci, 1991, 88: 68-71.
    Montebove L, DePace C, Jan CC, et al. Chromosomal location of isozyme and seed storage protein genes in Dasypyrum villosum(L.)Candargy. Theor Appl Genet. 1987, 73: 836-845.
    Mujeeb-Kazi A, Rosas V, Roldan S. Conservation of the genetic variation of Triticum tauschii (Coss.)Schmalh. (Aegilops squarrosa. auct. non L.) in synthetic hexaploid wheats(Triticum turgidum L.s.lat.×T.tauschii )and its potential utilization for wheat improvement. Genet Resour Crop Evol , 1996, 43: 129-134.
    Mullis KB, Faloona F. Specific synthesis of DNA in virtro via a polymerase catalyzed chain reaction. Meth Enzymol, 1987, 155: 335-350.
    Nakai Y. Isosyme variation in Aegilops and Triticum, IV The origin of the common wheats revealed from the study on esterase isozymes in synthesized wheats. Jpn J Genet, 1979, 54: 175-189.
    Nakashima H, Nishikawa K, Ooi T. The folding type of a protein is relevant to the amino acid composition. J Biochem,1986, 88(2): 153-162.
    Ng PKW, Pogna NE, Mellini F, et al. Glu-1 allele compositions of the wheat cultivars registered in Canada. J Genet and Breed. 1989, 43: 53-59.
    Olson, M., Hood L, Cantor C, et al. A common language for physical mapping of the human genome. Science, 1989, 245: 1434-1435.
    Pagnotta MA, Nevo E, Beiles A, Porceddu E. Wheat storage proteins:glutenin diversity in wild emmer Triticum dicoccoides.in Israel and Turkey. II: DNA diversity detected by PCR. Theor Appl Genet, 1995, 91: 409-414.
    Pang BS, Zhang XY. Isolation and molecular characterization of high molecular weight glutenin subunit genes 1Bx13 and 1By16 from hexaploid wheat. Plant Biol, 2008, 50: 329-337.
    Paran I, Michlmore RW. Development of reliable PCR-based marker linked to downy mildew resistance genes in lettuce. Theor Appl Genet, 1993, 85: 985-993.
    Payne PI , Corfield KG. Subunit composition of wheat glutenin proteins isolated by gel filtration in a dissociating medium. Planta, 1979, 145: 83-88
    Payne PI, Corfield KG, Holt LM, et al. Correlations between the heritance of certain high-molecular-weight subunits of glutenin and bread making quality in progenies of six crosses of bread wheat. J Sci Food Agric, 1981, 32: 51-60.
    Payne PI, Nightingale MA, Krattinger AF, et al . The relationship between HMW Glutenin subunit composition and the bread making quality of British grown wheat varieties. J Sci Food Agric , 1987, 40: 51-65.
    Payne PI. Genetics of wheat storage proteins and the effect of allelic variation on bread making quality. Plant Physiol, 1987b, 38: 141-153.
    Payne PI, Holt LM, Jarvis MG, et al. Two- dimensional fractionation of the endosperm proteins of bread wheat (Triticum aestivum): biochemical and genetic studies, Cereal Chem 1985, 62:319-326.
    Pei YH, Wang AL, An XL, et al. Characterization and comparative analysis of three low molecular weight glutenin C-subunit genes isolated from Aegilops tauschii. Can J Plant Sci, 2007, 87(2): 273-280.
    Peňa RJ, Zaroco Hernandez J, Mujeeb-kKazi A. Glutenin subunit composition and bread baking quality characteristics of synthetic hexaploid wheats derived from Triticum turgidum×Triticum tauschii(Coss.) schamal crosses. J Cereal Sci, 1995, 21: 15-23.
    Petex I, Payne I, Mark A, et al. The relationship between HMW glutenin subunit composition and the bread-making quality of british-grown wheat varieties. J sci food Agric, 1987, 7: 109-112.
    Pfluger LA, Ovidio RD, Margiotta B, et al. Characterisation of high- and low-molecular weight glutenin subunits associated to the D genome of Aegilops tauschii in a collection of synthetic hexaploid wheats. Theor Appl Genet, 2001, 103: 1293-1301.
    Plaschke J, Ganal MW, Rder M. SSR detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet, 1995, 91: 1001-1007.
    Provan J. Copia. SSR: a simple marker technique which can be used on total genomic DNA. Genome, 1999, 42: 363-366.
