用户名: 密码: 验证码:
4H-SiC PiN结同位素电池的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硅材料具有禁带宽度大,抗辐照能力强等特点,利用其制备的PiN同位素电池具有输出电压高,抗干扰能力强,受外界温度、压力、电磁场等影响小,可长期稳定工作等优点,有着广泛的应用前景。
     本文针对基于碳化硅PiN二极管结构的同位素电池进行了研究,主要研究成果如下:
     一、使用蒙特卡罗软件MCNP模拟单能电子在金属中能量淀积情况,证明了金属对β射线具有很强的阻挡能力,在此基础上设计了5种不同形状的电极;模拟Ni-63β射线在SiC中的能量淀积,结果显示Ni-63β射线在碳化硅中能量的淀积随入射深度的增加而指数递减,因此pn结空间电荷区应尽量靠近表面以达到高的电荷收集效率。根据能量淀积情况设计p+层厚度为0.3μm,i层厚度为3.5μm。
     二、建立了同位素电池的基本模型,根据模型估计了设计的同位素电池的性能参数,并分析了理想因子、串并联电阻、反向饱和漏电流、放射性活度等对电池性能的影响。模拟结果显示,理想因子越大,输出电压越大;串联电阻较小时影响不明显,但大于时,填充因子会明显下降;并联电阻主要影响填充因子,并联电阻越大,填充因子越大;反向饱和漏电流对开路电压有显著的影响,其值越小,电池的开路电压越大;放射性活度增加,电池的开路电压短路电流都会提高,但电流提高效果更为明显。5×107Ω
     三、研究了制备同位素电池的主要关键工艺,确定使用CVD法外延形成PiN结构,使用台面结构进行器件隔离,p型欧姆接触使用Ti/Al/Au,厚度分别为50/100/100nm,n型欧姆接触使用Ti/Ni/ Au,厚度分别为50/400/100nm;确定了实验工艺流程,制作光刻版,制作了4H-SiC PiN结同位素电池样品。
     四、对制作的样品进行了测试,TLM测试结果显示p型欧姆接触性能良好,比接触电阻达到了,处于国内报道的领先水平,接近国际上文献报到的碳化硅p型欧姆接触的最低阻值。从测得的PiN二极管I-V特性曲线中观察开启电压约为3V,提取理想因子约为2.4,反向饱和漏电流密度为10~(-13)A/cm~2。在放射强度10mCi、面积2.5cm~2的薄片状Ni-63源的辐照下,该电池的开路电压(Voc)为0.98V,短路电流(I_(sc))为0.51nA (12.75nA/cm~2),最大输出功率(P_(max))为0.32nW (8.0nW/cm~2),填充因子(FF)为0.64。在放射强度6mCi、面积2.5cm~2的薄片状Ni-63源的辐照下,该电池的开路电压(V_(oc))为0.95V,短路电流(I_(sc))为0.21nA (5.25nA/cm~2),最大输出功率(P_(max))为0.14nW (3.5nW/cm~2),填充因子(FF)为0.74。2.567×10 ~(-5)Ωcm~2
     五、对碳化硅材料其它基于β射线伏特效应的器件进行了初步研究,提出了肖特基同位素电池的改进方案及将碳化硅三极管用于β射线探测器的构想。
Silicon carbide (SiC) is a wide bandgap semiconductor with good anti-radiation ability. Due to its wide bandgap, the expected open circuit voltage of SiC PiN junction radioisotope battery is high. The battery also has strong anti-interference ability, hardly affected by the outside temperature, pressure and electromagnetic field. The battery has a prospective future.
     SiC radioisotope battery with the PiN structure is studied in this paper, main research achievements are as follow:
     The energy deposition of mono-energetic electrons in metals are simulated with MCNP, proving that metal has a strong stopping power, 5 different electrode patterns are designed based on the conclusion; Energy deposition ofβ-ray emitted from Ni-63 is simulated, the result indicates that the energy deposited in SiC decreases exponentially with penetration depth. In order to achieve high charge collection efficiency, the depletion region should be near the surface. Based on the simulation, the thickness of p+ layer and i layer are designed to be 0.3μm and 3.5μm respectively.
     Basic model of the micro radioisotope battery is built, and the performance of the designed battery is estimated base on the model. Effect of ideality factor, series resistance, shunt resistance, radioactivity on the battery is analysed, the simulated result indicates that: the greater the ideality factor is, the higher the output voltage is; small series resistance has little effect on the performance, but the fill factor (FF) reduces significantly when the resistance is bigger than 5×10~7Ω; shunt resistance mainly affect fill factor, the larger the resistance, the bigger the fill factor; leakage current mainly affect open circuit voltage, the smaller the leakage current, the larger the open circuit voltage; increasing radioactivity will improve both open circuit voltage and short current, with the short circuit current improved more significantly.
