导电高分子和非导电高分子在葡萄糖传感器中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别以聚间苯二胺膜(PMPD)、聚苯胺-石墨复合膜(PGPCF)和Pt修饰纳米纤维聚苯胺膜[Pt/(Nano-fibrous PANI)]为基质,首次采用脉冲电流聚合法分别制得聚间苯二胺葡萄糖氧化酶电极(PMPD-GOD)和Pt修饰纳米纤维聚苯胺葡萄糖氧化酶电极[PMPD-GOD/Pt/(Nano-fibrous PANI)],或采用电化学掺杂法制得聚苯胺-石墨葡萄糖氧化酶电极(PGPCF-GOD)。论文采用扫描电子显微镜(SEM)及电化学方法对以上聚合物膜层的微观结构和酶电极的电化学响应性能进行了详细的研究讨论。研究结果表明,酶电极的电化学响应性能与聚合物膜层结构密切相关,PMPD膜和PGPCF膜呈现网状多孔结构,膜层具有较大的比表面,有利于酶的固定和离子的迁移;Pt/(Nano-fibrous PANI)膜层结构为直径50~80nm的Pt微粒均匀分布于直径约100nm的聚苯胺纤维上,膜层不但具有非常大的比表面,而且均匀分散在聚苯胺纤维表面的Pt颗粒对H_2O_2氧化具有很好的电催化活性。论文还系统讨论了电化学制备参数对聚合物膜层结构的影响以及电化学检测温度、检测电位以及葡萄糖溶液的pH值对上述葡萄糖氧化酶电极生物电化学响应特性的影响。当脉冲通断比为1:1,脉冲频率为10Hz,平均电流密度为1mA/cm~2,葡萄糖氧化酶浓度为5g/L时,聚间苯二胺具有较好的多孔网络结构。电化学研究结果表明,各酶电极均具有较好的生物电化学响应特性,其中以PMPD-GOD/Pt/(Nano-fibrous PANI)电极响应性能最为优异,论文通过研究Pt颗粒沉积方法及参数、Pt载量、纳米纤维PANI膜层厚度对Pt/(Nano-fibrous PANI)电极电催化氧化H_2O_2的影响,并且将具有优良催化性能的Pt/(Nano-fibrousPANI)电极用于制备葡萄糖氧化酶电极。结果显示该酶电极2×10~(-6)~12×10~(-3)mol/L范围内对β-D葡萄糖具有较好的线性响应性能,响应时间约为7s,且对尿酸和抗坏血酸都具有很好的抗干扰性能。同时,PMPD-GOD/Pt/(Nano-fibrous PANI)电极在人体血清中的研究结果表明,该酶电极对人体血清中葡萄糖浓度的测量值与医院仪器分析的结果偏差很小,从而证明其具有一定的应用价值。
     论文通过计算酶催化反应的有关动力学参数,得到PMPD-GOD、PGPCF-GOD及PMPD-GOD/Pt/(Nano-fibrous PANI)酶电极的最大响应电流密度i_m分别为231.4μA/cm~2、357.17μA/cm~2和917.4μA/cm~2,相应的米氏常数K′_m分别为15.33×10~(-3)mol/L、16.57×10~(-3)mol/L和9.34×10~(-3)mol/L。
Glucose biosensors were prepared by one-step electrochemical method or electrochemical doping method with poly (m-phenylenediamine) film (PMPD), polyaniline-graphite powder composite film (PGPCF) and Pt-dispersed nano-fibrous PANI film [(Pt/(Nano-fibrous PANI)). The morphology of polymer films and the electrochemical response performance were investigated by scanning electron microscopy (SEM) and electrochemical method. The results show that the morphology of PMPD and PGPCF are porous and netty structure, which possess large specific area and benefit to the immobilization of glucose oxidase (GOD). And PANI films with nano-fibrous structure and Pt microparticles with 50-80 nm diameter dispersed on PANI nano-fiber can be observed from the morphology of Pt/(Nano-fibrous PANI), which has very large specific surface area to the immobilization of GOD and good electrocatalytic activity to the electrooxidation of H202-
    Furthermore, the influence of electrochemical preparation parameters on the morphology of polymer and the effect of polymer morphology, detecting temperature, potential and pH value of glucose solution on the performance of electrochemical response of enzyme electrode are studied in detail. In order to obtained the optimal porous and netty PMPD film with excellent electrochemical response properties, the synthetic parameters should be controlled at the following conditions: ton/toff, 1:1; pulse frequency, 10Hz; mean current density of PGM,
    1mA/cm2; GOD concentration, 5g/L.
