用户名: 密码: 验证码:
纳米晶制备、表征、荧光和共振瑞利散射光谱特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应,使它们表现出独特的物理化学性质,因此在许多领域有着广阔的应用前景,成为当前一个热门的、前沿性的研究领域。近年来纳米材料在分析化学中的应用日益增多,其中利用它们的光谱特性而发展出的纳米探针和纳米光学传感器受到人们的关注,除了在紫外-可见吸光光谱,荧光光谱分析的应用外,在其他光谱分析中的应用也受到人们的重视。
     共振瑞利散射(RRS)光谱分析是二十世纪九十年代发展起来的一种分子光潜分析新技术,它既与分子中电子在入射光电磁场作用下发生受迫振动有关,又受电子能级跃迁的影响,因而它能够对研究分子结构和形态、电荷分布、键合性质以及反应特征等提供更丰富的信息。由于RRS分析法高灵敏度和简便快速而受到人们的关注,在纳米微粒的表征和分析应用方面也得到越来越多的研究。
     本文研究了硒化镉、硒化镉/硫化镉、碲化镉、碲化镉/硫化镉、硒化亚铜纳米晶及Eu_2O_3纳米棒的合成技术,优选了合成方法,制备了一系列具有优良光谱性能和反应能力的纳米晶。并以多种方法(透射电镜、高分辨透射电镜、X射线衍射、红外光谱、吸收光谱、荧光光谱等)对制备的纳米晶的粒径尺度、形貌和结构进行了表征。研究了它们的紫外可见吸收、荧光和共振瑞利光谱特性,并研究了这些纳米材料与某些金属离子、药物和生物大分子的相互作用及其对荧光和RRS光谱的影响,探索利用纳米晶做探针建立以荧光和RRS法测定某些金属离子、药物和生物大分子的可能性,从而为进一步拓展纳米晶做探针在分析化学中的应用创造了条件。
     一、硒化镉纳米晶的制备、表征及其与某些金属离子和药物相互作用的荧光和RRS光谱研究
     以柠檬酸钠、巯基乙酸钠、巯基琥珀酸等为包裹剂,硒粉为硒源,氯化镉为镉源,水或氨水为介质,KBH_4作为还原剂,水相合成了CdSe纳米晶。通过透射电镜(TEM)、高分辨透射电镜(HRTEM)、X-射线衍射(XRD)等对其结构、形貌进行了分析,通过荧光光谱、紫外可见光谱和RRS光谱对其光谱性质等进行了研究。并研究某些金属离子及抗癌药物多柔比星对CdSe纳米晶荧光和RRS的影响。
     结果表明,以巯基乙酸包裹效果最好。其中pH 11.2及Cd:Se:KBH_4:巯基乙酸=1.0:0.5:2.0:2.5的条件下,制备的纳米晶粒径在2-4 nm,纳米晶颗粒清晰并具有较强荧光,其最大激发和最大发射波长分别为与277 nm和556 nm处,与此同时CdSe纳米晶在320 nm和559 nm处有两个散射峰。
     研究了CdSe纳米晶与Na(Ⅰ)、K(Ⅰ)、Mn(Ⅱ)、Cu(Ⅱ)、Cd(Ⅱ)、Mg(Ⅱ)、Ni(Ⅱ)、Zn(Ⅱ)、Co(Ⅱ)和Cr(Ⅲ)离子在水溶液中的相互作用及其对荧光和RRS光谱的影响,结果表明:在水溶液中纳米晶与Cr(Ⅲ)的反应产物可使其荧光显著增强,Cu(Ⅱ)与纳米晶结合使其荧光猝灭,其余金属离子对纳米晶的荧光影响甚微,这为在水溶液中以CdSe纳米晶做探针荧光增强和荧光猝灭法测定Cr(Ⅲ)和Cu(Ⅱ)创造了条件。此时对Cr(Ⅲ)的检出限为17 ng/ml,但对测定Cu(Ⅱ)灵敏度不高。
     CdSe纳米晶在乙醇溶液中,荧光光谱发生变化,最大发射波长从556 nm移动至470 nm。当CdSe纳米晶与Zn(Ⅱ)、Ni(Ⅱ)、Cr(Ⅲ)、Cu(Ⅱ)反应时,在407 nm附近出现一个新的荧光峰,该荧光峰增强的顺序是Zn(Ⅱ)、Ni(Ⅱ)、Cr(Ⅲ)、Cu(Ⅱ),对Zn(Ⅱ)的检出限是26μg╱ml,显然,对于金属离子的选择性不如水相反应。研究还表明,上述离子与8-羟基喹啉形成螯合物,导致407 nm附近荧光猝灭。
     但是,不论在水相或乙醇溶液中,CdSe纳米晶与上述金属离子的反应,对RRS的影响不显著,缺乏分析应用价值。
     还研究了CdSe纳米晶与抗癌药物多柔比星相互作用对荧光和RRS的影响,结果表明,纳米晶与多柔比星反应时将导致荧光显著猝灭,但对RRS的影响不大。荧光猝灭法对于多柔比星有较高灵敏度,其检出限为34 ng╱ml。这为以CdSe纳米晶做探针荧光猝灭法测定多柔比星创造了条件。
     二、硒化镉/硫化镉纳米晶的制备、表征及其与某些金属离子和药物相互作用的荧光和RRS光谱研究
     采用柠檬酸为包裹剂,硒粉为硒源,硫代乙酰胺为硫源,氯化镉为镉源,硼氢化钾为还原剂水相制备CdSe/CdS纳米晶,通过TEM、HRTEM、XRD等对其结构、形貌进行了表征,通过荧光光谱、紫外可见光谱和RRS光谱对其光谱性质进行了研究。并研究某些金属离子及氨基糖苷类药物对CdSe/CdS纳米晶荧光和RRS的影响。
     结果表明,Cd:Se:S:KBH_4:柠檬酸钠=3.0:1.0:1.0:2.0:4.0条件下,合成的CdSe/CdS纳米晶粒径在4.1-6.5 nm,它具有较强的荧光,其最大激发和最大发射波长分别位于232 nm和620 nm,荧光峰的半峰宽39 nm。
     研究了日光照射对CdSe/CdS纳米晶荧光性质的影响,结果表明随着日光照射时间的增加,荧光强度有所增强。纳米晶溶液暴露的气氛对荧光也有较大的影响,发现有氧存在下,荧光增强的速度将会加快,文中还考察了溶液pH值对荧光的影响,发现pH值对于荧光光谱特征和相对荧光强度均有较大的影响,其pH值的最佳区间是8.95-11.2之间。
     研究了CdSe/CdS纳米晶与Cu(Ⅱ)、Mn(Ⅱ)、Hg(Ⅱ)、Co(Ⅱ)、Cr(Ⅲ)、Fe(Ⅲ)的相互作用及其对荧光的影响。结果表明,纳米晶与这些金属离子反应时,能引起纳米晶的荧光猝灭。文中考察了上述6种离子适宜的反应条件和影响因素,确定了线性范围和相关系数,反应有较高的灵敏度,对于上述离子的检出限分别是:0.53 ng/ml(Cu(Ⅱ))、11.0 ng╱ml(Mn(Ⅱ))、3.9 ng╱ml(Hg(Ⅱ))、2.0 ng╱ml(Co(Ⅱ))、2.9 ng╱ml Cr(Ⅲ)、11.6 ng╱ml(Fe(Ⅲ)),因此,为以CdSe/CdS作探针测定上述离子创造了条件。
     与此同时,还研究了CdSe/CdS纳米晶与硫酸小诺霉素(MS)和硫酸阿米卡星(AS)等氨基糖苷类抗生素的结合作用对荧光的影响。结果表明,当纳米晶与上述药物结合时能促使荧光产生不同程度的增强,并且在一定范围内使荧光增强与药物的浓度成正比,对于上述药物的检出限分别为18.7 ng/ml(MS)、25.8 ng/ml(AS),这就使得用CdSe/CdS做探针荧光的荧光法测定上述药物成为可能。
     文中还研究了CdSe/CdS纳米晶的共振瑞利散射光谱特性,散射峰位于555nm和298 nm处,当它与上述金属离子反应时,Mn(Ⅱ)、Hg(Ⅱ)、Co(Ⅱ)使RRS增强,而Cu(Ⅱ)使RRS下降,并且RRS强度的变化与相应离子的浓度在一定范围内呈线性关系,只是离子的检出限比荧光猝灭法低。但是CdSe/CdS纳米晶与MS和AS作用时,不能引起RRS的明显变化,故CdSe/CdS纳米晶不能用于上述药物的RRS法测定。
     三、碲化镉纳米晶的制备、表征及其与药物相互作用的荧光和RRS光谱研究
     以氯化镉、碲氢化钾为原料,巯基乙酸钠为包裹剂水相合成了碲化镉纳米晶,通过透射电镜、高分辨透射电镜、能量色散谱、荧光光谱、紫外可见光谱、X射线衍射对碲化镉纳米晶进行了表征,所合成的纳米晶直径为5 nm左右,属立方结构。碲化镉纳米晶溶液在制备后放置19 d其荧光量子产率从初始的37%达到97%,而最大荧光发射波长(λem)从543 nm移至510 nm,蓝移33 nm,而且在冰箱4℃可稳定至少10个月。同时碲化镉纳米晶溶液也具有一定的共振瑞利散射(RRS),其最大散射峰位于554 nm附近。研究了碲化镉纳米晶与硫酸阿米卡星和硫酸小诺霉素的相互作用对荧光和RRS的影响。结果表明:当两者反应形成结合产物时,将使纳米晶溶液荧光显著猝灭并使RRS明显增强,并且荧光猝灭作用和RRS增强在一定的范围内与药物的浓度成正比,对于硫酸阿米卡星和硫酸小诺霉素的检出限分别为3.4 ng/ml和2.6 ng/ml(荧光猝灭法)及15.2 ng/ml和14.0ng╱ml(RRS法),方法具有高灵敏度。因此为用碲化镉纳米晶作荧光探针荧光猝灭法和RRS法测定氨基糖苷类药物创造了条件。
     四、碲化镉/硫化镉纳米晶的制备、表征与金属离子作用及用于生物分子标记的研究
     以氯化镉、碲粉、硼氢化钾为原料,巯基乙酸为包裹剂,水相合成碲化镉/硫化镉纳米晶。通过TEM、HRTEM、XRD等对其结构、形貌进行了表征,通过荧光光谱、紫外可见光谱和RRS光谱对其光谱性质进行了研究。研究某些金属离子对CdTe/CdS纳米晶荧光和RRS的影响,并将CdTe/CdS纳米晶用于生物材料的特异性标记。
     研究结果表明,在Cd:Te:巯基乙酸钠=2:1:4.8条件下,合成的CdTe/CdS纳米晶粒径约6 nm,它具有强的荧光,荧光量子产率可达到98%。其最大激发和最大发射波长分别位于253 nm和511 nm。pH对纳米晶荧光影响较大,酸性介质中荧光猝灭,在pH 7.0-11.2之间荧光强而稳定。
     研究了此种纳米晶与金属离子反应时对于荧光和RRS的影响,结果表明Cu(Ⅱ)、Co(Ⅱ)、Ni(Ⅱ)和Cr(Ⅲ)均可使荧光发生不同程度的猝灭作用,其中以Cu(Ⅱ)的猝灭作用最强,其次是Co(Ⅱ)、Ni(Ⅱ)和Cr(Ⅲ),在一定范围内荧光猝灭值与金属离子的浓度成正比,对于上述金属的检出限分别是1.0 ng╱ml(Cu(Ⅱ))、1.8 ng/ml(Co(Ⅱ))、3.5 ng╱ml(Ni(Ⅱ))、3.4 ng╱ml(Cr(Ⅲ))。并以Cu(Ⅱ)为例,研究了适宜的反应条件和共存物质的影响,表明方法有一定的选择性,从而为用CdTe/CdS纳米晶做探针荧光猝灭法测定上述离子,特别是Cu(Ⅱ)离子奠定了基础。
     纳米晶与Cu(Ⅱ)、Co(Ⅱ)和Ni(Ⅱ)反应时,导致纳米晶溶液RRS降低,在一定范围内RRS降低值与金属离子的浓度成正比,但是与荧光法相比,RRS法灵敏度较低,线性关系稍差。
     将CdTe/CdS纳米晶用于生物分子标记,结果发现,牛血清白蛋白(BSA)、兔抗羊IgG抗体和羊抗鼠IgG三种蛋白质均能与纳米晶结合,使蛋白质带有绿色荧光。CdTe/CdS纳米晶和羊抗鼠IgG结合之后,保持了二抗的活性,能与鼠抗人IgG抗原作用实现特异性识别。与羊抗鼠IgG结合的CdTe/CdS纳米晶,再用BSA封闭纳米晶表面剩余位点,CdTe/CdS-羊抗鼠IgG能与已结合于细胞表面CK19鼠抗人IgG结合,使细胞被荧光标记。
     五、硒化亚铜和氧化铕纳米材料的制备、表征及其荧光光谱研究
     建立了一种室温水相合成Cu_2Se纳米晶的新方法,以硝酸铜、硒粉和巯基乙酸钠为原料在氨水介质中室温合成了Cu_2Se纳米晶。通过透射电镜、高分辨透射电镜、X射线衍射、荧光光谱和紫外可见光谱等手段分析、表征了合成的纳米晶。Cu_2Se呈硒铜矿结构,尺寸为长20-40nm,宽10-20nm。Cu_2Se纳米晶具有较强的荧光其最大激发和发射波长分别位于253 nm和585 nm。
     建立了合成一维Eu_2O_3纳米材料的简易方法,在表面活性剂(SDS)作用下,以丁醇水溶液作溶剂,六次甲基四胺做碱源合成了Eu_2O(CO_3)2·H_2O和Eu_2O_3纳米棒。通过透射电镜、高分辨透射电镜、扫描电镜、X射线衍射等手段分析、表征了合成的一维产品。Eu_2O_3纳米棒直径为80-300纳米,长为1-5微米。同时讨论了纳米棒的形成机理。Eu_2O_3纳米棒最大吸收波长位于317nm,发生蓝移47nm,呈现出明显的量子限域效应。Eu_2O_3纳米棒在329nm和617nm呈现出荧光峰。
     上述两种纳米材料均有较好的荧光特性。但是因其水溶性较差而影响了它们与金属离子、药物和生物大分子的反应能力。今后将从合成方法及表面改性等方面改善其水溶性,使之能在分析化学中得到更好的应用。
Due to volume effect,surface effect,quantum size effect and macroscopic quantum tunneling effect,nanomaterials exhibit unique physical and chemical properties.Therefore,with broad prospects for application in many fields,they have become a hot and advanced research realm.Recently,more nanomaterials have been applied to analytical chemistry,in which nanoprobes and nano optical sensors developed by using their spectral characteristics have attracted much attention.Besides the application in ultraviolet-visible absorption spectra and fluorescence spectra analysis,other spectroscopic applications have also drawn considerable notice.
     Resonance Rayleigh Scattering(RRS) is a new analytical technique developed in 1990s.RRS is related to both the compelled vibration of the electrons in molecule and the electronic energy level transitions under the effect of the incident light electromagnetic field.Therefore it can offer more information about molecular structure and conformation,charge distribution,linkage nature as well as the reaction characteristics and so on.More attention has been paid to RRS method,since it is very sensitive and simple in monitoring some ions,some drugs and biomolecules.It has been also applied in the characterization and analysis of nanoparticles.
     In this thesis,the synthetic methods of cadmium selenide,cadmium selenide/ cadmium sulfide,cadmium telluride,cadmium telluride/ cadmium sulfide,cuprous selenide nanocrystals(NCs) and europium oxide nanorods were researched,and some nanocrystals with fine optical properties and reactivities were obtained by optimized synthetic methods.The size,structure and conformation of the nanocrystals prepared were characterized by various methods(transmission electron microscopy(TEM), high-resolution transmission electron microscopy(HRTEM),X-ray diffraction(XRD), infrared absorption spectrum(IR)).The properties of ultraviolet-visible absorption spectra,fluorescence spectra and RRS spectra of the NCs were investigated.The interactions of the NCs with some metal ions,drugs and biomolecules and the effect of the interactions on fluorescence and RRS spectra were examined.The possibility of the determination of metal ions,drugs and biomolecules by exploiting nanocrystals as fluorescence and RRS probes was explored.Therefore,it provides better conditions for further application of NCs probes in analytical chemistry.
     1.Study on syntheses,characterizations of cadmium selenide NCs and effects of their interactions with some metal ions and drugs on fluorescence and RRS spectra
     Cadmium selenide NCs were obtained by the reaction of Cd(Ⅱ) with Se(Ⅱ),with aqueous or aqueous ammonia solution as solvent,KBH_4 as reducer,selenium powder as selenium source,cadmium chloride as cadmium source and sodium mercaptoacetate (SMA),sodium mercaptosuccinate(SMS) and sodium citrate(SC) as wrapper.The structure and conformation of the NCs were characterized by TEM,HRTEM and XRD. The properties of ultraviolet-visible absorption spectra,fluorescence spectra and RRS spectra of the NCs were investigated.The effects of some metal ions and anticarcinogen doxorubicin hydrochloride(DH) on fluorescence and RRS of CdSe NCs were also studied.
     Among the wrappers,sodium mercaptoacetate(SMA) showed the best capping effect.CdSe NCs prepared under the conditions of Cd:Se:KBH_4:SMA=1:0.5:2.0:2.5 and pH11.2 showed higher intensity of fluorescence and the clear edge of the NCs.The average diameter of the CdSe NCs was 2-4 nm.The maximum excitation and emission wavelengths were about 277 nm and 556 nm.The RRS peaks of CdSe NCs were located at about 320 nm and 559 nm.
     The interactions of CdSe NCs with certain metal ions in aqueous solution,such as Na(Ⅰ),K(Ⅰ),Mn(Ⅱ),Cu(Ⅱ),Cd(Ⅱ),Mg(Ⅱ),Ni(Ⅱ),Zn(Ⅱ),Co(Ⅱ),Cr(Ⅲ),and the effects of their interactions on fluorescence spectra and RRS spectra were investigated. The results indicate that Cr(Ⅲ)can enhance the fluorescence greatly,while Cu(Ⅱ) can result in the quenching of fluorescence of the NCs.The other ions have little influence on the fluorescence.This offers the possibility of determinations of Cr(Ⅲ) and Cu(Ⅱ) using CdSe NCs as fluorescence probe.The detection limit for Cr(Ⅲ) was 17 ng/ml, however the determination sensitivity of Cu(Ⅱ) was relatively lower.