     Major key processes during the fabrication of radioisotope battery is studied, we decide to form the PiN structure via Chemical Vapor Deposition (CVD), use mesa structure to isolate different devices, use 50/100/100nm Ti/Al/Au as p type ohmic contact metals and 50/400/100nm Ti/Ni/Au as n type ohmic contact metals. The fabrication process is designed, photomask is made and the 4H-SiC PiN junction radioisotope battery is fabricated.
     The sample is tested, TLM test result shows that good p type ohmic contact is formed with the lowest specific contact resistance of only 2, this value is in the domestic leading level, and close to the lowest specific contact resistance of p type SiC. I-V curve obtained shows the turn on voltage is about 3V, ideality factor 2.4 and leakage current 10~(-13)A/cm~2。Under the illumination of 10mCi Ni-63 source that takes up 2.5cm~2, the open circuit voltage Voc=0.98V, short circuit current I_(sc)=0.51nA (Jsc =12.75nA/cm~2 ), maximum power P_(max)=0.32nW (power density is 8.0nW/cm~2),and fill factor FF=0.64. Under the illumination of 6mCi Ni-63 source that takes up 2.5cm~2, the open circuit voltage is Voc=0.95V, the short circuit current I_(sc)=0.21nA (Jsc =5.25nA/cm~2), maximum power P_(max)=0.14nW (power density is 3.5nW/cm~2),and fill factor FF=0.74. 2.567×10~(-5)Ωcm
     Other kinds of SiC devices based onβ-voltaic effect are studied. Improvement solution of conventional schottkyβ-voltaic battery is provided. SiC transistor used forβray detector is also designed.
引文
[1] A. Kamitani et al. Fuel supply optimization in micro fuel cells Procedia Chemistry 1 (2009) 457–460
    [2] C. Navone et al. Electrochemical behaviour of sputtered c-V2O5 and LiCoO2 thin films for solid state lithium microbatteries. Solid State Ionics xxx (2010) xxx–xxx
    [3] M.S. Park et al. Characterization of a LiCoO2 thick film by screen-printing for a lithium ion micro-battery. Journal of Power Sources 159 (2006) 1416–1421
    [4]沈天健,梁代骅,蔡建华等.具有独特用途的放射性同位素电池.核技术2010 33(8)
    [5]蔡善钰,何舜尧.空间放射性同位素电池发展回顾和新世纪应用前景.核科学与工程, 2004, 24: 97-104
    [6]邹宇,黄宁康.伏特效应放射性同位素电池的原理和进展.核技术2006 29(6)
    [7] Li, Hui Radioisotope-powered self-reciprocating cantilever for micro power generation CORNELL UNIVERSITY DAI-B 66/09, p. , Mar 2006 3192075
    [8]维基百科http://en.wikipedia.org/wiki/Atomic_battery
    [9] E. W. Billington, W. Ehrenberg. The Electron Voltaic Effects in Silicon and Selenium Elements. 1961 Proc. Phys. Soc. 78 845
    [10] P. Rappaport, The Electron-Voltaic Effect in p-n Junctions Induced byβ-Particle Bombardment. Physical Review, vol. 93(1), pp. 246, 1954.
    [11] W. G. Pfann and W. v. Roosbroeck, J. Appl. Phys., vol. 25(11), pp. 1422-1434,1954.
    [12] H. Flicker, J. J. Loferski, and T. S. Elleman, IEEE Trans. Elect. Dev., vol. 11(1),pp. 2-8, 1964.
    [13] R. J. Walko, R. C. Lincoln, W. E. Baca, S. H. Goods, and G. H. Negley, "Tritium Fueled betacells" Proceedings of 26th International Energy Conversion Engineering Conference, 1991, 135-140.
    [14] P. E. Sims, L. C. DiNetta, and A. M. Barnett, "High-efficiency GaP power conversion for betavoltaic applications," Proceedings of XIII Space Photovoltaic Research and Technology Conference, 1994, 373-382.
    [15] T. Kosteski, N.P Kherani, F. Gaspari, S. Zukotynski, W.T Shmayda (1997). Tritiated amorphous silicon films and devices, J.Vac. Sci. Technol. A, 16(2), 893.
    [16] S. Deus, "Tritium-powered betavoltaic cells based on amorphous silicon," Proceedings of the 28th IEEE Photovoltaic Specialists Conference, 2000, 1246.