    The enzyme electrodes prepared above all show good electrochemical response performance, and the Pt/(Nano-fibrous PANI) enzyme electrode shows the best response performance compared to the other two enzyme electrodes. The effects of conditions for Pt deposition by PGM, Pt loading and PANI thickness on the electrocatalytic activity of Pt/(Nano-fibrous PANI) for H2O2 oxidation have also been researched. And the Pt/(Nano-fibrous PANI) with the optimal electrocatalytic properties for H2O2 oxidation was then used to construct the PMPD-GOD/Pt/ (Nano-fibrous PANI) electrode. The results show the PMPD-GOD/ Pt/(Nano-fibrous PANI) electrode gave a linear response to glucose in the range 2xlO-6 to 12xlO-3 mol/L, the corresponding linearity (R) is more than 0.99. And a fast amperometric
    
    
    
    response time of about 7s (95% of steady-state current) to glucose and good anti-interferent to uric acid or ascorbic acid have also been observed. Furthermore, the PMPD-GOD/Pt/(Nano-fibrous PANI) electrode was applied to determination glucose concentration in serum, and the analytical results provided by the hospital and those determined by using the enzyme electrode agrees closely.
    Based on the calculating of the kinetic parameters, the maximum response current density ( im ) of the PMPD-GOD, PGPCF-GOD and PMPD-GOD/Pt/ (Nano-fibrous PANI) electrode were 231.4uA/cm\ 357.17uA/cm2 and 917.4uA/cm2, respectively, and the corresponding Michaelis-Menten constant ( K'm ) were 15.33 l(r3mol/L, 16.57 10-3mol/L and 9.34 10-3mol/L, respectively.
引文
[1] Langer J. Unusual properties of the aniline black: Does the superconductivity exist at room temperature?. Solid State Commu., 1978, 26(11): 839-844
    [2] Travers J P, Chroboczek J, Devreux F, et al. Transport and magnetic resonance studies of polyaniline. Mol. Cryst. Liq. Cryst., 1985, 121(1-4): 195-199
    [3] 井新利,郑茂盛,蓝立文.反向微乳液法合成导电聚苯胺纳米粒子.高分子材料科学与工程,2000,16(2):23-25
    [4] Tsakova V, Milchev J W, Schultze. Growth of polyaniline films under pulse potentiostatic condition. J. Electroanal. Chem., 1993, 346:85-87
    [5] Kobayashi T, Hiroshi Y, Hideo T. Polyaniline film-coated electrodes as electrochromic display devices. J. Electroanal. Chem. Interfacial Electrochem., 1984, 161(2): 419-423
    [6] Kobayashi T, Hiroshi Y, Hideo T. Oxidative degradation pathway of polyaniline film electrodes. J Electroanal chem Interfacial Electrochem., 1984, 177:293-297
    [7] Oyama N, Ohnuki Y, Ohsaki T. Theoretical current-potential relationship for electrocatalytic reaction obtained with thin film coated rotating disk electrodes. Nippon Kagaku Kaishi, 1983(6): 949-954
    [8] Wawzonek S, Mdntyre T W. Electrolytic oxidation of aromatic amines. J. Electrochem.Soc, 1967, 114:1025-1029
    [9] Kitani A, Kaya M, Tsujioka S I, et al. Flexible polyaniline. J. Polym. Sci.: Part A, Polym. Chem., 1988, 26:1531-1539
    [10] Nunziante P, Pistoia G. Factor affecting the growth of thick polyaniline films by cyclic voltammetry technique. Electrochim. Acta, 1989, 34:223-228
    [11] 刘皓,谢洪泉.聚苯胺/聚乙烯醇导电复合膜的制备及性质研究.高分子学报,1995,(6):693-698