    Reddy P, Appels R. Analysis of a genomic DNA segment carrying the wheat high-molecular- weight (HMW)glutenin Bx17 subunit and its use as an RFLP marker. Theor Appl Genet, 1993, 85:616-624.
    Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol , 1985, 5(2): 69-76.
    Rubin R, Levanony H, Galili G. Evidence for the presence of two different types of protein bodies in wheat endosperm. Plant Physiology, 1992, 99: 718-724.
    Saeidi H, Rahiminejad MR, Vallian S, et al. Biodiversity of diploid D genome Aegilops tauschii Coss. in Iran measured using microsatellites. Genet Resour Crop Evol, 2006, 53(7): 1477-1484.
    Saiki RK, Gelfand DH, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988, 239: 487-491.
    Sanger F. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci, 1977, 74: 5463-5467.
    Shan X, Blake TK, Talbert LE. Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet, 1999, 98: 1072-1078.
    Schwars G, Sift A, Wenzel G, et al. HPLC scoring of a SNP between promoter sequences of HMW glutenin x-type alleles at the Glu-Dl locus in wheat. J Agr Food Chem, 2003, 51: 4263-4267.
    Shewry PR, Finch RA, Parmar S, et al. Chromosomal location of Hor3, a new locus governing storage proteins in barley. Heredity, 1983, 50: 179-189.
    Shewry PR, Miflin BJ. Seed storage proteins of economically important cereals. Adv Cereal Sci Technol, 1985, 7: 1-83.
    Shewry PR, Halford NG, Tatham AS. The high molecular weight subunits of wheat, barley and rye. In: Miflin, B.J., (Ed.), Genetics, Molecular Biology, Chemistry and Role in Wheat Gluten structure and Functionality, Oxford Survey Plant Molecular and Cellular Biology, vol. 6. University Press, New York, 1989, 163-219.
    Shewry PR, Halford NG, Tatham AS. The high molecular weight subunits of wheat glutenin. J Cereal Sci, 1992, 15: 105-120.
    Shewry PR, Tatham AS. Disulphide bonds in wheat gluten proteins. J Cerael Sci, 1997, 25: 207-227.
    Shewry PR. The synthesis processing, and deposition of gluten proteins in the developing wheat grain. Cereal Foods World, 1999, 44: 587-589.
    Shewry PR, Popineau Y, Lafiandrax D, et al. Wheat glutenin subunits and dough elasticity: findings of the Eurowheat project. Trends Food Sci Tech, 2001, 11: 433-441.
    Shewry PR, Halford NG. Cereal seed storage proteins: structures, properties and role in grainutilization. J Exp Bot, 2002, 53: 947-958.
    Shewry PR, Halford NG, Tatham AS, et al. The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Adv Food Nutr Res, 2003, 45: 219-302.
    Skerritt JH, Diment JA, Wrigley CW. A sensitive monoclonal antibody-based test for gluten detection: choice of primary and secondary antibodies. J Sci Food Agric, 1985, 36: 995-1003.
    Skerritt JH. A simple antibody-based test for dough strength. I. Method development and choice of antibodies. Cereal Chem, 1991, 68: 467-474.
    Smith RL, Schweder ME, Barnett RD. Identification of glutenin alleles in wheat and triticale using PCR-generated DNA markers. Crop Sci, 1994, 34: 1373-1378.
    Song QJ, Fickus EW, Cregan PB. Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet, 2002, 104: 286-293.
    Sutton KH. Qualitative and quantitative variation among high molecular weight subunits of glutenin detected by reverse-phase high-performance liquid chromatography. J Cerael Sci, 1991, 14: 25-34.
    Sutton KH, Bietz JA.Variation among high molecular weight subunits of glutenin detected by capillary electrophoresis. J Cerael Sci, 1994, 25: 9-16.
    Tanaka, M. Geographical distribution of Aegilops species based on the collections at the Plant Germplasm Institute, Kyoto University. Proc.6th. intern. Wheat, Genet. Symp., Kyoto. Jepan, 1983, 1009-1024.
    Talbert LE, Blake NK, Chee PW. Evaluation of“sequence-tagged-site”PCR products as molecular markers in wheat. Theor Appl Genet, 1997, 87: 789-794.
    Tatham AS, Miflin BJ, Shewry PR. The beta-turn conformation in wheat gluten proteins: Relationship to gluten elasticity. Cereal Chem, 1985, 62: 405-442.
    Tatham AS, Drake AF, Shewry PR. Conformational studies of synthetic peptides corresponding to the repetitive region of the high molecular weight (HMW) glutenin subunits of wheat. J Cereal Sci, 1990, 11: 189-200.