     In alcohol solution,fluorescence peak of CdSe NCs shifted from 556 nm to 470nm.While the NCs reacted with Zn(Ⅱ),Ni(Ⅱ),Cr(Ⅲ),Cu(Ⅱ),and a new peak appeared at 407nm.The order of the fluorescence intensity was CdSe-Zn>CdSe-Ni>CdSe-Cr>CdSe-Cu.The detection limit for Zn(Ⅱ) was 26μg/ml.Obviously, selectivities of interactions of metal ions with CdSe NCs in alcohol were poorer than those in aqueous solution.It was also found that the interactions of above ions with 8-Hydroxyquinoline(HQ) could cause fluorescence quenching at 407 nm.
     However,whether in aqueous or alcohol solution,the effects of metal ions on the RRS of CdSe NCs were unobvious.Therefore,the RRS methods mentioned above can not be applied in analysis.
     The effect of the interactions of doxorubicin hydrochloride(DH) with CdSe NCs on fluorescence and RRS was also studied.The results indicated that DH could result in the fluorescence quenching of the NCs,on the other hand,DH has little influence on the RRS spectra.That fluorescence quenching method exhibited high sensitivity and the detection limit for DH was 34 ng/ml.This provides a feasibility for utilizing CdSe NC as fluorescence probe to determine DH.
     2.Study on syntheses,characterizations of cadmium selenide/cadmium sulfide nanocrystals and effects of their interactions with some metal ions and drugs on fluorescence and RRS spectra
     Cadmium selenide/cadmium sulfide NCs were prepared by the reaction of Cd(Ⅱ) with Se(Ⅱ) and S(Ⅱ),with water as solvent,KBH_4 as reducer,selenium powder as selenium source,cadmium chloride as cadmium source,thioacetamide as sulphur source and sodium citrate(SC) as wrapper.The structure and conformation of the NCs were characterized by TEM,HRTEM and XRD.The properties of ultraviolet-visible absorption spectra,fluorescence spectra and RRS spectra of the NCs were investigated. The effects of some metal ions and aminoglycoside antibiotics on fluorescence and RRS of CdSe/CdS NCs were also studied.
     As the results indicated,CdSe/CdS NCs prepared under the conditions of Cd:Se: S:KBH_4:SC=3.0:1.0:1.0:2.0:4.0 showed higher intensity of fluorescence and the average diameter of the NCs was 4.1-6.5 nm.The maximum excitation and emission wavelengths were about 232 nm and 620 nm.The fluorescence peak width at half height was only 39 nm.
     The effects of normal room light on the fluorescence characteristics of the CdSe /CdS NCs were investigated.It was found that the intensity of fluorescence of the NCs increased with the time extension.The exposed atmosphere of the NCs solution had great influence on fluorescence.The fluorescence was more enhanced under air than that under nitrogen.The effects of pH on the intensity of the fluorescence were also investigated.It was found that pH value had an obvious influence on the characteristics and intensity of the fluorescence.In pH 8.95-11.2,the fluorescence intensity was high and stable.
     The influences of the interactions of CdSe /CdS NCs with Cu(Ⅱ),Mn(Ⅱ), Hg(Ⅱ),Co(Ⅱ),Cr(Ⅲ) and Fe(Ⅲ) ions on fluorescence and RRS were investigated.It was found that the above six kinds of ions caused the fluorescence quenching.The conditions of interactions of the NCs with the ions were optimized.The correlation coefficients and linear ranges were obtained.The interactions had high sensitivities and the detection limits were 0.53 ng/ml(Cu(Ⅱ)),11.0 ng/ml(Mn(Ⅱ)),3.9 ng/ml (Hg(Ⅱ)),2.0 ng/ml(Co(Ⅱ)),2.9 ng/ml Cr(Ⅲ) and 11.6 ng/ml(Fe(Ⅲ)).This offers opportunities to determine above ions using CdSe/CdS NCs as fluorescence probe.
     The interactions of CdSe/CdS NCs with micronomicin sulfate(MS) and amikacin sulfate(AS) and its influence on fluorescence were investigated respectively.It was found that MS and AS could enhance the fluorescence of CdSe/CdS NCs in varying degrees.Under optimum conditions,the increased intensities had linear relationship with the concentrations of MS and AS.The detection limits for MS and AS were 18.7 ng mL~(-1) and 25.8 ng mL~(-1).This provides opportunities to determine aminoglycoside antibiotics using CdSe/CdS NCs as fluorescence probe.
     The resonance Rayleigh scattering(RRS) of CdSe/CdS NCs in aqueous solution was investigated.The scattering peaks were located at about 555 nm and 298 nm.It was found that Mn(Ⅱ),Hg(Ⅱ) and Co(Ⅱ) ions increased the intensity of RRS of the NCs and Cu(Ⅱ) ions decreased the intensity of RRS.There were linear relationships between the intensity of RRS and the concentration of the ions.But the detection limits for the ions of RRS method were lower than those of fluorescence quenching method. AS and MS did not cause the obvious change of RRS of CdSe/CdS NCs,so that the NCs could not be used to determine MS and AS by the RRS method.
     3.Study on syntheses,characterizations of cadmium telluride nanocrytals and effects of their interactions with some drugs on fluorescence and RRS spectra
     Cadmium telluride nanocrystals(NCs) were achieved by reaction of CdCl_2 with KHTe solution and were capped with sodium mercaptoacetate.The products were characterized by TEM,HRTEM,energy dispersive spectroscopy(EDS),XRD, fluorescence spectra and ultraviolet-visible spectra.The CdTe NCs were of cubic structure and the average size was about 5 nm.The fluorescence quantum yield of CdTe NCs aqueous solution increased from 37%to 97%after 20 days under room light.The maximum of fluorescence(λ_(em)) changed from 543 nm to 510 nm and the blue shift was 33 nm.The CdTe NCs aqueous solution can be kept stable for at least 10 months under 4℃in refrigerator.The resonance Rayleigh scattering(RRS) of CdTe NCs in aqueous solution was investigated.The maximum scattering peak is located at about 554 nm. The interactions of CdTe NCs with amikacin sulfate(AS) and micronomicin sulfate (MS) were investigated respectively.The effects of AS and MS on fluorescence and RRS of CdTe NCs were analysized.It was found that AS and MS could result in the fluorescence quenching of CdTe NCs and RRS enhancement of CdTe NCs.Under optimum conditions,the fluorescence quenching intensity and the enhanced RRS intensty had linear relationship with the concentration of AS and MS,respectively.The detection limits for AS and MS were 3.4 ng mL~(-1),2.6 ng mL~(-1) for fluorescence quenching method,15.2 ng mL~(-1),14.0 ng mL~(-1) for RRS method,respectively.The methods have high sensitivities so that CdTe NCs can be used as fluorescence probes and RRS probes for the determination of aminoglycoside antibiotics.
     4.Study on syntheses,characterizations of cadmium telluride/cadmium sulfide nanocrytals and their interactions with some ions and labeling of biomolecules
     Cadmium telluride/cadmium sulfide NCs were prepared by the reaction of Cd(Ⅱ) with Te(Ⅱ),with water as the solvent,KBH_4 as reducer,tellurium powder as tellurium source,sodium mercaptoacetate as sulphur source and wrapper.The structure and conformation of the NCs were characterized by TEM,HRTEM and XRD.The properties of ultraviolet-visible absorption spectra,fluorescence spectra and RRS spectra of the NCs were investigated.The influences of the interactions of CdTe/CdS NCs with some ions on fluorescence and RRS were examined.CdTe/CdS NCs were used for specific labeling of bio-material.
     The CdTe/CdS NCs prepared under the conditions of Cd:Te:SMA=2:1:4.8 showed higher intensity of fluorescence.The average diameter of the NCs was about 6 nm.The fluorescence quantum yield was 98%.The maximum excitation and emission wavelengths were about 253 nm and 511 nm,respectively.The effect of pH value on fluorescence of the NCs was examined.It was found that in acidic medium,the fluorescence of the NCs was quenched and in pH 7.0-11.2,the fluorescence was the highest and stable.
     The influences of the interaction of CdTe /CdS NCs with some ions on fluorescence and RRS were investigated.It could be seen from the experiments that Cu(Ⅱ),Co(Ⅱ),Ni(Ⅱ) and Cr(Ⅲ) ions resulted in fluorescence quenching in varying degrees,among them,Cu(Ⅱ) exhibited the greatest quenching effect and the others were in the order of Co(Ⅱ)>Ni(Ⅱ)>Cr(Ⅲ).There were linear relationships between intensity of fluorescence and the concentration of the ions.The detection limits for the ions were 1.0 ng/ml(Cu(Ⅱ)),1.8 ng/ml(Co(Ⅱ)),3.5 ng/ml(Ni(Ⅱ)) and 3.4 ng/ml(Cr(Ⅲ)).Taken Cu(Ⅱ) as an example,the optimum reaction conditions and the influences of the coexisting substances were investigated.It was found that the fluorescence quenching method had certain selectivity,which offered a sound basis for the determination of the above ions,esp.Cu(Ⅱ) by utilizing fluorescence quenching method using CdTe/CdS NCs as fluorescence probe.
     When CdTe/CdS NCs reacted with Cu(Ⅱ),Co(Ⅱ) and Ni(Ⅱ),the intensity of RRS decreased.It was found that there are linear relationships between the intensity changes of RRS and the concentrations of ions in certain ranges.Compared with fluorescence methods,the sensitivities and the correlation coefficients of the RRS methods were lower.