    [12] Zotti G, Cattarin S, Comisso N. Cyclic potential electropolymerization of aniline. J. Electroanal. Chem., 1988, 239:387-396
    [13] Dinh H N, Birss V I. Characteristics of the polyaniline anodic pre-peak. Electrochim. Acta, 1999, 44:4763-4771
    [14] 穆绍林,杨一飞.聚苯胺用作乙醇脱氢反应中的电子传递介质.物理化学学报,2000,16(9):830-834
    
    
    [15] 薛怀国,沈之荃,张一峰,等.导电聚合物传感器的研究进展.化学通报,2001,63(7):402-406
    [16] Tatsuma T, Ogawa T, Sato R, et aI. Peroxidase-incorporated sulfonated polyaniline-polycation complexes for electrochemical sensing of H_2O_2. J. Electroanal. Chem., 2001, 501 : 180-185
    [17] Cosnier S. Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. Biosenors & Bioelectronics, 1999, 14:443-456
    [18] Chaubey A, Gerard M, Singhal R, et al. Immobilization of lactate dehydrogenase on electrochemically prepared polypyrrolepolyvinylsulphonate composite films for application to lactate biosensors . Electrochim. Acta, 2000, 46:723-729
    [19] 傅谊,马建标,何炳林.导电聚合物酶电极的研究概况.功能高分子学报,1997.10(9):443-448
    [20] Paul E W, Ricco A J, Wrighton M S. Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices. J.Phys.Chem., 1985, 89(8): 1441-1447
    [21] Teasdale P R, Wallace G G. Molecular recognition using conducting polymers: basis of an electrochemical sensing technology plenary lecture. The Analyst, 1993, 118:329-334
    [22] Pandey P C. A new conducting polymer-coated glucose sensor. J. Chem. Soc., Faraday Trans. Ⅰ, 1988, 84:2259-2265
    [23] Yang H, Chung T D, Kim Y T, et al. Glucose sensor using a microfabricated electrode and electropolymerized bilayer films. Biosensors & Bioelectronics, 2002, 17:251-259
    [24] Yang Q L, Atanasov P, Wilkins E. Development of needle-type glucose sensor with high selectivity. Sensors and Actuators B, 1998, 46:249-256
    [25] Xu J J, Chen H Y. Amperometric glucose sensor based on coimmobilization of glucose oxidase and poly(p-phenylenediamine) at a platinum microdisk electrode. Anal. Biochem., 2000, 280:221-226
    [26] Yang Q L, Atanasov P, Wilkins E. A novel amperometric transducer design for needle-type implantable biosensor applications. Electroanalysis, 1997, 9: 1252-1256
    [27] Wang J, Chen L, Luo D B. Electrocatalytic detection of hydrogen peroxide at a poly(m-phenylenediamine)-modified carbon paste electrode and its use for
    
    biosensing of glucose. Anal. Commun., 1997, 34:217-219
    [28] Sasso S V, Pierce R J, Walla R, et al. Electropolymerized 1,2-diaminobenzene as a means to prevent interferences and fouling and to stabilize immobilized enzyme in electrochemical biosensor. Anal. Chem., 1990, 62:1111-1117
    [29] Malitesta C, Palmisano F, Torsi L, et al. Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(ο-phenylenediamine) film. Anal. Chem., 1990, 62:2735-2740
    [30] McAteer K, O'Neill R D. Strategies for decreasing ascorbate interference at glucose oxidase-modified poly(ο-phenylenediamine)-coated electrodes. The Analyst, 1996, 121:773-778
    [31] Dempsey E, Wang J, Smyth M R. Electropolymerised o-phenylenediamine film as means of immobilising lactate oxidase for a L-lactate biosensor. Talanta, 1993, 40: 445-451
    [32] Wang J, Chen S P, Lin M S. Permselective coatings for amperometric biosensing. J. Electroanal. Chem., 1989, 273:231-242