    Tautz D. Hypervariability of simple sequence as a general source for polymorphic DNA markers. Nucl Acids Res 1989, 17: 6463-6471.
    Thiel T, Michalek W, Varshney K. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet, 2003, 106: 411-422.
    Tkachuk R, Hlynka I. Some properties of dough and gluten in D2O. Cereal Chem, 1968, 45: 80-87.
    Tilley KA, Lookhart GL, Hosneney RC, et al. Evidence for glycosylation of the high molecular weight glutenin subunits 2, 7, 8, 12 from Chinese spring and TAMI05 wheat. Cereal Chem, 1993, 70: 602-606.
    Tranquilli G, Cuniberti M, Gianibelli MC, et al. Effect of Triticum monococcum glutenin loci on cookie making quality and on predietive tests for breadmaking quality. J Cereal Sci, 2002, 36: 9-18.
    Thomas J B, Connor RL. Resistance to colonization by the wheat curl mite in Aegilops squarrosa and its inheritance after transfer to common wheat . Crop Sci, 1986, 26: 527-530.
    Thompson R D, Bartels D, Harberd N P. Nucleotide sequence of a gene from chromosome 1D of wheat encoding a HMW-glutenin subunit. Nucl Acids Res, 1985, 13: 6833-6846.
    Vos P, Hogers R, Bleeker M. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res, 1995, 23: 4407-4414.
    Wan Y, Wang D, Shewry PR, et al. Isolation and characterization of five novel high molecular weight subunit of glutenin genes from Triticum timopheevi and Aegilops cylindrical. Theor Appl Genet, 2002, 104: 828-839.
    Wang DG, Fan JB, Siao C, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998, 280: 1077-1082.
    Wang HQ, Zhang XY. An approach for isolating high-molecular-weight glutenin subunit genes using monoclonal antibodies. Genome, 2006, 49: 181-189.
    Weber J, May PE. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet, 1989, 44: 388-396.
    Weegels PL, Hamer RJ, Schofield JD. Functional properties of wheat glutenin. J Cereal Sci, 1996, 23: 1-18.
    Wei HT, Li J, Peng ZS, et al. Relationships of Aegilops tauschii revealed by DNA fingerprints: The evidence for agriculture exchange between China and the West. Progr Nat Sci, 2008, 18: 1525-1531.
    William MDH, Pena RJ, Mujeeb-Kazi A. Seed protein and isoiyme variation in Tritirum tauschii(Aegilops squarrosa). Theor Appl Genet, 1993, 87: 257-263.
    Wrigley CW. Giant protein with flour power. Nature, 1996, 381: 738-739.
    Wu F, Liu YH, Liu L, et al. Genetic analysis of contribution of low-molecular-weight glutenin subunits to dough strength in common wheat. Hereditas, 2007, 29(11): 1399-1404.
    Wu KS, Tanksley SD. Abundance, polymorphism and genetic mapping of microsatellite in rice. MolGen Genet, 1993, 241: 225-235.
    Yen C, Yang JL, Liu XD, et al.The distribution of Aegilops tauschii Cosson in China and with reference to the origin of Chinese common wheat. In: Proc. 6th Int. Wheat Genet Symp, Kyoto, 1983, 55-58.
    Yen C, Liang YJ. The history and the nomenclature of the D-genome diploid species in Triricum(Poaceae). Wheat information Service, 1997, 82: 56-59.
    Yan YM, Hasm SLK, Yu JZ, et al. Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate(SDS-PAGE), acid polyacrylamide gel (A-PAGE) and capillary electrophoresis. Euphytica, 2003, 130: 377-385.
    Yan Z, Wan Y, Liu K, et al.Identification of a novel HMW glutenin subunit and comparison of its amino acid sequence with those of homologous subunits. Chin Sci Bull, 2002, 47: 220-225.
    Yan Y, Zheng J, Xiao Y, Y et al. Identification and molecular characterization of a novel y-type Glu-Dt1 glutenin gene of Aegilops tauschii. Theor Appl Genet, 2004, 108: 1349-1358.
    Zhang YZ, Li QY, Yan YM, et al. Molecular characterization and phylogenetic analysis a novel glutenin gene (Dy10.1t) from Aegilops tauschii. Genome. 2006, 49: 735-745.
    Zhang YZ, Li XH, Wang AL, et al. Novel x-type HMW glutenin genes from Aegilops tauschii and their implications on the wheat origin and evolution mechanism of Glu-D1-1 proteins. Genetics, 2008, 178: 23-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700