     The CdTe/CdS NCs were used to label biomolecules.It was found that the CdTe/CdS NCs could combine with BSA,rabbit anti-goat IgG and goat anti-mouse IgG and made the proteins showed green fluorescence.The combination of CdTe/CdS NCs with goat anti-mouse IgG could keep the second antibody activity and their binding with mouse anti-human IgG could attain specific recognition.Using BSA to enclose the active points on the surface of the CdTe/CdS NCs binded by goat anti-mouse IgG,it could combine with CK19 mouse anti-human IgG on the surface of cells to realize the fluorescence labeling of the cells.
     5.Study on syntheses,characterizations and fluorescence spectra of Cu_2Se nanocrystals and Eu_2O_3 nanorods
     A simple new method under normal room temperature has been developed to prepare cuprous selenide NCs by the reaction of copper nitrate trihydrate with selenium and sodium mercaptoacetate in aqueous ammonia system.Cu_2Se NCs were characterized by TEM,HRTEM,XRD,electron diffraction(ED),fluorescence spectrum and ultraviolet-visible absorption spectrum.Cu_2Se NCs showed berzelianite structure with 20-40 nm in length and 10-20 nm in width.The fluorescence excitation and emission peaks were located at 253 nm and 585 nm,respectively.
     A simple process was proposed for synthesis of Eu_2O_3 nanorods.Eu_2O(CO_3)_2·H_2O nanorod monocrystalline and Eu_2O_3 nanorods were obtained by means of surfactant assistance,with aqueous butanol solution as the solvent and hexamethylene tetramine as the base.The samples obtained were analyzed and characterized by TEM,HRTEM, SEM and XRD.The Eu_2O_3 nanorod was about 80-300 nm in diameter and 1-5μm in length.The formation mechanism of 1D product was also discussed.The maximum absorption peak of the Eu_2O_3 nanorods was located at 317nm.A blue-shift of the peak was 47nm,which showed the obvious quantum-confinement effect.The peaks of fluorescence emission can be seen clearly at 329 nm and 617 nm.
     Cu_2Se NCs and Eu_2O_3 nanorods mentioned above showed some fluorescence characteristics. However,they could not react with metal ions,medicines and biomolecules effectively because of their poor water-solubility.This should be improved by adopting new synthesis methods and surface modification in order to apply the NCs in analytical chemistry in the future effectively.
引文
[1]Schmid G,B(a|¨)umle M,Geerkens M,Helm I,Osemann Ch,Sawitowski Th.Current and future applications of nanoclusters.Chem Soc Rev,1999,28,179-185.
    [2]Henglein A.Small-particle research:physical-chemical properties of extremely small colloidal-metal and semiconductor particles.Chem.Rev.,1989,89,1861-1873.
    [3]Wang Y,Herron N.Chemical effects on the optical properties of semiconductor particles.J.Phys.Chem.,1987,91,5005-5008.
    [4]Daniel M C,Astruc D.Gold Nanoparticles:Assembly,Supramolecular Chemistry,quantum-size-related roperties,and applications toward biology,catalysis,and nanotechnology.Chem.Rev.,2004,104,293-346.
    [5]Tejada J,Ziolo R F,Zhang X X.Quantum Tunneling of Magnetization in Nanostructured Materials.Chem.Mater.,1996,8(8),1784-1792.
    [6]张立德.纳米材料与纳米结构.北京:科学出版社,2000.
    [7]王永康.纳米材料科学与技术.杭州:浙江大学出版社,2002,p15.
    [8]Pasternack R F,Bustamante C,Collings P J,Giannetto A,Gibbs E J.Porphyrin assemblies on DNA as studied by a resonance light-scattering technique,J.Am.Chem.Soc.,1993,115(13),5393-5399.
    [9]Pasternack R F,Collings P J,Resonance light scattering:A new technique for studying chromophore aggrogation.Science,1995,269,935-939.
    [10]刘绍璞,龙秀芬.某些分子光谱测定核酸的进展.理化检验,2002,38,101-107.
    [11]杨睿,刘绍璞.某些分子光谱法测定蛋白质的进展.分析化学,2001,29(2),232-241.
    [12]汪尔康主编.分析化学新进展.科学出版社,北京,2002,280-288.
    [13]Huang C Z,Li Y E Resonance light scattering technique used for biochemical and pharmaceutical analysis,Anal.Chim.Acta,2003,500,105-117.
    [14]Lu W,Fernandez B S B,Yu Y,Geng Q,Li Q G,Shang J C,Wang C,Fang Y,Tian R,Zhou L P,Sun L L,Tang Y,Jing S H,Huang W,Zhang T P.Resonance Light Scattering and Derived Techniques in Analytical Chemistry:Past,Present,and Future.Microchim.Acta,2007,158,29-58.
    [15]Jiang Z,Feng Z.Microwave high-pressure synthesis of Au naoparticle and its spectral properties.Chinese Chemical Letters,2001,16,556-560.
    [16]蒋治良,钟福新,李廷盛等.绿色银纳米粒子的共振散射光谱研究.广西师范大学学报(自然科学版),2001,59(3),438-442.
    [17]杨明媚,蒋治良.兔红细胞的共振散射光谱研究.光谱学与光谱分析,2002,22(2),204-208.
    [18]蒋治良,李芳,李廷盛等.金粒子粒径与共振散射光强度的关系.高等学校化学学报,2000,21:1488-1491.
    [19]蒋治良,刘绍璞.CoFe_2O_4纳米粒子的共振散射光谱研究.光谱学与光谱分析,2002.22(4),615-619.
    [20]蒋治良,冯忠伟,李廷盛等.黄色和绿色银纳米粒子的光化学制备及其共振散射光谱研究.中国科学(B辑),2001,44(2),175-181.
    [21]Jiang Z L,Liu Q Y,Liu S P.Resonance Rayleigh scattering spectral analysis of chlorides based on the formation of(AgCl)n(Ag)s nanoparticle.Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2002,58(12),2759-2764.
    [22]沈星灿,何锡文,梁宏.纳米粒子特性与生物分析.分析化学,2003,31(7):880-885.
    [23]Nakamura M,Shono M,Ishimura K.Synthesis,Characterization,and Biological Applications of Multifluorescent Silica Nanopartieles.Anal.Chem.,2007,79(17),6507-6514.
    [24]Jie G,Liu B,Pan H,Zhu J-J,Chen H-Y.CdS Nanoerystal-Based Electrochemilumineseence Biosensor for the Detection of Low-Density Lipoprotein by Increasing Sensitivity with Gold Nanoparticle Amplification.Anal.Chem.,2007,79(15),5574-5581.
    [25]Barone,P.W.;Parker,R.S.;Strano,M.S.In-Vivo Fluorescence Detection of Glucose using a Single Walled Carbon Nanotube Optical Sensor:Design,Fluorophore Properties,Advantages and Disadvantages.Anal.Chem,2005,77(23),7556-7562.
    [26]林章碧,苏醒光,张家骅等.纳米粒子在生物分析中的应用.分析化学,2002,30,237-241.
    [27]Wang L-Y,Kan X-W,Zhang M-C,Zhu C-Q,Wang L.luorescence for the determination of protein with functionalized nano-ZnS.Analyst,2002,127,1531-1534.
    [28]Valeareel M,Cardenas S,Simonet B M.Role of Carbon Nanotubes in Analytical Science.Anal.Chem.,2007,79(13),4788-4797.
    [29]Niemeyer C M.Nanoparticles,Proteins,and Nucleic Acids:Biotechnology Meets Materials Science.Angew Chem.Int.Ed.,2001,40,4128-4158.
    [30]Soukka T,Paukkunen J,Harma H,Lonnberg S.Supersensitive time-resolved immunofluorometric assay of free prostate-specific antigen with nanoparticle label technology.Clin.Chem.,2001,47,1269-1278.
    [31]Marinella G.Sandros,Vivekanand Shete and David E.Benson.Selective,reversible,reagentless maltose biosensing with core-shell semiconducting nanoparticles.Analyst,2006,131,229-235.
    [32]Li J,Xue M,Wang H,Cheng L,Gao L,Lu Z,Chan M.Amplifying the electrical hybridization signals of DNA array by multilayer assembly of Au nanoparticle probes.Analyst,2003,128,917-923.
    [33]Rosi N L,Mirkin C A,Nanostructures in Biodiagnostics.Chem.Rev.2005,105,1547-1562.
    [34]Mohamed M B,Ahmadi T S,Link S,Brann M,El-Sayed M A.Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix,Chem Phys Lett.2001,343,55-63.
    [35]Feldsteon M J,Keating C D,Liau Y H,Natan M J,Scherer N F.Electronic Relaxation Dynamics in Coupled Metal Nanoparticles.J.Am.Chem.Soc.,1997,119,6638-6647.
    [36]Grabra K C,Freeman R G,Hommer M B,Natan M J.Preparation and Characterization of Au Colloid Monolayers.Anal.Chem.,1995,67,735-743.
    [37] Henglein M E, Baker L A, Crooks R M. Preparation and Characterization of Dendrimer-Gold Colloid Nanocomposites. Anal. Chem., 1999, 71,256-258.
    [38] Harma H, Lovgren T. Europium Nanoparticles and Time-resolved Fluorescence for Ultrasensitive Detection of Prostate-specific Antigen. Clin. Chem., 2001,47(3), 561-568.
    [39] Lu S, Wang S, Chang W. Application of Colloidal Gold on Immunoassay. Journal of Wuhan University ,2000,46 (4), 393-399.
    [40] Roth J, Bendayan M, Orci L . Ultrastructural Localization of IntracellularAntigens by the Use of Protein A-gold Complex. J Histochem Cytochem ,1978 ,26 ,1074-1081.
    [41] Holgate C S, Jackson P, Cowen P N, Bird C C. Immunogold-silver Staining: New Method of Immunostaining with Enhanced Sensitivity. J Histochem Cytochem, 1983 ,31, 938-944.
    [42] Taylor J R, Fang M M, Nie S. Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles. Anal. Chem., 2000, 72(9), 1979-1986.
    [43] Reynolds R A, Mirkin C A, Letsinger R L. Homogeneous, Nanoparticle-Based Quantitative Colorimetric Detection of Oligonucleotides. J. Am. Chem. Soc, 2000,122, 3795-3796.
    [44] Storhoff J J, Lazaorides A A, Mucic R C, Mirkin C A, Letsinger R L, Schatz G C. What Controls the Optical Properties of DNA-Linked Gold Nanoparticle Assemblies? J. Am. Chem. Soc, 2000, 122:4640-4650.
    [45] Bangs L B. New developments in particle-based, immunoassays. Pure. Appl. Chem., 1996, 68,1873-1879.
    [46] Iaton T A, Mirkin C A, Letsinger R L. Scanometric DNA array detection with nanoparticle probes.Science, 2000,289,1757-1760.
    [47] Elghanian R, Storhoff J J, Mucic R C, Letsinger R L, Mirkin C A. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science,1997,277,1078-1081.
    [48] Mirkin C A. Programming the Assembly of Two- and Three-Dimensional Architectures with DNA and Nanoscale Inorganic Building Blocks. Inorg.Chem., 2000, 39, 2258-2272.
    [49] Liu S P, Luo H Q, Li N B, Liu Z F. Study on Frequency-Doubling Scattering and 2nd-Order Scattering Spectra of Heparin- Methylene Blue System. Chinese J. Chem., 2003, 21(4), 423-428.
    [50] Storhoff J J, Elghanian R, Mucic R C, Mirkin C A, Letsinger R L. One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes. J.Am. Chem. Soc, 1998,120,1959-1964.
    [51] Mucic R C, Storhoff J J, Mirkin C A, Letsinger R L. DNA-Directed Synthesis of Binary Nanoparticle Network Materials. J. Am. Chem. Soc, 1998,120,12674-12675.
    [52] Storhoff J J, Mirkin C A. Programmed Materials Synthesis with DNA. Chem. Rev., 1999, 99,1849-1862.
    