    [33] McClarley R L, Irene E A, Murray R W. Permeant molecular sieving with electrochemically prepared 6 nm films of poly-phenylene oxide. J. Phys. Chem., 1991, 95:2492-2498
    [34] Bartlett P N, Caruana D J. Electrochemical immobilization of enzymes PartⅤ. Microelectrodes for the detection of glucose based on glucose oxidase immobilized in a poly(phend) film. The Analyst, 1992, 117:1287-1292
    [35] Heineman W R, Wieck H J, Yacynych A M. Polymer film chemically modified electrode as a potentiometric sensor. Anal. Chem.,1980, 52:345-346
    [36] Wang J, Wu H. Permselective lipid poly(ο-phenylenediamine) coatings for amperometric biosensing of glucose. Anal. Chim. Acta, 1993,283:683-688
    [37] Geise R J, Roach S Y, Yacynych A M. Electropolymerized 1,3-diaminobenzene for the construction of a 1,1'-dimethylferrocene mediated glucose biosensor. Anal. Chim. Acta, 1993, 281:467-473
    [38] 汪云,周东美,陈洪渊.聚邻苯二胺固定葡萄糖氧化酶在微带金电极上的性质.无锡轻工大学学报,1998,17(1):69-73
    [39] Gerard M, Chaubey A, Malhotra B D. Application of conducting polymers to biosensors. Biosensors & Bioelectronics, 2002, 17:345-359
    [40] Umafia M, Waller J. Protein-modified electrodes. The glucose oxidase/ polypyrrole. Anal. Chem., 1986, 58:2979-2983
    [41] 郑智敏,吴辉煌,周绍民.葡萄糖氧化酶修饰玻碳电极的性能研究.厦门大
    
    学学报,1990,29(1):47-51
    [42] 傅谊,马建标,何炳林.聚苯胺固定化葡萄糖氧化酶电极的生物电化学性质.自然科学进展,1998,8(3):292-296
    [43] Evtugyn G, Mingaleva A, Budnikov H, et al. Affinity biosensors based on disposable screen-printed electrodes modified with DNA. Anal. Chim. Acta, 2003, 479:125-134
    [44] 刘盛辉,孙长林,何品刚,等.单链脱氧核糖核酸在石墨电极表面固定化的研究.分析化学,1999,27(2):230-234
    [45] Wang J, Rivas G, Cai X H, et al. Sequence-specific electrochemical biosensing of M.tuberculosis DNA. Anal. Chim. Acta, 1997, 337:41-48
    [46] Gholamian M, Contractor A Q. Oxidation of formic acid at platinum microparticles dispersed in a polyaniline matrix: Influences of long-range order and metal-polymer interaction. J. Electroanal. Chem. 1990, 289:69-83
    [47] 吴婉群,王月丰,范例.铂微粒修饰的聚苯胺薄膜电极对甲醇氧化的电催化作用.应用化学,1995,12(1):68-72
    [48] Kost K M, Bartak D E. Electrodeposition of platinum microparticles into polyaniline films with electrocatalytic applications. Ana. Chem., 1988, 60: 2379-2384
    [49] Katayama-Aramata A, Ohnishi R. Metal electrodes bonded on solid polymer electrolytes: platinum bonded on solid polymer electrolyte for electrooxidation of methanol in perchloric acid solution. J. Am. Chem. Soc., 1983, 105(3): 658-659
    [50] 李五湖,陈琳琳,钟起玲,等.钯微粒修饰聚苯胺电极对甲酸氧化的电催化研究.应用化学,1993,10(4):55-57
    [51] 钟起玲,吴文,李五湖,等.电催化甲酸氧化中钯微粒与聚苯胺的相互作用.物理化学学报,1994,10(9):813-817
    [52] Mikhaylova A A, Molodkina E B, Khazova O A, et al. Electrocatalytic and adsorption properties of platinum microparticle electrodeposited into polyaniline films. J. Electroanal. Chem., 2001, 509:119-127
    [53] 钟起玲,熊丽华,钟志京,等.甲酸在钯微粒修饰聚苯胺电极上氧化的协同效应研究.物理化学学报,1996,12(4):346-352
    [54] Parsons R, VanderNoot T. The oxidation of small organic molecules : A survey of recent fuel cell related research. J. Electroanal. Chem., 1988, 257:9-45
