用户名: 密码: 验证码:
祁连山隧道硫磺沟斜井碎屑流地层围岩施工技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着西部山区铁路隧道的不断建设,隧道地质灾害也日益增多,由于西部地处高寒,岩体构造复杂,再加上山地广、水量多,这些特殊的地质条件和工程条件,使得隧道岩体的变形问题成为研究焦点,能否解决这一问题决定了隧道能否顺利施工。碎屑流作为一种特殊的地质灾害,它的出现,降低了围岩的自稳能力,并对周边岩体产生影响,从而造成隧道的坍塌,给施工人员的生命安全和设备安全造成直接威胁,也影响了整个隧道的施工进度。隧道穿越碎屑流地质是我国铁路隧道建设首次遇到的特殊地质,没有相应的理论基础,也没有相关的成功经验,因此必须根据现场实际情况,通过勘察调研,利用监测数据进行分析研究,了解其变形特性,研究出合理有效的施工措施,降低成本,保证施工安全,确保隧道的顺利完工。
     本论文以祁连山隧道硫磺沟斜井为实际工程背景,对斜井修建中遇到的碎屑流地层围岩变形问题,应用理论与实践相结合的方式,系统地研究碎屑流地层围岩变形特征,其研究工作和研究成果主要包括:
     ●在工程地质勘察的基础上,利用祁连山隧道硫磺沟斜井已有的勘察设计资料,结合现场工程施工,对碎屑流地层围岩的工程地质背景做全面调查研究,分析碎屑流生成原因。
     ●综合运用超前地质预报,采用TSP探测技术对前方进行地质预报,利用红外探水方法探测斜井前方的水体分布及含水构造,另外增加了水平钻孔,进行钻芯取样,更加准确地判定前方工程地质情况,为预加固方式和施工方法的选取提供地质依据。
     ●对碎屑流进行了初步定义,在岩体力学和工程地质理论的基础上,依据现场勘查情况及监测数据,对碎屑流地层围岩变形破坏特征及其力学机制进行了分析归纳,提出针对隧道掌子面、涌水以及开挖支护的一系列处理措施,以确保隧道施工安全。
     ●采用FLAC3D数值模拟软件建立三维有限差分地层-结构模型,利用德鲁克-普拉格(Drucker-Prager)塑性理论模拟斜井在碎屑流地层的开挖过程,得到碎屑流地层施工过程中的围岩变形,从而对其力学行为特性进行分析研究,得出碎屑流地层围岩在施工过程中的力学形态和变形特征,为碎屑流围岩施工提供相应的理论基础。
     ●开展施工期间的围岩变形收敛监测,根据所得监测数据绘制收敛时间曲线和回归曲线,得到施工现场围岩实际变化形态,验证施工处理措施的合理性。
With the construction of railway tunnels in the west, the tunnel geological hazards is also increasirg,as a result of western rock located in alpine、complex rock structure、broad moutains and abundant water. Research about rock deformation of tunnel is the hotspot in the engineering field.The resolution of rock deformation determines the smooth construction of the tunnels.Debris Flow is a kind of special geological disasters,which reduce the self-stability of the rock、influence the surrounding rock,lead to the collapse of the tunnel and pose a direct threat to the safety of equipment,also affect the entire progress of tunnel construction. Debris Flow is first encountered in the construction of our residential railway tunnels.we don't have theoretical basis and relevant successful experience,so we must use the monitoring data analysis and unstand the deformation characteristics through researching in order to reduce the cost、ensure the safe construction and the smooth construction of the tunnels.
     Based on the engineering case of the Liuhuanggou incline in Qilianshan Tunnel, the paper studied on the deformation of the tunnel by using the theory combined with practice. The research work and results are shown as follows:
     · We must find out the reason of Debris Flow by using the existing survey information which based on the engineering geological investigation of the Liuhuanggou incline in Qilianshan tunnel and engineering construction.
     · To judge the engineering geological condition of the front surrounding rock by using advanced geological prediction which consist of TSP detection technology on the geological forecast,Infrared Acquisition Technology applied to detecte the water distribution and water bearing structure of the front surrounding rock,the addition of Horizontal Drilling which applied to get the rock samples.