    [17] V. M. Andreev, A. G. Kevetsky, V. S. Kaiinovsky, V. P. Khvostikov, V. R. Larionov, V. D. Rumyantsev, M. Z. Shvarts, E. V. Yakimova, and V. A. Ustinov, "Tritium-powered betacells based on AlxGa1-xAs," Proceedings of the 28th IEEE Photovoltaic Specialists Conference, 2000, 1253
    [18] G. Rybicki, C. Vargas-Aburto, and R. Uribe, "Silicon Carbide Alphavoltaic Battery," Proceedings of the 25th Photovoltaic Specialists Conference, 1996, 93–96.
    [19] J. P. Fleurial, G. J. Snyder, J. Patel, C. K. Huang, M. A. Ryan, R. Averback, C.Hill, and G. Chen, "Solid-state power generation and cooling micro/nanodevices for distributed system architectures," Proceedings of Thermoelectrics, 2001. Proceedings ICT 2001. XX International Conference on, 2001, 24.
    [20]C. D. Cress, B. J. Landi, D. M. Wilt, and R. P. Raffaelle, J. Appl. Phys., vol. 100, pp. 114519(1-5), 2006.
    [21] H. Guo and A. Lal, "Nanopower betavoltaic microbatteries," Proceedings of the 12th IEEE TRANSDUCERS: International Conference on, Solid-State Sensors, Actuators and Microsystems, 2003, 36.
    [22] MVS Chandrashekhar, C.I. Thomas, Hui Li, M.G. Spencer and Amit Lal,Demonstration of a 4H SiC betavoltaic cell, ICSCRM 2005, Mat. Sci. For.(2006)
    [23] C.J.Eiting, V.Krishnamoorthy, S.Rodgers, T.George,J.David Robertson, John Brockman.Demonstration of a radiation resistant, high efficiency SiC betavoltaic, Applied Physics Letters, Volume 88, Issue 6, id. 064101 (3 pages) (2006).
    [24] Qiao Da-Yong, Yuan Wei-Zheng, Gao Peng , et, al. Demonstration of a 4H SiC betavoltaic Nuclear Battery Based on Schottky Barrier Diode. 2008 Chinese Phys. Lett. 25 3798
    [25]何杰,夏建.白半导体科学与技术.科学出版社. 2007年pp-100
    [26] G. Alfieri, E. V. Monakhov, B. G. Svensson,et al,Defect energy levels in hydrogen-implanted and electron-irradiated n-type 4H silicon carbide,JOURNAL OF APPLIED PHYSICS 98, 113524 2005
    [27] Investigation of deep levels in n-type 4H-SiC epilayers irradiated with low-energy electrons. JOURNAL OF APPLIED PHYSICS 100, 2006,pp.113728
    [28] Defect correlated emmission and electrical properties of 4H-and 6H-SiC epitaxial layers doped by nuclear transmutation doping (NTD) Physica B 308–310 (2001) 702–705
    [29] Thomas Dalibor, Gerhard Pens1, Tsunenobu Kimoto, et al. Radiation-induced defect centers in 4h sic Diamond and Related Materials 6 ( 1997) 1333- 1337]
    [30]K. S. Krane, Introductory Nuclear Physics. New York: John Wiley & Sons, 1988,pp. 845.
    [31] Donald A. Neamen著,赵毅强等译,半导体物理与器件(第三版)电子工业出版社2007 p171
    [32]刘虹宇,马露,周春芝等.核辐射半导体探测器的进展.全国第四届核仪器及其应用学术会议论文集.pp235-237
    [33]张岚,李元景,毛绍基等.半导体探测器综述及CdZnTe探测系统的研发.全国第四届核仪器及其应用学术会议论文集.pp282-288
    [34] F. Poulin and J. C. Bourgoin,Threshold energy for atomic displacement in electron irradiated germanium (*)Revue Phys. Appl. 15 (1980) 15-19
    [35] D Pons and J C Bourgoin ,Irradiation-induced defects in GaAs .1985 J. Phys. C: Solid State Phys. 18 3839
    [36] T. MARKVART. Radiation damage in solar cells. JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 1 (1990) 1-12
    [37] J. J. Loferski and P. Rappaport, Phys. Rev., 111, 432 (1958)
    [38] Manabu Ishimaru, In-Tae Bae, and Yoshihiko Hirotsu, Phys. Rev. B, 68,144102 (2003)]
    [39]李向龙, D-D中子发生器防护的MCNP模拟,东北师范大学硕士学位论文,2007年5月pp.13
    [40]王强,GTAF探测器屏蔽体系统的MCNP模拟计算设计,兰州大学,2007年5月15-18