    [53] Kreibig U, Genzel L. Optical absorption of small metallic particles. Surf. Sci., 1985,156, 678-700.
    [54] Grabar K. C, Smith P C, Musick M D. Kinetic control of interparticle spacing in au colloid-based surfaces: rational nanometer-scale architecture. J. Am. Chem. Soc, 1996, 118, 1148-1153.
    [55]蒋治良,冯忠伟,李芳等.金纳米粒子的共振散射光谱.中国科学B辑,2001,31(2),183-188.
    [56]Ma Z F,Sui S F.Naked-eye sensitive detection of immunoglobin G by enlargement of Au nanoparticles in vitro.Angew.Chem.Int.Ed,2002,41,2176-2179.
    [57]Kerman K,Morita Y,Takamura Y,Ozsoz M,Tamiya E.Modification of Escherichia coil single-stranded DNA binding protein with gold nanoparticles for electrochemical detection of DNA hybridisation.Analytica Chimica Acta,2004,510(2),169-174.
    [58]Storhoff J J,Lucas A D,Garimella V,Bao Y P,Muller U R.Homogeneous detection of unamplified gen mic DNA sequences based on colorimetric scatter of gold nano particle probes.Nat.Biotechnol.,2004,22(7),883-837.
    [59]Liu J,Lu Y.Colorimetric Biosensors Based on DNAzyme-Assembled Gold Nanoparticles.J.Fluoresc.,2004,14(4),343-354.
    [60]Hart S,Lin J,Zhou F,Vellanoweth g L.Oligonucleotide-capped gold nanoparticles for improved atomic force microscopic imaging and enhanced selectivity in polynucleotide detection.Biochem Biophys Res Commun,2000,279(1),265-269.
    [61]Csaki A,M(o|¨)ller R,Straube W,K(o|¨)hler J M,Fritzsche W.DNA monolayer on gold substrates characterized by nanoparticle labeling and scanning force microscopy.Nucleic Acids Res.,2001,29,e81.
    [62]M(o|¨)ller R,Csaki A,K(o|¨)hler J M,Fritzsche W.DNA probes on chip surfaces studied by scanning force microscopy using specific binding of colloidal gold.Nucl.Acids Res.,2000,28,e91.
    [63]Reichert J,Csaki A,Kohler J M,Fritzsche W.Chip-based optical detection of DNA hybridization by means of nanobead labeling.Anal.Chem.,2000,72,6025-6029.
    [64]Su M,Li S Y,Dravid V P.Microcantilever resonance-based DNA detection with nanoparticle probes.Applied Physics Letters,2003,82(20),3562-3564.
    [65]Nath N,Chilkoti A.Label-Free Biosensing by Surface Plasmon Resonance of Nanoparticles on Gluss:Optimization of Nanoparticle Size.Anal.Chem.,2004,76(18),5370-5378.
    [66]Luo X L,Xu J J,Du Y,Chen H Y.Based on chitosan-Cglucose oxidase-gold nanoparticles biocomposite formed by one-step electrodeposition.Anal.Biochem,2004,334(2),284-289.
    [67]Hazarika P,Ceyhan B,Niemeyer C M.Reversible switching of DNA-gold nanoparticle aggregation.Angew Chem.Int.Ed.Engl.,2004,43(47),6469-6471.
    [68]Bharathi S,Nogami M.A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme.Analyst,2001,126(11),1919-1922.
    [69]Lee T M,Cai H,Hsing I M.Effects of gold nanoparticle and electrode surface properties on electrocatalytic silver deposition for electrochemical DNA hybridization detection.Analyst,2005,130(3),364-369.
    [70]Wharton J,Polak J M,Probert L,De Mey J,McGregor G P,Bryant M G,Bloom S R.Pep(?)de containing nerves in the ureter of the guinea-pig and cat.Neuroscience,1981,6,969-982.
    [71]Roth J.An improved method for the subcellular localization of calcium using a modification of the antimonate precipitation technique.J Histochem Cytochem,1982,30(7),691-629.
    [72]Scopsi L.Silver Enhanced Colloidal Gold Probes as Markers for Scanning Electron Microscopy.Histochem,1986,86,35-41.
    [73]Griffiths P.Quantitation in immunocytochemistry:correlation of immunogold labeling to absolute number of membrane antigens.J Histochem Cytochem,1986,34,1389-1398.
    [74]Beesley J E.Virus diagnosis:a novel use for the protein A-gold probe.Med.Lab.Sci.,1985,42,161-165.
    [75]B(o|¨)hmer R,King N J C.Immuno-gold labeling for flow cytometric analysis.J.Immunol.Methods,1984,74,49-57.
    [76]韩松,陶义训,曾瑞云.血清肌红蛋白滴金免疫测定法试剂的研制及临床应用.上海医学检验杂志,1995,10,65-66.
    [77]He L,Musick M D,Nicewamer S R,Salinas F G,Benkovic S J,Natan M J,Keating C D.Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization.J.Am.Chem.Soc.,2000,122,9071-9077.
    [78]汪洛,陶祖莱.表面等离子体激元共振与生物分子相互作用分析.生物物理与生物化学进展,1996,23,483-467.
    [79]Homola J,Yee S S,Gauglitz G.Surface Plasmon Resonance Sensors:Review.Sensors and Actutors B,1999,54,3-15.
    [80]王柯敏,羊小海,肖丹等.基于表面等离子体子共振(SPR)的高灵敏乙型肝炎表面抗原(HBsAg)免疫传感器.中国化学会2000年学术会议论文集(下),2000,485-486.
    [81]宋庆宇,陈焕文,宋大千等.一种基于共振角度测量的无可动部件小型表面等离子体子共振化学传感装置.分析化学,2002,30,242-246.
    [82]Gu Z Z,Horie R,Kubo S,Yamada Y,Fujishima A,Sato O.Angew Chem.Int.Ed.,2002,41:1153-1156
    [83]Nath N,Chilkoti A.A Colorimetric Gold Nanoparticle Sensor To Interrogate Biomolecular Interactions in Real Time on a Surface.Anal.Chem.,2002,74:504-509
    [84]Yonzon C R,Jeoung E,Zou S,Schatz G C,Mrksich M,Van Duyne R P.A Comparative Analysis of Localized and Propagating Surface Plasmon Resonance Sensors:The Binding of Concanavalin A to a Monosaccharide Functionalized Self-Assembled Monolayer.J.Am.Chem.Soc.,2004,126(39),12669-12676.
    [85]Lin S Y,Liu S W,Lin C M,Chen C M.Recognition of Potassium Ion in Water by 15-Crown-5Functionalized Gold Nanoparticles.Anal.Chem.,2002,74,330-335.
    [86]Niemeyer C M,Ceyhan B,Noyong M,Simon U.Bifunctional DNA-Gold Nanoparticle Conjugates as Building Blocks for the Self-Assembly of Cross-Linked Particle Layers.Biochem Biophys Res Commun,2003,311(4),995-999.
    [87]Wang M,Sun C Y,Wang L Y,Ji X H,Bai Y B,Li T J,Li J H.Electrochemical detection of DNA immobilized on gold colloid particles modified self-assembled monolayer electrode with silver nanoparticle label Journal of Pharmaceut-ical and Biomedical Analysis,2003,33(5):1117-1125.
    [88]Li C Z,Liu Y,Luong J H.Impedance sensing of DNA binding drugs using gold substrates modified with gold nanopartieles.Anal.Chem.,2005,77(2),478-495.
    [89]Ag(u|¨)i L,Manso J,Yanez-Sedeno P,Pingarron J M.Colloidal-gold cysteamine-modified carbon puste electrodes as suitable electrode materials for the electrochemical determination of sulphur-containing compounds Application to the determination of methionine.Talanta,2004,64(4),1041-1047.
    [90]Siiman O,Gordon K,Burshteyn A,Maples J A,Whitesell J K.Immuno phenotyping using gold or silver nanoparticle-polystyrene bead conjugates with multiple light scatter.Cytometry,2000,41(4),298-307.
    [91]Paciotti G F,Myer L,Weinreich D,Goia D,Pavel N,McLaughlin R E,Tamarkin L.Colloidal Gold:A Novel Nanoparticle Vector for Tumor Directed Drug Delivery.Drug Deliv,2004,11(3) 169-183.
    [92]Tang D P,Yuan R,Chai Y Q,Zhong X,Liu Y,Dai J Y.Novel potentiometry immunoassay for the detection of diphtheria antigen based on colloidal gold and polyvinyl butyral as matrixes.Biochemical Engineering Journal,2004,22(1):43-49
    [93]Xu W,Xu S,Ji X,Song B,Yuan H,Ma L,Bai Y.Preparation of gold colloid monolayer by immunological identification.Colloids Surf B Biointerfaces,2005,40(3,4),169-172.
    [94]Zhang J D,Oyama M.A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode.Electrochimica Acta,2004,50(1),85-90.
    [95]Caruso F,Rodda E,Furlong D,Nikura K,Okahata Y.Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development.Anal.Chem.,1997,69,2043-2049.
    [96]Okahata Y,Matsunobo Y,Ijiro K,Murakami A,Makino M.Hybridization of nucleic acids immobilized on a quartz crystal microbalance.J.Am.Chem.Soc.,1992,114,8299-8300.
    [97]Willner I.,Patolsky F,Weizmann Y,Willner B.Amplified detection of single-base mismatches in DNA using microgravimetric quartz-crystal-microbalance thansduction.Talanta,2002,56,847-856.
    [98]Patolsky F,Lichtenstein A,Willner I.Detection of single-base DNA mutations by enzyme-amplified electronic transduction.Nat.Biotechnol,2001,19,253-257.
    [99]Mirkin C A,Letsinger R L,Mucic R C,Storhoff J J.A DNA-based method for rationally assembling nanoparticles into macroscopic materials.Nature,1996,382:607-609
    [100]Cao Y W C,Jin R C,Mirkin C A.Array-Based Electrical Detection of DNA Using Nanoparticle Probes.Science,2002,297,1536-1540.
    [101]Stoscheck C M.Protein assay sensitive at nanogram levels.Anal Biochem,1987,160,301-305.
    [102]何佑秋,刘绍璞,刘芹,刘忠芳,胡小莉.金纳米与藏红T相互作用的吸收,荧光和共振Raylelgh 散射光谱特征.中国科学(B辑),2005,35(2),159-168.
    [103]何佑秋,刘绍璞,刘忠芳,胡小莉,鲁群岷.金纳米微粒作探针共振瑞利散射光谱法测定卡那 霉素.化学学报,2005,63(11),997-1002.
    [104]鲁群岷,何佑秋,刘绍璞,刘忠芳.金纳米微粒作探针共振瑞利散射光谱法测定亚甲蓝.高等学校化学学报,2006,27(5),849-852.
    [105]Shaopu Liu,Zhuo Yang,Zhongfang Liu,Ling Kong.Resonance Rayleigh-scattering method for the determination of proteine with gold nanoparticle probe,Anal.Biochem.2006,353,108-116.
    [106]Shaopu Liu,Zhuo Yang,Zhongfang Liu,Jiangtao Liu,Yan Shi,Resonance Rayleigh Scattering study on the interaction of gold nanoparticles with berberine hydrochloride and its analytical application,Anal.Chim.Acta,2006,572,283-289.
    [107]Shao Pu Liu,You Qiu He,Zhong Fang Liu,Ling Kong,Qun Min Lu,Resonance Rayleigh scattering spectral method for the determination of raloxifenee using gold nanoparticle as a probe.Anal.Chim.Acta,2007,598,304-311.
    [108]鲁群岷,刘忠芳,刘绍璞.金纳米微粒作探针共振瑞利散射法测定某些蒽环类抗癌药物.化学学报,2007,65(9),821-828.
    [109]康彩艳,陈媛媛,蒋治良,奚旦立.银纳米微粒荧光猝灭法测定水中痕量ClO_2.光谱学与光谱分析,2006,26(6):1096-1098.
    [110]闫月荣,王保安,郑军伟.银溶胶中电荷转移诱导的表面增强拉曼光谱研究.光谱实验室,2008,25(3):487-490.
    [111]杨生春,唐春,董守安,李品将.基于纳米Ag粒子的表面等离子体共振光谱测定CN~-的研究.分析试验室,2005,24(1):55-58.
    [112]蒋治良,陈媛媛,梁爱惠,陶慧林,唐宁莉,钟福新.痕量纤维蛋白原的银纳米标记免疫共振散射光谱分析.中国科学B辑(化学),2006,36(5):419-424.
    [113]梁爱惠,张南南,蒋治良,刘荣进.银纳米微粒共振散射光谱法测定羟基自由基及其应用.中国科学B辑(化学),2008,38(1):35-42.
    [114]Zhiliang Jiang,Qingye Liu,Shaopu liu,Resonance Rayleigh spectral analysis of chlorides based on the formation of(Agcl)n(Ag)s nanoparticle,Spectrochim.Acta,Part A,2002,58(12):2759-2764.
    [115]Nina L,Christina L,Michael W.Silver nanoparticle enhanced immunoassays:one step real time kinetic assay for insulin in serum.Europ J Pharm Biopharma,2003,56:469-477.