    [55] Adic R R, Spasojevi M D, Despi A R. Electrocatalysis by foreign metal monolayers Oxidation of formic acid on palladium. J. Electroanal. Chem.,
    
    1978, 92:31-33
    [56] Becerik Ⅰ, Kadirgan F. Glucose sensitivity of platinum-based alloys incorporated in polypyrrole films at neutral media. Synthetic Metals, 2001, 124:379-384
    [57] Yamato H, Koshiba T, Ohwa M, et al. A new method for dispersing palladium microparticles in conducting polymer films and its application to biosensors. Synthetic Metals, 1997, 87:231-236
    [58] Cai L T, Chen H Y. Electrocatalytic reduction of hydrogen peroxide at platinum microparticles dispersed in a poly (ο-phenylenediamine) film. Sensors and Actuators B, 1999, 55:14-18
    [59] 唐芳琼,沈继锋,张金芳,等.超细Ag颗粒对葡萄糖氧化酶生物传感器响应灵敏度的增强效应.高等学校化学学报,1999,20(4):634-636
    [60] Updike S J, Hicks G P. The enzyme electrode. Nature, 1967, 214:986-988
    [61] Tor R, Freeman A. New enzyme membrane for enzyme electrodes. Anal. Chem., 1986, 58:1042-1046
    [62] Shinlo T, Sugiura M, Kamo N. Potentiometric enzyme electrode for lactate Anal. Chem., 1979, 51(1): 100-104
    [63] Kirstein D, Olsson F S, Johansson G. Enzyme electrode for urea with amperometric indication: Electrode with diffusional limitation. Anal. Chim. Acta, 1985, 171:345-350
    [64] 钱江红,刘永成,刘海鹰,等.再生丝素固定葡萄糖氧化酶及其传感器应用.高等学校化学学报,1996,17(1):52-54
    [65] Abdul-Hamid J, Moody G J, Thomas J D R. Flow-through multi-enyme electrodes for the determination of lactose. The Analyst, 1989, 114:1587-1592
    [66] Chi Q J, Dong S J. Electrocatalytic oxidation of reduced nicotinamide coenzymes at Methylene Green-modified electrodes and fabrication of amperometric alcohol biosensors. Anal. Chim Acta, 1994, 285:125-133
    [67] Bertranal C, Conlet P R, Gautheron D C. Multipurpose electrode with different enzyme systems bound to collagen films. Anal. Chim. Acta, 1981, 126:23-34
    [68] Rahni N, Mohammad A, Guilbault G G, et al. Immobilized enzyme electrode for the determination of oxalate in urine. Anal. Chem., 1986, 58:523-526
    [69] Mascihi M, Ianniello M, Palleschi G. Enzyme electrodes with improved mechanical and analytical characteristics obtained by binding enzymes to nylon nets. Anal.Chim. Acta, 1983, 146:135-148
    [70] Vincke B J, Devleeschouwer M J, Patriarche G J. Determination of ascorbic
    
    acid with bacterial, tissular and enzymatic electrodes. Anal. Lett., 1985, 18: 1593-1606
    [71] Bardeletti G, Sechanel F, Coulet P R. A reliable L-lactate electrode with a new membrane for enzyme immobilization for amperometric assay of lactate. Anal.Chim. Acta, 1986, 187:47-54
    [72] 施清照,程琼,张培敏.甲苯胺蓝修饰石墨电极为基体的乙醇脱氨酶生物传感器.分析化学,1997,25(6):690-692
    [73] 孙长清,高茜.脲素酶电极的研制及应用.化学传感器,1989,9(1):13-16
    [74] Thevenot D R, Sternberg R, Coulet P R, et al. Enzyme collagen membrane for electrochemical determination of glucose. Anal. Chem., 1979, 51 : 96-100
    [75] Ikariyama Y, Yamauchi S, Yukiashi T, et al. One step fabrication of microbiosensor prepared by codeposition of enzyme and platinum particles. Anal. Lett., 1987, 20:1791-1801
    [76] 郑智敏,吴辉煌,周绍民.生物功能电极Ⅲ葡萄糖氧化酶的电化学固定化研究.物理化学学报,1991,7(2):163-167