    [41]冯士维,李瑛,孙静莹等. ZnO紫外光电导型探测器的制备与研究,北京业大学学报, Jul. 2007. V01.33 No.7
    [42]叶志镇,张银珠,陈汉鸿等,ZnO光电导紫外探测器的制备和特性研究,电子学报,Nov. 2003 Vol.31 No.11
    [43]张军琴,杨银堂,卢艳等. 4H-SiC金属一半导体一金属结构紫外探测器的模拟与分析,中国激光, 2008.4 Vol.35 No.4
    [44] Arianna Tibuzzi, Gian-Franco Dalla Betta, Claudio Piemonte, et, al. High gain bipolar junction phototransistors with finger-shaped emitter for improved optical gas sensing in the blue spectral region. Sensors and Actuators A 136 (2007) 588–596
    [45] A. BenMoussa , A. Soltani , U. Schühle ,et,al. Recent developments of wide-bandgap semiconductor based UV sensors, Diamond & Related Materials 18 (2009) 860–864
    [46]http://www.britannica.com/EBchecked/topic/489089/radioactivity/48296/beta-decay#ref=ref496434
    [47] Ivor L. Preiss, R. W. Fink and B. L. Robinson. The beta spectrum of carrier-free Ni63. Journal of Inorganic and Nuclear Chemistry, Volume 4, Issues 5-6, 1957, Pages 233-236
    [48] T.E.Everhart, P.H. Hoff,Determination of Kilovolt Electron Energy Dissipation vs Penetration Distance in Solid Material, J. Appl. Phys. 42, 5837 (1971)
    [49] L J Brillson, S Tumakha, R S Okojie , Electron-excited luminescence of SiC surfaces and interfaces. 2004 J. Phys.: Condens. Matter 16 S1733
    [50] CLAUDE A. KLEIN. Bandgap Dependence and Related Features of Radiation Ionization Energies in Semiconductors. Journal of Applied Physics.Volume 39.Issue 4
    [51] F. Moscatelli, A. Scorzoni, A. Poggi,et, al. Radiation Hardness of Minimum Ionizing Particle Detectors Based on SiC p+n Junctions. 2005 IEEE Nuclear Science Symposium Conference Record
    [52] J. Scofield, M. Dunn, K. Reinhadt, et al, Material Research Society Symposium Proceedings, 1996, 423, 57 (1996)
    [53]刘芳,张玉明.“离子注入制备n型SiC欧姆接触的工艺研究”半导体技术,2005,30(4)
    [54]贾护军,杨银堂,柴常春,李跃进. SiC材料的低速率浅刻蚀工艺研究,真空科学与技术学报,2009,29(4)
    [55]樊中朝,余金中,陈少武. ICP刻蚀技术及其在光电子器件制作中的应用,微纲加工技术,2003年6月,第2期
    [56]郝跃,彭军,杨银堂.碳化硅宽带隙半导体技术.北京:科学出版社. 2000
    [57]郭辉.SiC器件欧姆接触的理论和实验研究.西安电子科技大学博士学位论文.2007年1月
    [58] Shu-Cheng Chang, Shui-Jinn Wang, Kai-Ming Uang,et al. Investigation of Au/Ti/Al ohmic contact to N-type 4H–SiC. Solid-State Electronics 49 (2005) 1937–1941
    [59] R. Kakanakov, L. Kassamakova-Kolaklieva, N. Hristeva,et al. Thermally Stable Low Resistivity Ohmic Contacts for High Power and High Temperature SiC Device Applications. 23rd INTERNATIONAL CONFERENCE ON MICROELECTRONICS (MIEL 2002), VOL 1, NI?, YUGOSLAVIA, 12-15 MAY, 2002
    [60] R. Pe′reza, N. Mestres, D. Tournier,et al. Ni/Ti ohmic and Schottky contacts on 4H-SiC formed with a single thermal treatment. Diamond & Related Materials 14 (2005) 1146– 1149
    [61] M.R. Jennings, A. Pe′rez-Toma′s, M. Davies, et,al. Analysis of Al/Ti, Al/Nimultiple and triple layer contacts. to p-type 4H-SiC. Solid-State Electronics 51 (2007) 797–801
    [62] H. Vang, M. Lazar, P. Brosselard, et al. Ni–Al ohmic contact to p-type 4H-SiC. Superlattices and Microstructures 40 (2006) 626–631
    [63] L. Kolaklieva, R. Kakanakov, G. Lepoeva,et al. Au/Ti/Al Contacts to SIC for Power Applications: Electrical, Chemical and Thermal Properties. 24th INTERNATIONAL CONFERENCE ON MICROELECTRONICS (MIEL 2004). VOL 2, NIS, SERBIA AND MONTENEGRO, 16-19M AY. 2004
    [64]陈荣发,电子束蒸发与磁控溅射镀铝的性能分析研究,真空,2003年3月,第2期

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700