    [116]Maurizio C,Niels L,Jean-Pierre A.Detection of proreins on poly(vinylidene difluoride)membranes by scanning electrochemical microscopy.Electrochem Comm,2004,6:1217-1221.
    [117]刘绍璞,蒋治良,孔玲,刘芹.[HgX_2]n纳米微粒的吸收光谱、Rayleigh散射和共振Rayleigh 散射光谱.中国科学(B辑),2002,32(6):554-560.
    [118]蒋治良,刘绍璞,刘庆业.碳纳米微粒的共振散射光谱研究.应用化学,2002,19(1):22-25.
    [119]王齐,刘忠芳,孔玲,刘绍璞.铜纳米微粒与维生素B_1相互作用的吸收光谱和共振瑞利散利光谱研究.分析化学,2007,35(3):365-369.
    [120]李瑞娜,黄杉生,屈永霞,沈健,金丽霞.应用荧光纳米颗粒测定痕量铜.理化检验:化学分册,2007,43(10):805-807,810.
    [121]丁红春,柴怡浩,张中海,鲜跃仲,潘振声,金利通.光催化氧化法测定地表水化学需氧量的研究.化学学报,2005,63(2):148-152。
    [122]李益康,沈健,屈永霞,黄杉生,黄鸣柳.CaAl_2O_4:Eu~(2+),Nd~(3+)纳米颗粒荧光猝灭法测定水中的Pb~(2+).上海师范大学学报(自然科学版),2008,37(2):163-166.
    [123]张立德,牟季美.纳米材料和纳米结构.科学出版社,2002.
    [124]方容川.固体光谱学.中国科学技术大学出版社,2001.
    [125]陈国珍,黄贤智,许金钩等.荧光分析法.北京:科学出版社,1990,93-134.
    [126]Dabbousi B O,Rodriguez-Viejo J,Mikulec F V,Heine J R,Mattoussi H,Ober R,Jenscn K F,Bawendi M G.(CdSe)ZnS Core-Shell Quantum Dots:Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites.J.Phys.Chem.B,1997,101,9463-9475.
    [127]Hines M A.,Guyot-Sionnest P.Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals.J.Phys.Chem.,1996,100,468-471.
    [128]Nirmal M,Brus L.Luminescence Photophysies in Semiconductor Nanocrystals.Ace.Chem.Res,1999,32,407-414.
    [129]Bruchez Jr M,Moronne M,Gin P,Weiss S Alivisatos A P.Semiconductor Nanocrystals as Fluorescent Biological Labels,Science,1998,281,2013-2016.
    [130]Chan,W C W,Nie S M.Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection.Science,1998,281,2016-2018.
    [131]Gerion D,Pinaud F,Williams S C,Parak W J,Zanchet D,Weiss S,Alivisatos A P.Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots.J.Phys.Chem.B,2001,105,8861-8871.
    [132]Weiss S,Bruchez Jr M,Alivisatos A E U.S.Patent,5990479,1999.
    [133]Alivisatos P,Colloidal quantum dots.From scaling laws to biological applications,Pure.Appl.Chem.,2000,72,3-9.
    [134]CaoY W,Banin U.Synthesis and Characterization of InAs/InP and InAs/CdSe Core/Shell Nanoerystals.Angew.Chem.Int.Edit.,1999,38,3692-3694.
    [135]Cao Y W,Banin U.Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores.J.Am.Chem.Soc.,2000,122,9692-9702.
    [136]Peng X G,Schlamp M C,Kadavanich A V,Alivisatos A P.Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,J.Am.Chem.Soc.,1997,119(30),7019-7029.
    [137]林章碧,苏星光,张皓,牟颖,孙晔,胡海,杨柏,闫岗林,罗贵民,金钦汉.用水溶液中合成的量子点作为生物荧光标记物的研究.高等学校化学学报,2003,24,216-220.
    [138]Tsay J M,Pflughoefft M,Bentolila L A,Weiss S.Hybrid Approach to the Synthesis of Highly Luninescent CdTe/ZnS and CdHgTe/ZnS Nanocrystals.J.Am.Chem.Soc.,2004,126,1926-1927
    [139]Goldman E R,Anderson G P,Tran P T,Mattoussi H,Charles P T,Mauro J M.Conjugation of Luminescent Quantum Dots with Antibodies Using an Engineered Adaptor Protein To Provide New Reagents for Fluoroimmunoassays.Anal.Chem.,2002,74,841-847.
    [140]Lingerfelt B M,Mattoussi H,Goldman E R,Mauro J M,Anderson G P.Preparation of Quantum Dot-Biotin Conjugates and Their Use in Immunochromatography Assays.Anal.Chem,2003,75,4043-4045.
    [141]Gerion D,Chen F,Kannan B,Fu A,Parak W J,Chen D J,Majumdar A,Alivisatos A P.Room-Temperature Single-Nucleotide Polymorphism and Multiallele DNA Detection Using Fluorescent Nanocrystals and Microarrays.Anal.Chem,2003,75,4766-4772.
    [142]Mahtab R,Rogers J P,Murphy C J.Protein-Sized Quantum Dot Luminescence Can Distinguish between "Straight","Bent",and "Kinked" Oligonucleotides.J.Am.Chem.Soc.,1995,117,9099-9100.
    [143]Gattas-Asfura K M,Leblanc R M.Peptide-eoated CdS quantum dots for the optical detection of copper and silver.Chem.Commun.,2003,7(21),2684-2685.
    [144]Liang J,Ai X,He Z,Pang D,Functionalized CdSe quantum dots as selective silver ion chemodosimeter.Analyst,2004,129,619.
    [145]Jin W J,Fernandez-Arg(u|¨)elles M T,Costa-Fernandez J M,Pereiro R,Sanz-Medel A.Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions.Chem.Commun.,2005,(7),883-885.
    [146]Mitchell G P,Mirkin,C A,Letsinger R L.Programmed Assembly of DNA Functionalized Quantum Dots.J.Am.Chem.Soc.1999,121,8122-8123.
    [147]Han M Y,Gao X H,Su J Z,Nie S M.Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules.Nature Biotech.,2001,19,631-635.
    [148]张春阳,马辉,丁尧,金雷,陈瓞延,苗琦,聂书明.量子点标记天花粉蛋白的研究.高等学校化学学报,2001,23(1),34-37.
    [149]Zhang C Y,Ma H,Nie S M,Ding Y,Jin L,Chen D Y.Quantum dot-labeled trichosanthin.Analyst,2000,125(6),1029-1031.
    [150]Wang L Y,Wang L,Gao F,Yu Z Y,Wu Z M.Application of functionalized CdS nanoparticles as fluorescence probe in the determination of nucleic acids.Analyst,2002,127,977-980.
    [151]Wang L Y,Zhou Y Y,Wang L,Zhu C Q,Li Y X,Gao F.Synchronous fluorescence determination of protein with functionalized CdS nanoparticles as a fluorescence probe.Anal.Chim.Acta,2002,466,87-92
    [152]汪乐余,郭畅,李茂国,许发功,朱昌青,王伦.功能性硫化镉纳米荧光探针荧光猝灭法测定核酸.分析化学,2003,31(1),81-86.
    [153]Xie M,Liu H,Chen P,Zhang Z,Wang X,Xie Z,Du Y,Pan B,Pang D.CdSe/ZnS-labeled carboxymethyl chitosan as a bioprobe for live cell imaging.Chem.Comm.,2005,(44),5518-5520
    [154]Chen C Y,Cheng C T,Lai C W,Wu P W,Wu K C,Chou P T,Chou Y S,Chiu H.Potassium ion recognition by 15-crown-5 functionalized CdSe/ZnS quantum dots in H_2O.Chem.Comm.,2006,(3),263-265
    [155]Zhelev Z,Ohba H,Bakalova R.Single Quantum Dot-Micelles Coated with Silica Shell as Potentially Non-Cytotoxic Fluorescent Cell Tracers.J.Am.Chem.Soc.,2006,128,6324-6325.
    [156]Bakalova R,Zhelev Z,Aoki I,Ohba H,Imai Y,Kanno I.Silica-Shelled Single Quantum Dot Micelles as Imaging Probes with Dual or Multimodality.Anal.Chem.,2006,78,5925-5932.
    [157]Cohen R,Kronik L,Shanzer A,David Cahen A,Liu Y,Rosenwaks J K,Lorenz,Ellis A B.Molecular Control over Semiconductor Surface Electronic Properties:Dicarboxylic Acids on CdTe/CdSe/GaAs/InP,J.Am.Chem.Soc.,1999,121,10545-10553.
    [155]Ivanisevic A,Reynolds M F,Burstyn J N,Ellis A B.Photoluminescent Properties of Cadmium Selenide in Contact with Solutions and Films of Metalloporphyrins:Nitric Oxide Sensing and Evidence for the Aversion of an Analyte to a Buried Semiconductor-Film Interface.J.Am.Chem.Soc.,2000,122,3731-3738.
    [159]Seker F,Meeker K,Kuech T F,Ellis A B.Surface Chemistry of Prototypical Bulk Ⅱ-Ⅳ and Ⅲ-ⅤSemiconductors and Implications for Chemical Sensing.Chem.Rev.,2000,100,2505-2536.
    [160]Nickel A M L,Seker F,Ziemer B P,Ellis A B.Imprinted Poly(acrylic acid) Films on Cadmium Selenide.A Composite Sensor Structure that Couples Selective Amine Binding with Semiconductor Substrate Photoluminescence.Chem.Mater.,2001,1391-1397.
    [161]Chen Y,Rosenzweig Z.Luminescent CdS Quantum Dots as Selective Ion Probes.Anal.Chem,2002,74,5132-5138.
    [162]Chen B,Yu,Y,Zhou Z T,Zhong P,Synthesis of Novel Nanocrystals as Fluorescent Sensors for Hg~(2+)Ions.Chemistry Letters,2004,33,1608.
    [163]李永强,刘晓霞,王崇妍。赵丹,王金中.功能性CdS纳米溶胶的合成及在测定痕量铜中的应用.分析测试学报,2007,2(6):813-816.
    [164]刘迪,程伟青,严拯宇.硫化镉纳米粒子的合成及荧光猝灭法测定Cu~(2+)的初步研究.分析化学,2007,35(6):825-829.
    [165]汪乐余,朱英贵,朱昌青,王伦,宋海燕,李世珍,李兴江.硫化镉纳米荧光探针荧光猝灭法测定痕量铜.分析化学,2002,20(11):1352-1354.
    [166]陈波,曾娴,戴燕,俞英.碲化镉纳米晶荧光猝灭法测定痕量铜(Ⅱ).分析科学学报,2005,21(6):633-635.
    [167]钟萍.11-巯基烷酸修饰CdSe/CdS纳米晶的合成及荧光增敏法测定溶菌酶.应用化学,2007,24(12):1428-1432.
    [168]张犁黎,郑行望,屈颖娟,刘环宇.硫化镉纳米粒子荧光淬灭测定柳氮磺吡啶.陕西师范大学学报(自然科学版),2006,34(2):74-76,79.
    [169]俞英,周震涛.核壳纳米晶二硒化镉/硫化镉的合成及荧光法测定溶菌酶.分析化学,2005,33(5):650-652.
    [170]陈莉华,覃事栋,李朝阳.胃蛋白酶对CdTe纳米粒子的表面修饰及分析应用.高等学校化学学报.2008,29(2):277-282.
    [171]Wang S,Mamedova N,Kovtov N A,Chen W,Studer J.Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates.Nano.Letters,2002,2,817-822
    [172]Clapp A R,Medintz I L,Mauro M W,Fisher B R,Bawendi M G.,Mattoussi H.Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors.J.Am.Chem.Soc.,2004,126,301-310.
    [173]Bakalova R,Zhelev Z,Ohba H,Baba Y.Quantum Dot-Conjugated Hybridization Probes for Preliminary Screening of siRNA Sequences.J.Am.Chem.Soc.,2005,127,11328-11335.
    [174]Clapp A R,Medintz I L,Mauro M W,Fisher B R,Goldman E R,Bawendi M G,Mattoussi H.Quantum Dot-Based Multiplexed Fluorescence Resonance Energy Transfer.J.Am.Chem.Soc.,2005,127,18212-18221.
    [175]Zhang C Y,Yen H,Kuroki M T,Wang T H.Single-quantum-dot-based DNA nanosensor.Nature Materials,2005,4,826-831.
    [176]Zhang C Y,Johnson L W.Growth Kinetics of Heterostructured GaP-GaAs Nanowires.J.Am.Chem.Soc.2006,128,1355-1359.
    [177]Medintz I L,Clapp A R,Attoussi H M,Goldman E R,Fisher B R,Mauro J M.Self-assembled nanoscale biosensors based on quantum dot FRET donors.Nature Materials,2003,2,630-638.
    [178]Medintz I L,Clapp A R,Melinger J S,Deschamps J R,Mattoussi H.Reversible Modulation of Quantum Dot Photoluminescence Using a Protein-Bound Photochromic Fluorescence Resonance Energy Transfer Acceptor.J.Am.Chem.Soc.2004,126,30-31.
    [179]Wargnier R,Baranov A V,Maslov V G,Stsiapura V,Artemyev M,Pluot M,Sukhanova A,Nabiev I.Energy Transfer in Aqueous Solutions of Oppositely Charged CdSe/ZnS Core/Shell Quantum Dots and in Quantum Dot-Nanogold Assemblies.Nano.Letters,2004,4,451-457.
    [180]Oh E,Hong MY,Lee D,Nam S H,Yoon H C,Kim H S.Inhibition Assay of Biomolecules based on Fluorescence Resonance Energy Transfer(FRET) between Quantum Dots and Gold Nanoparticles.J.Am.Chem.Soc.,2005,127,3270-3271.
    [181]Cordes D B,Gamsey S,Singaram B.Fluorescent Quantum Dots with Boronic Acid Substituted Viologens To Sense Glucose in Aqueous Solution.Angew.Chem.Int.Ed.,2006,45,3829-3832.
    [182]Peng H,Zhang L J,Kjallman,tanja H M,Soeller C,Travas-Sejdic J.DNA Hybridization Detection with Blue Luminescent Quantum Dots and Dye-Labeled Single-Stranded DNA.J.Am.Chem.Soc.2007,129,3048-3049.
    [183]王齐,刘忠芳,刘绍璞.硫化镉纳米微粒作探针共振瑞利散射测定某些蒽环类抗癌药物.高等 学校化学学报.2007,28(5),837-842.
    [184]张明翠,张德兴,汪乐余,夏婷婷,董玲,王伦.基于功能性CuS纳米粒子共振光散射法测定蛋白质.安徽师范大学学报(自然科学版):2004,27(3):295-298.
    [1] Alivisatos A P. Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science, 1996, 271,933-937.
    