    [77] Foulds N C, Lowe C R. Enzyme entrapment in electrically conducting polymers. Immobilisation of glucose oxidase in polypyrrole and its application in amperometric glucose sensors. J. Chem. Soc., Faraday Trans.Ⅰ, 1986, 82: 1259-1264
    [78] Shinohara H, Chiba T, Aizawa M. Enzyme microsensor for glucose with an electrochemically synthesized enzyme-polyaniline film. Sensors and Actuators B, 1988, 13:79-86
    [79] 薛怀国,沈之荃,李永舫.胺氧化酶修饰聚苯胺电极的生物电化学响应特性.高等学校化学学报,2002,23(4):730-733
    [80] 王海燕,穆绍林.用聚苯胺膜从牛乳中直接分离黄嘌呤氧化酶.应用化学,1999,16(3):13-16
    [81] 阚锦晴,穆绍林.聚苯胺尿酸酶电极性能的研究.物理化学学报,1993,9(3):345-350
    [82] Belanger D, Nadreau J, Fortier G. Electrochemistry of the polypyrrole glucose oxidase electrode . J. Electroanal. Chem., 1989, 274:143-155
    [83] Tamiya E, Karube I E, Hattori S, et al. Micro-glucose sensor using electron mediators immobilized an a polypyrrole modified electrode. Sensors and Actuators B, 1989, 18:297-307
    [84] Ianniello R M, Lindsay T J, Yacynych A M. Immobilized xanthine oxidase chemically modified electrode as a dual analytical sensor. Anal. Chem., 1982,
    
    54:1980-1984
    [85] Martin G B, Rechnitz G A. Electrochemical determination of allopurinol based on its interaction with xanthine oxidase. Anal. Chim. Acta, 1990, 237:91-98
    [86] Gotoh M, Tamiya E, Seki A, et al. Inosine sensor based on an amorphous silicon isfet. Anal. Lett., 1988, 21(10): 1785-1800
    [87] 车广礼,冯连玉,章咏华,等.钴卟啉修饰碳纤维葡萄糖酶传感器的研究.分析化学,1991,19(6):650-654
    [88] Lukachova L V, Karyakin A A, Karyakina E E, et al. The improvement of polyaniline glucose biosensor stability using enzyme immobilization from water-organic mixyures with a high content of organic solvent. Sensors and Actuators 13, 1997, 44:356-360
    [89] 薛怀国,穆绍林.葡萄糖氧化酶修饰聚苯胺电极的动力学.高等学校化学学报,1993,14(1):138-140
    [90] Gasparini R, Scarpa M, Maria L D P, et al. Amino oxidase amperometric biosensor for polyamines. Bioelectrochem. Bioenerg., 1991, 25:307-315
    [91] Tombeili S, Mascini M. Electrochemical biosensors for biogenic amines: a comparison between different approaches.Anal.Chim.Acta, 1998,358:277-284
    [92] Niculescu M, Frébort Ⅰ, Pe P, et al. Amine Oxidase Based Amperometric Biosensors forHistamine Detection. Electroanalysis, 2000, 12(5): 369-375
    [93] Mu S L, Xue H G, Qian B D. Bioelectrochemical responses of the polyaniline glucose oxidase electrode. J. Electroanal. Chem., 1991, 304:7-16
    [94] Mu S L, Kan J Q, Zhou J B. Bioelectrochemical responses of the polyaniline uricase electrode. J. Electroanal. Chem. Interfacial Electrochem., 1992, 334: 121-132
    [95] 穆绍林,阚锦晴.聚吡咯尿酸酶电极的生物电化学活性.化学学报,1993,51(7):632-638
    [96] Pandey P C, Singh G. Tetraphenylborate doped polyaniline based novel pH sensor and solid-state urea biosensor. Talanta, 2001, 55:773-782
    [97] 吴辉煌,郑智敏,周绍民.生物功能电极I.GOD修饰电极的电化学活性.化学学报,1991,49:689-693
    [98] 穆绍林,薛怀国.聚苯胺黄嘌呤氧化酶电极的生物电化学活性.化学学报,1995,53:521-525
    [99] 李友荣,张艳玲 纪西冰.葡萄糖氧化酶的生物合成 1.产生菌得筛选及产酶条件的研究.工业微生物,1993,23(3):1-6
    [100] 袁勤生.应用酶学.广州:华南理工大学出版社,1994:269-315
    
    
    [101] Fiedurek J, Rogalski J, Iiczuk Z, et al. Screening and mutagenesis of moulds for the improvement of glucose oxidase production. Enzyme and microbial Technol, 1986, 8(12): 734-736.