     · The debris flow was defined.Based on the theory of rock mechanics and engineering geology,the addition of field investigation and monitoring data, a number of measures aiming at runnel construction face、water inrush and excavation supports were advanced to ensure the safety tunneling construction.
     · In order to direct tunnel construction across Debris Flow area,we need relevant theory about deformation characteristics and mechanical behavior in the process of tunneling construction by using the FLAC3d numerical simulation to build three-dimensional finte difference element model of stratum structure and the Drucker-Prager plastic theory to simulate the excavation process of the incline.
     · To carry out the surrounding rock convergence monitoring.according to the monitoring data we can draw convergence and regression line in order to get the actual changes in the construction site and validate the rationality of treatment project.
引文
[1]刘玉良.高海拔高寒隧道关键施工技术研究[D].硕士论文.天津大学.2004
    [2]徐坤.隧道施工质量控制的关键技术研究[D].硕士论文.西南交通大学.2008
    [3]李志业.曾艳华.地下结构设计原理与方法[M].西南交通大学出版社.2003.9
    [4]杜永彬.破碎带隧道开挖支护效果的模拟[J].重庆交通大学学报,2009年2月第28卷第1期
    [5]李雷.齐岳山隧道高压富水破碎带段施工技术[J].建井技术,2008年8月第29卷第4期.
    [6]向鼎璞.祁连山地质构造特征[J].地质科学.1982.10
    [7]中铁第一勘察设计集团有限公司兰乌第二双线祁连山隧道设计资料[R].2010.8
    [8]李向龙等.岩石碎屑流运移堆积过程数值模拟[J]..工程地质学报.2011.
    [9]雷启云.乌鞘岭隧道7#井软弱破碎围岩变形特征研究[D].硕士论文.兰州大学.2005
    [10]祝末.富水地层中的破碎带对隧道围岩稳定性影响数值分析[D].硕士论文.浙江大学.2010
    [11]蔺虎平.乌鞘岭隧道破碎段岩体的受力机理分析研究[D].硕士论文.长安大学.2011
    [12]白雪飞.大相岭隧道超前地质预报研究[D].硕士论文.西南交通大学.2009
    [13]Andisheh Alimoradi, et al.Prediction of geological hazardous zones in front of a tunnel face using TSP-203 andartificial neural networks [J]. Tunnelling and Underground Space Technology, Volume 23, Issue 6, November 2008, Pages 711-717.
    [14]Amberg Measuring Technique, TSPwin Processing&Evaluation Software[R], Manual Version 1.1.Amberg Co., Switzerland.2001.
    [15]Amberg Measuring Technique, TSP 203 Processing[R].Amberg Co., Switzerland.2002.
    [16]孟云伟.隧道开挖中破碎带支护的颗粒离散元模拟研究[J].地下空间与工程学报.2007.8.
    [17]傅志训.隧道病害处置研究[D].硕士论文.西南交通大学.2006
    [18]李泽荣.小导管注浆法机理及其在隧道工程中的应用[J].技术与创新管理.2009.5.
    [19]李河玉小导管珠江技术及在隧道和地下工程中的应用[D].硕士论文.西南交通大学.2002
    [20]曾详国小净距公路隧道小导管注浆工艺对围岩稳定性影响的有限元分析[J].四川大学学报.2008.7 Vol.40 No.4
    [21]晏启祥等,小净距隧道施工小导管注浆效果的数值模拟分析[M].岩土力学.2004.11.Vol.25
    [22]马占荣等.隧道超短台阶开挖法下穿高速公路施工案例[J].隧道/地下工程.2011
    [23]《铁路隧道设计规范》(TB10003-2005)[M].
    [24]李俊.隧道破碎围岩稳定性研究—以杖子桥公路隧道为例[D].硕士论文.长安大学.2008supp.2
    [25]彭立敏等.交通隧道工程[M].中南大学出版社.2003.10
    [26]铁道部运输局基础部,铁路隧道检测技术手册[M].中国铁道出版社.2007.7
    [27]肖书安等.复杂地质条件下的隧道地质超前探测技术[J].工程地球物理学报.2004.Vol.1No.2.