    [2] Bruchez Jr M, Moronne M, Gin P, Weiss S, Alivisatos A P. Semiconductor Nanocrystals as Fluorescent Biological Labels, Science, 1998,281,2013-2016.
    
    [3] Chan W C W, Nie S M. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection.Science, 1998,281,2016-2018.
    
    [4] Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos A P. Shape control of CdSe nanocrystals, Nature, 2000,404, 59-61.
    
    [5] Minkin C A, Taton T A. Materials chemistry: Semiconductors meet biology, Nature, 2000, 405,626-627.
    
    [6]Yu W W, Qu L, Guo W, Peng X. Experimental Determination of the Extinction Coefficient of CdTe,CdSe and CdS Nanocrystals. Chem. Mater., 2004, 16(3), 560-560.
    
    [7] Garrett M D, Bowers M J, McBride J R, Orndorff R L, Pennycook S J, Rosenthal S J. Band Edge Dynamics in CdSe Nanocrystals Observed by Ultrafast Fluorescence Upconversion, J. Phys. Chem. C;2008, 112(2), 436-442.
    
    [8] Sarkar S K, Cohen H, Hodes G. Internal Field Switching in CdSe Quantum Dot Films on Si, J. Phys.Chem. B., 2006,110(43), 22048-22048.
    
    [9] Peng P, Milliron D J, Hughes S M, Johnson J C, Alivisatos A P, Saykally R J. Femtosecond Spectroscopy of Carrier Relaxation Dynamics in Type II CdSe/CdTe Tetrapod Heteronanostructures,Nano Lett., 2005, 5(12),2651-2651.
    
    [10] Willard D M, Carillo L L, Jung J, Van Orden A. CdSe-ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Protein-Protein Binding Assay, Nano Lett., 2001, 1(10), 581-581.
    
    [11] Lee J C, Kim T G, Choi H J, Sung Y M. Enhanced Photochemical Response of TiO2/CdSe Heterostructured Nanowires, Cryst. Growth Des., 2008, 8(2), 750 - 750.
    
    [12] Hao E, Sun H, Zhou Z, Liu J, Yang B, Shen J. Synthesis and Optical Properties of CdSe and CdSe/CdS Nanoparticles, Chem. Mater., 1999, 11(11), 3096-3102.
    
    [13] Shevchenko E V, Ringler M, Schwemer A, Talapin D V, Klar T A, Rogach A L, Feldmann J,Alivisatos A P. Self-Assembled Binary Superlattices of CdSe and Au Nanocrystals and Their Fluorescence Properties, J. Am. Chem. Soc; 2008; 130(11), 3274-3275.
    
    [14] Sandros M G, Gao D, Benson D E. A Modular Nanoparticle-Based System for Reagentless Small Molecule Biosensing, J. Am. Chem. Soc, 2005, 127 (35), 12198-12199.
    
    [15] Liu L, Peng Q, Li Y. An Effective Oxidation Route to Blue Emission CdSe Quantum Dots, Inorg.Chem., 2008,47(8), 3182-3187.
    
    [16] Lao U L, Mulchandani A, Chen W. Simple Conjugation and Purification of Quantum Dot-Antibody Complexes Using a Thermally Responsive Elastin-Protein L Scaffold As Immunofluorescent Agents, J. Am. Chem. Soc, 2006,128 (46), 14756-14757.
    