    [102] Rogalski J, Fiedurek J, Szczordrak J, et al. Optimization of glucose oxidase synthesis in submerged culturesof Aspergillus niger G-13 mutant. Enzyme and Microbial Technol, 1988, 10(8): 508-511.
    [103] 毛秋霞,黄永芳,陈甜女,等.几种葡萄糖氧化酶部分性质的比较.华南农业大学学报,20013,21(2):54-56
    [104] 王树庆,刘秀华.葡萄糖氧化酶及其在食品工业上的应用.食品科技,2001,3:30-31
    [105] 韦国林,杨鸿兴,胡愚,等.聚吡咯葡萄糖氧化酶电极的生物电化学响应.分析实验室,1996,15(6):69-72
    [106] 任湘菱,唐芳琼.超细银.金复合颗粒增强酶生物传感器的研究.化学学报,2002,60(3):393-397
    [107] 吴辉煌.酶电极的电流响应与固定化酶的表征.厦门大学学报(自然科学版),1987,26(1):1-16
    [108] 戴洪礼,吕鸣.修饰酶电极的响应特性.物理化学学报,1993,9(1):35-40
    [109] 徐远航,戴鸿平,朱侃,等.固定化条件对葡萄糖酶电极响应性能的影响.厦门大学学报自然科学版,1993,32(6):732-735
    [110] 刘平柱,龚克成.聚苯胺嵌入氧化石墨微粉复合物的合成及表征.高分子学报,2000,4:492-495
    [111] 周海晖,焦树强,陈金华,等.Pt微粒修饰纳米纤维聚苯胺电极对甲醇的电催化氧化.物理化学学报,2004,20(1):9-14
    [112] Mu S L, Kan J Q. Bioelevtrochemical activation and inhibition of polyaniline glucose oxidase electrode by cations. Electrochim. Acta, 1995, 40:241-246
    [113] Hammerle M, Schuhmann W, Schmidt H -L.. Amperometric polypyrrole enzyme electrodes: effect of permeability and enzyme location. Sensors and Actuators B, 1992, 6: 106-112.
    [114] 焦树强,彭霞辉,周海晖,等.脉冲电流法电解合成聚苯胺.高等学校化学学报,2003,24:1118-1121.
    [115] 穆绍林.介绍一个酶催化反应动力学实验.大学化学,1993,8(6):44-46
    [116] 傅献彩,沈文霞,姚天扬.物理化学,第四版,北京:高等教育出版社,1990:865
    [117] Shu F R, Wilson G S. Rotating ring-disk enzyme electrode for surface catalysis studies. Anal. Chem., 1976,48:1679-1686
    
    
    [118] Lukachova L V, Karyakin A, Ivanova Y N, et al. Non-aqueous enzymology approach for improvement of reagentless mediator-based glucose biosensor. The Analyst, 1998, 123:1981-1985
    [119] 李星玮,李晓宣,居明.导电聚苯胺在化学及电化学传感器中的应用.化工新型材料,2000,28(9):16-19
    [120] Del Rio R, Zagal J H, Andrade G T, et al. Synthesis and characterization of a composite of polyaniline and carbon black. J. Appl. Electrochem., 1999, 29: 763-768.