    [28]石中平.秦岭特长隧道水文地质工作综述[J].铁道工程学报.2002.Vol.65(1):82-86.
    [29]戴文亭,白宝玉.我国隧道及地下工程发展现状和前景展望[J].东北公路..2000.Vol.23
    [30]吕康成.隧道工程试验检测技术[M].人民交通出版社.2000.4
    [31]刘毅.浅埋隧道破碎带岩体注浆技术—以长沙市营盘路湘江隧道为例[D].硕士论文.中南大学.2010
    [32]张洋.隧道工程软弱破碎围岩大变形控制体系研究[D].硕士论文.西南交通大学.2006
    [33]李志祥等.TSP-203在大支坪隧道超前预报中的应用[J].地球物理学进展.2005,20(2):465-468.
    [34]陈玉江.破裂岩体中地下结构工程失稳及控制研究[D].硕士论文.中南大学.2008
    [35]Kevin Black, Peter Kopac.The application of ground penetrating radar in highway engineering[J].Public Roads,1992,56(3).
    [36]Peter Huggenberger, Knoll M D, Knight Rosemary, et al.Ground probing radar as tool for heterogeneity estimationin gravel deposits:advances in data processing and facies analysis[J].Journal of Applied Geophysics,1994, (31).
    [37]Goodman R.E and Shi Genhua Block Theory and Its Application to Rock Engineering[J]. Prentice-Hall,Inc,Englewood Cliffs,New Jersey,1985
    [38]张闽湘.昆仑山隧道渗漏水治理方案研究[D].硕士论文.重庆交通大学2009
    [39]柴柏龙.公路隧道软弱破碎带围岩—支护结构稳定性分析[D].硕士论文.重庆大学2009
    [40]黎新亮.浅埋暗挖隧道地层变位随机介质理论分析及控制技术研究[D].硕士论文.北京交通大学2008
    [41]李围.隧道及地下工程FLAC解析方法[M].中国水利水电出版社.2009.3.
    [42]朱国保.软弱破碎围岩隧道中管棚超前预支护技术研究[D].硕士论文.西南交通大学2007
    [43]何晓东.软岩隧道围岩稳定性与塌方处置措施分析[D].硕士论文.长安大学2009
    [44]杨志法等.岩土工程反分析原理及应用[M].地震出版社.2002
    [45]关宝树.隧道工程设计要点集[M].人民交通出版社.2003.1.
    [46]Atkinson J H,Potts D M.Stabinlity of shallow tunnel in cohesionless soil[J].Geotechnique,1977, 27(2):203-215
    [47]Einstein.H.H.,Visk.S.G,"Geological model for tunnel cost model"[J]Proc Rapid Excavation and Tuneling Conf,2nd,1974:1701-1720
    [48]Laura K.Rademacher.Groundwater residence times and flow paths in fractured rock determined using environmental tracers in the Mission Tunnel[J].Springer-Verlag.2002.1
    [49]杨奎.铜锣山隧道围岩变形及稳定性研究[D].硕士论文.西南交通大学2007
    [50]宋波.达陕高速公路隧道塌方机制及处治措施研究[D].硕士论文.成都理工大学2011
    [51]孟磊.地下工程信息化施工及信息反馈技术研究[D].硕士论文.西南交通大学2010
    [52]A.Aydin,A.Ozbek,I.Cobanoglu. Tunnelling in difficult ground:a case study from Dranaz tunnel,Sinop,Turkey[J].2004,74 (3-4)
    [53]F.Vuilleumier,P.Teuscher,R.Beer,The Lotschberg Railway Base Tunnel,Tunnelling and Underground Space Technology,1997,12(3)
    [54]Davis E H,Gunn M J,Mair R J,et al.The stability of shallow tunnel and underground openings in cohesive material[J].Geotechnique,1980,30(4):397-416.
    [55]Mair R.J.Centrifugal modeling of tunnel construction in soft clay.[Ph.D.thesis],University of Cambridge,Cambridge,1979

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700