    [17] Hsieh S C, Wang F F, Lin C S, Chen Y J, Hung S C, Wang Y J. The inhibition of osteogenesis with human bone marrow mesenchymal stem cells by CdSe/ZnS quantum dot labels,Biomaterials,2006,27(8),1656-1664.
    [18]Grieve K,Mulvaney P,Grieser F.Synthesis and electronic properties of semiconductor nanoparticles/quantum dots,Curr.Opin.Colloid Interface Sci.,2000,5,168-172.
    [19]Koberling F,Mews A,BascheT.Oxygen-Induced Blinking of Single CdSe Nanocrystals,Adv.Mater.,2001,13,672-676.
    [20]Cordero S R,Carson P J,Estabrook R A,Strouse G F,Buratto S K.Photo-Activated Luminescence of CdSe Quantum Dot Monolayers,J.Phys.Chem.B 2000,104,12137-12142.
    [21]Huynh W U,Peng X,Alivisatos A P.CdSe Nanocrystal Rods/Poly(3-hexylthiophene) Composite Photovoltaic Devices,Adv.Mater.,1999,11,923-927.
    [22]Artemyev M,Kisiel D,Abmiotko S,Antipina M N,Khomutov G B,Kislov V V,Rakhnyanskaya A A.Self-Organized,Highly Luminescent CdSe Nanorod-DNA Complexes,J.Am.Chem.Soc.2004,126,10594-10597.
    [23]Xu D,Shi X,Guo G,Gui L,Tang Y.Electrochemical Preparation of CdSe Nanowire Arrays,J.Phys.Chem.B.,2000,104(21),5061-5063.
    [24]Mattoussi H,Mauro J M,Goldman E R,Anderson G P,Sundar V C,Mikulec F V,Bawendi M G.Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein,J.Am,Chem.Soc.,2000,122,12142-12150.
    [25]Pathak S,Choi S K,Amheim N,Thompson M E.Hydroxylated Quantum Dots as Luminescent Probes for in Situ Hybridization,J.Am.Chem.Soc.,2001,123,4103-4104.
    [26]Goldman E R,Anderson G P,Tran P T,Mattoussi H,Charles P T,Mauro J M.Conjugation of Luminescent Quantum Dots with Antibodies Using an Engineered Adaptor Protein To Provide New Reagents for Fluoroimmunoassays,Anal.Chem.,2002,74,841-847.
    [27]Han M,Gao X,Su J Z,Nie S.Quantum-dot-tagged microbeads for multiplexed optical coding of biomoleeules,Nat.Biotechnol.,2001,19,631-635.
    [28]林章碧,苏星光,张皓,牟颖,孙晔,胡海,杨柏,闫岗林,罗贵民,金钦汉.用水溶液中合成的量子点作为生物荧光标记物的研究,高等学校化学学报,2003,24(2),216-219.
    [29]Cordes D B,Gamsey S,Singaram B.Fluorescent Quantum Dots with Boronic Acid Substituted Viologens To Sense Glucose in Aqueous Solution,Angew.Chem.Int.Ed.2006,45,3829-3832.
    [30]Murray C B,Noms D J,Bawendi M G.J.Am.Chem.Soc.,1993,115,8706-8715.
    [31]Peng Z A,Peng X G.Formation of High-Quality CdTe,CdSe,and CdS Nanocrystals Using CdO as Precursor.J.Am.Chem.Soc.,2001,123(1),183-184.
    [32]Qu L,Peng Z A,Peng X.Alternative Routes toward High Quality CdSe Nanocrystals,Nano Lett.,2001,1(6),333-337.
    [33]Malik M A,O'Brien P,Revaprasadu N.A Simple Route to the Synthesis of Core/Shell Nanoparticles of Chalcogenides,Chem.Mater.,2002,14(5),2004-2010.
    [34]Yochelis S,Hodes G.Nanocrystalline CdSe Formation by Direct Reaction between Cd Ions and Selenosulfate Solution,Chem.Mater.,2004,16(14),2740-2744.
    [35]Chen X B,Samia A C S,Lou Y B,Burda C.Investigation of the Crystallization Process in 2 nm CdSe Quantum Dots,J.Am.Chem.Soc.,2005,127,4372-4375.
    [36]Mohamed M B,Tonti D,Al-Salman A,Chemseddine A,Chergui M.Synthesis of High Quality Zinc Blende CdSe Nanocrystals,J.Phys.Chem.B,2005,109(21),10533-10537.
    [37]Ma C,Ding Y,Moore D,Wang X.,Wang Z.L.,Single-Crystal CdSe Nanosaws,J.Am.Chem.Soc.,2004,126,708-709.
    [38]Pradhan N,Reifsnyder D,Xie R,Aldana J,Peng X.Surface Ligand Dynamics in Growth of Nanocrystals,J.Am.Chem.Soc.,2007,129(30),9500-9509.
    [39]Dai Q,Li D,Chen H,Kan S,Li H,Gao S,Hou Y,Liu B,Zou G.Colloidal CdSe Nanocrystals Synthesized in Noncoordinating Solvents with the Addition of a Secondary Ligand:Exceptional Growth Kinetics,J.Phys.Chem.B.,2006,110(45),22951-22951.
    [40]Palaniappan K,Xue C,Arumugam G,Hackney S A,Liu J.Water-Soluble,Cyclodextrin-Modified CdSe-CdS Core-Shell Structured Quantum Dots,Chem.Mater.2006,18,1275-1280.
    [41]Lim S J,Chon B,Joo T,Shin S K.Synthesis and Characterization of Zinc-Blende CdSe-Based Core/Shell Nanocrystals and Their Luminescence in Water,J.Phys.Chem.C.,2008,112(6),1744-1747.
    [42]徐万帮,汪勇先,梁胜,许荣辉,张国欣,尹端芷,水相中荧光CdSe纳米晶的优化合成与表征,无机化学学报,2007,23(7),1220-1226.
    [43]刘舒曼,徐征,Wageh S.,徐叙瑢,CdSe纳米晶的制备及性能表征,光电子·激光,2003,14(1),46-49.
    [44]封宾,滕枫,唐爱伟,王琰,侯延冰,王永生,氨基酸稳定的CdSe纳米晶对溶菌酶进行荧光标记,发光学报,2007,128(13),421-424.
    [45]Rogach A L,Komowski A,Gao M,Eychm(u|¨)ller A,Weller H.Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals,J.Phys.Chem.B.,1999,103,3065-3069.
    [46]Rogach A L,Nagesha D,Ostrander J W,Giersig M,Kotov N A."Raisin Bun"-Type Composite Spheres of Silica and Semiconductor Nanocrystals,Chem.Mater.2000,12,2676-2685.
    [47]Jasieniak J,Mulvaney P.From Cd-Rich to Se-Rich-the Manipulation of CdSe Nanocrystal Surface Stoichiometry,J.Am.Chem.Sot.,2007,129(10),2841-2848.
    [48]Gaponik N,Talapin D V,Rogach A L,Hoppe K,Shevchenko E V,Kornowski A,Eychm(u|¨)ller A,Weller H.Thiol-capping of CdTe nanocrystals:an alternative to organometallic synthetic routes.J.Phys.Chem.B 2002,106(29),7177-7185.
    [49]Zhang Z H,Chin W S,Vittal J J.Water-Soluble CdS Quantum Dots Prepared from a Refluxing Single Precursor in Aqueous Solution,J.Phys.Chem.B,2004,108(48),18569-18574.
    [50]Lakonicz J R,Principles of fluorescence spectroscopy(3~(rd) ed),Spring-Verlag,Berlin,Heidelberg,2006,63-94.
    [51]Breus V V,Heyes C D,Nienhaus G U.Quenching of CdSe-ZnS Core-Shell Quantum Dot Luminescence by Water-Soluble Thiolated Ligands,J.Phys.Chem.C,2007,111,18589-18594.
    [52]Peng X.,Sehlamp M C,Kadavanich A V,Alivisatos A P.Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,J Am Chem Soc,1997,119(30),7019-7029.
    [53]Wang Y,Tang Z,Correa-Duarte M A,Pastoriza-Santos I,Giersig M,Kotov N A,Liz-Marzan L M.Mechanism of Strong Luminescence Photoactivation of Citrate-Stabilized Water-Soluble Nanoparticles with CdSe Cores.J.Phys.Chem.B 2004,108,15461-15469.].
    [54]孙聆东,付雪峰,钱程,廖春生,严纯华,水热法合成CdS╱ZnO核壳结构纳米微粒,高等学校化学学报,2001 22(6),6-9.
    [55]Sandell E B,Hiroshi O,Photometric Determination of traces of metals.Gernral Aspects.New York,John Wiley & sons.1978,421-42
    [1]Peng X G,Schlamp M C,Kadavanich A V,Alivisatos A P.Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,J.Am.Chem.Soc.,1997,119(30),7019-7029.
    [2]Dabbousi B O,Rodriguez-Viejo J,Mikulec F V,Heine J R,Mattoussi H,Ober R,Jensen K F,Bawendi M G.CdSe-ZnS Core-Shell Quantum Dots:Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,J.Phys.Chem.B,1997,101(46),9463-9475
    [3]Guo H Q,Liu S M,Zhu L,Zhang Z H,Chen W,Wang Z G.Synthesis and Luminescence of CdS/ZnS Core/Shell Nanocrystals,Molecular Crystals and Liquid Crystals,1999,337,197-200.
    [4]谢颖,徐静娟,于俊生,陈洪渊.水溶性的CdSe/ZnS纳米微粒的合成及表征,无机化学学报,2004,20(6),663-667.
    [5]Vossmeyer T,Katsikas L,Giersig M,Popovic I G,Diesner K,Chemseddine A,Eychmueller A,Weller H.CdS Nanoclusters:Synthesis,Characterization,Size Dependent Oscillator Strength,Temperature Shift of the Excitonic Transition Energy,and Reversible Absorbance Shift,J.Phys.Chem.,1994,98(31),7665-7673
    [6]刘舒曼,徐征,Wageh H,徐叙蓉,CdSe/CdS核/壳型纳米晶的光谱特性,光谱学与光谱分析,2002,22(6),908-911
    [7]梅芳,何锡文,李娟,李文友,张玉奎,水溶性CdSe/CdS核壳纳米粒子制备的影响因素及其对CdSe/CdS光谱特性的影响,化学学报,2006,64(22),2265-2270
    [8]Hao E,Sun H,Zhou Z,Liu J,Yang B,Shen J.Synthesis and Optical Properties of CdSe and CdSe/CdS Nanopartieles,Chem.Mater.,1999,11(11),3096-3102
    [9]Lin Y W,Hsieh M M,Liu C P,Chang H T.Photoassisted Synthesis of CdSe and Core-Shell CdSe/CdS Quantum Dots,Langmuir,2005,21(2),728-734
    [10]Li J J,Wang Y A,Guo W,Keay J C,Mishima T D,Johnson M B,Peng X.Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction J.Am.Chem.Soc.,2003,125(41),12567-12575
    [11]Pan D,Wang Q,Jiang S,Ji X,An L.Low-Temperature Synthesis of Oil-Soluble CdSe,CdS,and CdSe/CdS Core-Shell Nanocrystals by Using Various Water-Soluble Anion Precursors,J.Phys.Chem.C,2007,111(15),5661-5666.
    [12]Tian Y,Newton T,Kotov N A,Guldi D M,Fendler J H.Coupled Composite CdS-CdSe and Core-Shell Types of(CdS)CdSe and(CdSe)CdS Nanoparticles J.Phys.Chem.,1996,100(21),8927-8939
    [13]王雪婷,于俊生,谢颖,水溶性CdSe/CdS量子点的合成及其与牛血清蛋白的共轭作用,无机化学学报,2007,23(7):1185-1193.
    [14]Qian J,Yong K T,Roy I,Ohulchanskyy T Y,Bergey E J,Lee H H,Tramposch K M,He S,Maitra A,Prasad P N.Imaging Pancreatic Cancer Using Surface-Funetionalized Quantum Dots,J.Phys.Chem.B,2007,111(25),6969-6972.
    [15]Zhao J,Bardecker J A,Munro A M,Liu M S,Niu Y,Ding I K,Luo J,Chen B,Jen A K-Y,Ginger D S.Efficient CdSe/CdS Quantum Dot Light-Emitting Diodes Using a Thermally Polymerized Hole Transport Layer,Nano Lett.,2006,6(3),463-467.
    [16]Vicente G,Colon L A.Separation of Bioeonjugated Quantum Dots Using Capillary Electrophoresis.Anal.Chem.,2008,80(6),1988-1994.
    [17]Lei Y,Tang H,Yao L,Yu R,Feng M,Zou B.Applications of Mesenchymal Stem Cells Labeled with Tat Peptide Conjugated Quantum Dots to Cell Tracking in Mouse Body.Bioconjugate Chem.,2008,19(2),421-427.
    [18]Pan D,Wang Q,Pang J,Jiang S,Ji X,An L,Semiconductor "Nano-Onions" with Multifold Alternating CdS/CdSe or CdSe/CdS Structure,Chem.Mater.2006,18(18),4253-4258.
    [19]Huang G-W,Chen C-Y,Wu K-C,Ahmed M,Chou P-T.One-pot synthesis and characterization of high-quality CdSe/ZnX(X=S,Se) nanocrystals via the CdO precursor,J.Cryst.Growth 2004,265(1-2),250-259
    [20]Gaponik N,Talapin D V,Rogaeh A L,Hoppe K,Shevchenko E V,Kornowski A,Eychm(u|¨)ller A,Weller H.Thiol-capping of CdTe nanocrystals:an alternative to organometallic synthetic routes.J Phys Chem B 2002,106(29):7177-7185.
    [21]Rogach A L.,Nagesha D,Ostrander J W,Giersig M,Kotov N A."Raisin Bun"-Type Composite Spheres of Silica and Semiconductor Nanocrystals,Chem.Mater.,2000,12(9),2676-2685.
    [22]Cordero S R,Carson P J,Estabrook R A,Strouse G.F,Buratto S K.Photo-Activated Luminescence of CdSe Quantum Dot Monolayers,J.Phys.Chem.B,2000,104(51),12137-12142.
    [23]Henglein A.Small-particle research:physical-chemical properties of extremely small colloidal-metal and semiconductor particles.Chem.Rev.,1989,89,1861-1873.
    [24]张宇,付德刚,蔡建东等.CdS纳米粒子的表面修饰及其对光学性质的影响.物理化学学报,2000,16(5),431-436.
    [25]Isarov A V,Chrysochoos J.Optical and Photochemical Properties of Nonstoichiometric Cadmium Sulfide Nanoparticles:Surface Modification with Copper(Ⅱ) Ions,Langmuir,1997,13(12),3142-3149.
    [26]王柯敏,王益林,李朝辉,李军,付志英,羊小海.CdTe量子点荧光猝灭法测定铜离子的研究,湖南大学学报(自然科学版),2005,32(3),1-5.
    [1]Henglein A.Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles.Chem Rev,1989,89(8):1861-1873
    [2]Alivisatos A P.Perspectives on the physical chemistry of semiconductor nanocrystals.J Phys Chem,1996,100(31):13226-13239
    [3]Kagan C R,Murray C B,Bawendi M G.Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids.Phys Rev B,1996,54(12):8633-8643
    [4]Nirmal M,Brus L.Luminescence photophysics in semiconductor nanocrystals.Acc Chem Res,1999,32(5):407-414
    [5]Peng Z A,Peng X.Formation of high-quality CdTe,CdSe,and CdS nanocrystals using CdO as Precursor.JAm Chem Soc,2001,123(1):183-184
    [6]Yu W W,Wang Y A,Peng X.Formation and Stability of Size-,Shape-,and Structure-Controlled CdTe Nanocrystals:Ligand Effects on Monomers and Nanocrystals.Chem Mater,2003,15(22):4300-4308
    [7]Yu,W W,Peng X..Formation of High-Quality CdS and Other Ⅱ-Ⅵ Semiconductor Nanocrystals in Noncoordinating Solvents:Tunable Reactivity of Monomers.Angew Chem Int Ed,2002,41(13):2368-2371
    [8]Wang Y,Tang Z,Correa-Duarte M A,Pastoriza-Santos I,Giersig M,Kotov N A,Liz-Marzan L M.Mechanism of Strong Luminescence Photoactivation of Citrate-Stabilized Water-Soluble Nanoparticles with CdSe Cores.J Phys Chem B,2004,108(40):15461-15469.
    [9]刘勇,徐耀,李军平,章斌,吴东,孙予罕.不同形貌/晶型CdSe纳米材料的合成.化学学报,2005,63(21):2017-2020
    [10]张敬波,林原,尹峰,肖绪瑞.强度调制光电流谱研究纳晶CdSe薄膜电极的界面电荷转移过程.中国科学B辑:化学,2000,30(3):263-267
    [11]梅芳,何锡文,李娟,李文友,张玉奎.水溶性CdSe/CdS核壳纳米粒子制备的影响因素及其对CdSe/CdS光谱特性的影响.化学学报,2006,64(22):2265-2270
    [12]Colvin,V L,Schlamp M C,Alivisatos A P.Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer.Nature,1994,370(6488):354-357
    [13]Gao M Y,Richter B,Kirstein S,Moehwald,H.Electroluminescence Studies on Self-Assembled Films of PPV and CdSe Nanoparticles. J Phys Chem B, 1998,102 (21): 4096-4103.
    
    [14] Mattoussi H, Radzilowski L H, Dabbousi B O.; Thomas E L, Bawendi M G, Rubner M F.Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals. J Appl Phys 1998, 83 (12): 7965-7974.
    
    [15] Gaponik N P, Talapin D V, Rogach A L.A light-emitting device based on a CdTe nanocrystal/polyaniline composite. Phys Chem Chem Phys, 1999,1 (8): 1787-1789.
    
    [16] Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science, 1998,281(5385): 2013-2016
    
    [17] Chan W C W, Nie S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection.Science, 1998, 281(5385): 2016-2018
    
    [18] Mitchell G P, Mirkin C A, Letsinger R L. Programmed assembly of DNA functionalized Quantum Dots. J Am Chem Soc, 1999, 121 (35): 8122 - 8123
    
    [19] Yu W W, Chang E, Drezek R, Colvin V. L. Water-soluble quantum dots for biomedical applications. Biochem Bioph Res. Co. 2006, 348 (3): 781-786
    
    [20] Eastman P S, Ruan W, Doctolero M, Nuttall R, Feo G, Park J S, Chu J S F, Cooke P Gray, J.W,Li S, Chen F F. Qdot Nanobarcodes for Multiplexed Gene Expression Analysis. Nano Lett. 2006,6(5): 1059-1064.
    
    [21] Ma J, Chen J Y, Guo J, Wang C C, Yang W L, Xu L, Wang P N. Photostability of thiol-capped CdTe quantum dots in living cells: the effect of photo-oxidation. Nanotechnology 2006,17(9):2083-2089
    
    [22] Goldman E R, Anderson G P, Tran P T, Mattoussi H, Charles P T, Mauro J M. Conjugation of Luminescent Quantum Dots with Antibodies Using an Engineered Adaptor Protein To Provide New Reagents for Fluoroimmunoassays. Anal Chem, 2002, 74(4): 841-847
    
    [23] Goldman E R, Clapp A R, Anderson G P, Uyeda H. T., Mauro, J M, Medintz I. L, Mattoussi H. Multiplexed Toxin Analysis Using Four Colors of Quantum Dot Fluororeagents Anal. Chem.2004, 76(3): 684-688.
    