    [121] Nunziante P, Pistoia G. Factor affecting the growth of thick polyaniline films by cyclic voltammetry technique. Electrochim. Acta, 1989:223-228
    [122] Zotti G, Cattarin S, Comisso N. Cyclic potential electropolymerization of aniline. J. Electroanal. Chem., 1988, 239:387-396
    [123] Piro B, Dang L A, Pham M C, et al. A glucose biosensor based on modified-enzyme incorporated within electropolymerised poly (3,4-ethylenedioxythiophene)(PEDT) films. J. Electroanal. Chem., 2001, 512: 101-109
    [124] Muguruma H, Hiratsuka A, Karube Ⅰ. Thin-film glucose biosensor based on plasma- polymerized film: simple design for mass production. Anal. Chem., 2000, 72:2671-2675
    [125] Xu J J, Chen H Y. Amperometric glucose sensor based on glucose oxidase immobilized in electrochemically generated poly(ethacridine). Anal. Chim. Acta, 2000, 423:101-106
    [126] Chen L, Gorski W. Bioinorganic composites for enzyme electrode. Anal.Chem., 2001, 73:2862-2868
    [127] Somasundrum M, Aoki K. The steady-state current at microcylinder electrodes modified by enzymes immobilized in conducting or non-conducting material. J. Electroanal. Chem., 2002, 530:40-46
    [128] Chaubey A, Pande K K, Singh V S. Co-immobilization of lactate oxidase and lactate dehydrogenase on conducting polyaniline films. Anal. Chim. Acta, 2000,407:97-103
    [129] Kitani A, Kaya M, Tsujioka S I, et al. Flexible polyaniline. J. Polym. Sci.: Part A: Polym. Chem., 1988, 26:1531-1539
    [130] 方惠群,李根喜,陈洪渊.低电流密度下恒电流法制备的聚苯胺修饰电极.高等学校化学学报,1994,15(3):348-351
    [131] Karyakin A A, Maltsev I A, L.V. Lukaehova. The influence of defects in
    
    polyaniline structure on its electroactivity: optimization of 'self-doped' polyaniline synthesis. J. Electroanal. Chem., 1996, 402:217-219
    [132] Luna A M C. A novel electrocatalytic polyaniline electrode for methanol oxidation. J Appl Electrochem, 2000, 30:1137-1142
    [133] Bouzek K, Mangold K -M, Jüttner K. Platinum distribution and electrocatalytic properties of modified polypyrrole films. Electrochim. Acta, 2001, 46(5): 661-670
    [134] Chen C C, Bose C S C, Rajeshwar K. The reduction of dioxygen and the oxidation of hydrogen at polypyrrole film electrodes containing nanodispersed platinum particles. J. Electroanal. Chem., 1993, 350:161-176
    [135] Bose C S C, Rajeshwar K. Efficient electrocatalyst assemblies for proton and oxygen reduction: the electrosynthesis and characterization of polypyrrole films containing nanodispersed platinum particles. J. Electroanal. Chem., 1992, 333:235-256
    [136] Ficicioglu F, Kadirgan F. Electrooxidation of methanol on platinum doped polyaniline electrodes: deposition potential and temperature effect. J. Electroanal. Chem, 1997, 430:179-182
    [137] Ficicioglu F, Kadirgan F. Electrooxidation of ethylene glycol on a platinum doped polyaniline electrode. J. Electroanal. Chem., 1998, 451:95-99
    [138] Ocon Esteban P, Leger J -M, Lamy C, et al. Electrocatalytic oxidation of methanol on platinum dispersed in polyaniline conducting polymers. J. Appl. Electrochem., Short Communication, 1989, 19:462-464
    [139] Mikhaylova A A, Khazova O A, Bagotzky V S. Electrocatalytic and adsorption properties of platinum microparticles electrodeposited onto glassy carbon and into Nafion films. J. Electroanal. Chem., 2000, 480:225-232
    [140] 张国林,潘献华,阚锦晴,等.导电复合材料葡萄糖氧化酶传感器的研究.物理化学学报,2003,19(6):533-537

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700