    [24] Bao H, Gong Y, Li Z, Gao M. Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS core-shell. Chem. Mater.2004,16 (20): 3853-3859
    
    [25] He Y, Sai L M, Lu H T, Hu M, Lai W Y, Fan Q L, Wang L H, Huang W. Microwave-assisted synthesis of water-dispersed CdTe nanocrystals with high luminescent efficiency and narrow size distribution.Chem Mater,2007,19(3):359-365
    [26]Bindhu C V,Harilal S S,Varier G K,Issac R C,Nampoori V P N,Vallabhan C P G.Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique.J Phys D Appl.Phys.1996,29(4):1074-1079.
    [27]Achtziger N,Bollmarm J,Licht Th,Reinhold B,Reisl(o|¨)hner U,R(o|¨)hrich J,R(u|¨)b,M,Wienecke,M,Witthuhn W.Structural and electrical investigation of implantation damage annealing in CdTe.Semicond.Sci.Technol,.1996,11(6):947-951
    [28]Niles D W;H(o|¨)chst H.Band offsets and interracial properties of cubic CdS grown by molecular-beam epitaxy on CdTe(110).Phys Rev B,1990,41(18):12710-12719
    [29]Gaponik N,Talapin D V,Rogach A L,Hoppe K,Shevchenko E V,Kornowski A,Eychm(u|¨)ller A,Weller H.Thiol-capping of CdTe nanocrystals:an alternative to organometallic synthetic routes.J Phys Chem B 2002,106(29):7177-7185
    [30]Peng X.,Schlamp M C,Kadavanich A V,Alivisatos A P.Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,J Am Chem Soc,1997,119(30):7019-7029.
    [31]Gao M,Kirstein S,Moehwald H,Rogach A L,Komowski A,Eychmulller A,Weller H.Strongly photoluminescent CdTe nanocrystals by proper surface modification.J Phys Chem B,1998,102(43):8360-8363
    [32]杭州大学化学系分析化学教研室编,分析化学手册,第一分册(第二版)北京,化学工业出版社,1997,145
    [33]何佑秋,刘绍璞,刘忠芳,胡小莉,鲁群岷.金纳米微粒作探针共振瑞利散射光谱法测定卡那霉素.化学学报,2005,63(11):997-1002
    [1]Dabbousi B O,Rodriguez-Viejo J,Mikulec F V,Heine J R,Mattoussi H,Ober R,Jensen K F,Bawendi M G.(CdSe)ZnS Core-Shell Quantum Dots:Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites.J.Phys.Chem.B,1997,101,9463-9475.
    [2]Hines M A,Guyot-Sionnest P.Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals.J.Phys.Chem.,1996,100,468-471.
    [3]Nirmal M,Brus L.Luminescence Photophysics in Semiconductor Nanocrystals.Acc.Chem.Res.,1999,32,407-414.
    [4]Bruchez Jr M,Moronne M,Gin P,Weiss S,Alivisatos A P,Semiconductor Nanocrystals as Fluorescent Biological Labels,Science,1998,281,2013-2016.
    [5]Chan,W C W,Nie S M.Quantum Dot Bioconjugates for Ultrasensitive Nonisotopie Detection.Science,1998,281,2016-2018.
    [6]Gerion D,Pinaud F,Williams S C,Parak W J,Zanehet D,Weiss S,Alivisatos A P.Synthesis and Properties of Bioeompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots.J.Phys.Chem.B,2001,105,8861-8871.
    [7]Weiss S,Bruchez Jr M,Alivisatos A E U.S.Patent,1999,5990479.
    [8]林章碧,苏星光,张皓,牟颖,孙晔,胡海,杨柏,闫岗林.罗贵民.金钦汉.用水溶液中合成的量子点作为生物荧光标记物的研究.高等学校化学学报,2003,24,216-220.
    [9]Tsay J M,Pflughoefft M,Bentolila L A,Weiss S.Hybrid Approach to the Synthesis of Highly Luminescent CdTe/ZnS and CdHgTe/ZnS Nanocrystals.J.Am.Chem.Soc.,2004,126,1926-1927.
    [10]Mitchell G P,Mirkin,C A,Letsinger R L.Programmed Assembly of DNA Funetionalized Quantum Dots.J.Am.Chem.Soc.1999,121,8122-8123.
    [11]Gao X,Cui Y,Levenson R M,Chung L W,Nie S,In vivo cancer targeting and imaging with semiconductor quantum dots.Nat.Bioteehnol.,2004,22(8):969-976.
    [12]Larson D R,Zipfel W R,Williams R M,Clark S W,Bruehez M P,Wise F W,Water-soluble quantum dots for multiphoton fluorescence imaging in vivo.Science,2003,300(5624):1434-1436.
    [13]Kim S,Lim Y T,Soltesz E G,De Grand A M,Lee J,Nakayama A,Parker J A,Mihaljevic T,Laurence R G,Dor D M,Cohn L H,Bawendi M G,Frangioni J V.Near-infrared fluorescent type Ⅱquantum dots for sentinel lymph node mapping.Nat.Biotechnol.,2004,22(1):93-97.
    [14]Dubertret B,Skourides P,Norris D J,Noireaux V,Brivanlou A H,Libchaber A.In vivo imaging of quantum dots encapsulated in phospholipid micelles.Science 2002,298(5599):1759-1762.
    [15] Zhelev Z, Bakalova R, Ohba H, Jose R, Imai Y, Baba Y. Uncoated, Broad Fluorescent, and Size-Homogeneous CdSe Quantum Dots for Bioanalyses, Anal. Chem. 2006, 78, 321-330.
    
    [16] Jiang W, Mardyani S, Fischer H, Chan W C W. Design and Characterization of Lysine Cross-Linked Mercapto-Acid Biocompatible Quantum Dots. Chem. Mater. 2006,18, 872-878.
    
    [17] Ma J, Chen J-Y, Guo J, Wang C C, Yang W L, Xu L, Wang P N. Photostability of thiol-capped CdTe quantum dots in living cells: the effect of photo-oxidation, Nanotechnology, 2006, 17,2083-2089.
    
    [18] Lin S, Xie X, Patell M R, Yang Y-H, Li Z, Caol F, Gheysens O, Zhang Y, Gambhir S S, Raol J H, Wu J C, Quantum dot imaging for embryonic stem cells, BMC Biotechnology, 2007, 7: 67.
    
    [19] Mohamed Ali E, Zheng Y, Yu H-h, Ying J Y, Ultrasensitive Pb~(2+) Detection by Glutathione-Capped Quantum Dots, Anal. Chem., 2007,79(24), 9452-9458.
    
    [20] Bindhu C V, Harilal S S, Varier G K, Issac R C, Nampoori V P N, Vallabhan C P G.Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique. J. Phys. D: Appl. Phys. 1996,29 (4): 1074-1079.
    
    [21] Bao H, Gong Y, Li Z, Gao M. Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS core-shell. Chem. Mater.2004,16 (20): 3853-3859
    
    [22] Achtziger N, Bollmann J, Licht Th, Reinhold B, Reislohner U, Rohrich J, Rub M,Wienecke M, Witthuhn W. Structural and electrical investigation of implantation damage annealing in CdTe. Semicond. Sci. Technol. 1996,11 (6): 947-951
    
    [23] Niles D W, Hochst H. Band offsets and interfacial properties of cubic CdS grown by molecular-beam epitaxy on CdTe(llO). Phys. Rev. B 1990, 41 (18): 12710-12719
    
    [24] Isarov A V, Chrysochoos J. Optical and Photochemical Properties of Nonstoichiometric Cadmium Sulfide Nanoparticles: Surface Modification with Copper (II) Ions, Langmuir, 1997, 13(12), 3142-3149.
    [1]Burda C,Chen X,Narayanan R,El-Sayed M A.Chemistry and Properties of Nanocrystals of Different Shapes.Chem.Rev.,2005,105(4),1025-1102.
    [2]Roy D,Fendler J.Reflection and absorption techniques for optical characterization of chemically assembled nanomaterials.Adv.Mater.,2004,16(6),479-508.
    [3]Lakshmikvmar S T,Rastogi A C.Selenization of Cu and In thin films for the preparation of selenide photo-absorber layers in solar cells using Se vapour source.Sol.Energy.Mater.Sol.Cells,1994,32(1),7-19.
    [4]Zhang W X,Zhang X M,Zhang L,Wu J X,Hui Z H,Cheng Y w,Liu J W,Xie Y,Qian Y T.A Redox Reaction To Synthesize Nanocrystalline Cu_(2-x)Se in Aqueous Solution.Inorg.Chem.,2000,39(9),1838-1839.
    [5]Wang W Z,Yan P,Liu F Y,Xie Y,Geng Y,Qian Y T.Preparation and characterization of nanocrystalline Cu_(2-x)Se by a novel solvothermal pathway.J.Mater.Chem.,1998,8(11),2321-2322.
    [6]Qiao Z P,Xie Y,Xu J G,Liu X M,Zhu Y J,Qian Y T.Synthesis of nanocrystalline Cu(2-x)Seat room temperature by gamma-irradiation Can.J.Chem.,2000,78(9),1143-1146.
    [7]Wang W,Geng Y,Yan P,Liu F Y,Xie Y,Qia Y T.A Novel Mild Route to Nanocrystalline Selenides at Room Temperature.J.Am.Chem.Soc.,1999,121(16),4062-4063.
    [8]Su H L,Xie Y,Li B,Qian Y T.A simple,convenient,mild hydrothermal route to nanocrystalline CuSe and Ag_2Se.Mater.Res.Bull.,2000,35(3),465-469.
    [9]Xie Y,Zheng X W,Jiang X C,Lu J,Zhu L Y,Sonoehemical Synthesis and Mechanistic Study of Copper Selenides Cu_(2-x)Se,β-CuSe,and Cu_3Se_2.Inorg.Chem.,2002,41(2),387-392.
    [10]Xu S,Wang H,Zhu J J,Chen H Y.Sonochemieal synthesis of copper selenides nanocrystals with different phases.J.Cryst.Growth,2002,234(1),263-266.
    [11]Zhu J J,Palchik O,Chen S G,Gedanken A.Microwave Assisted Preparation of CdSe,PbSe,and Cu2-xSe Nanoparticles.J.Phys.Chem.B,2000,104(31),7344-7347.
    [12]Gurin V S,Prokopenko V B,Alexeenko A A,Wang S,Prokoshin P V.Cu2Se nanoparticles in sol-gel silica glasses.Mater.Sci.Eng.C,2001,15,93-95.
    [13]闫玉林;钱雪峰;印杰;朱子康,柠檬酸钠辅助光化学合成Cu_(2-x)Se纳米晶,无机化学学报,2003,19(10),1133-1139.
    [14]Zou G F,Li H,Zhang Y G,Xiong K,Qian Y T.Solvothermal/hydrothermal route to semiconductor nanowires.Nanotechnology,2006,17,S313-S320.
    [15]Itoh S,Toki H,Sato Y,Morimoto K,Kishino T,ZnGa_2O_4 phosphor for low-voltage blue cathodoluminescence.J.Electrochem.Soc.,1991,138,1509-1512.
    [16]Eilers H,Tissue B M.Laser spectroscopy of nanocrystalline Eu_2O_3 and Eu3+:Y_2O_3.Chem.Phys.Lett.,1996,251,74-78.
    [17]Patra A,Sominska E,Ramesh S,Koltypin Y,Zhong Z.Sonochemical Preparation and Characterization of Eu_2O_3 and Tb_2O_3 Doped in and Coated on Silica and Alumina Nanoparticles.J.Phys.Chem.B.,1999,103,3361-3365.
    [18]Wakefield G,Keron H A,Dobson P J,Hutchson J L.Synthesis and Properties of Sub-50-nm Europium Oxide Nanoparticles.J.Colloid Interface Sci.,1999,215,179-182.
    [19]Wu G S,Zhang L D,Cheng B C,Xie T,Yuan X Y.Synthesis of Eu2O3 Nanotube Arrays through a Facile Sol-Gel Template Approach.J.Am.Chem.Soc.,2004,126,5976-5977.
    [20]Pol V G,Palchik O,Gedanken A,Felner I.Synthesis of Europium Oxide Nanorods by Ultrasound Irradiation.J.Phys.Chem.B.,2002,106,9737-9743.
    [21]Yada M,Mihara M,Mouri S,Kuroki M,Kijima T.Rare earth(Er,Tm,Yb,Lu) oxide nanotubes templated by dodecyisulfate assemblies.Adv.Mater.,2002,14,309.
    [22]Ringsdorf H,Schlarb B,Venzmer.J.Molecular Architecture and Function of Polymeric Oriented Systems:Models for the Study of Organization,Surface Recognition,and Dynamics of Biomembranes,Angew.Chem.Int.Ed.,1988,27,113-158.
    [23]Lezau A,Trudeau M,Tsoi G M,Wenger L E,Antonelli D.Mesostructured Fe Oxide Synthesized by Ligand-Assisted Templating with a Chelating Triol Surfactant.J.Phys.Chem.B.,2004,108,5211-5216.
    [24]Iyi N,Matsumoto T,Kaneko Y,Kitamura K.A Novel Synthetic Route to Layered Double Hydroxides Using Hexamethylenetetramine.Chem.Lett.,2004,33,1122-1123.
    [25]Liu L,Wu Q S,Ding Y P,Liu H J,Qi J Y,Liu Q.Biomimetic Synthesis of Ag2CrO4Quasi-Nanorods and Nanowires by Emulsion Liquid Membranes.Aust.J.Chem.,2004,57,219-222.
    [26]符史流,戴军,尹涛,赵韦人.复合氧化物SrEu_2O_4的合成与光谱特性.光谱学与光谱分析,2006,26(6),1113-1116.
    [27]Ghosh P,Sadhu S,Patra A.Preparation and photoluminescence properties of Y_2SiO_5:Eu~(3+)nanocrystals Phys.Chem.Chem.Phys.2006,8(28),3342-3348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700