用户名: 密码: 验证码:
染料敏化太阳能电池中PEG基体聚合物电解质和低铂负载量对电极研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池(DSSC),具有低成本、易制备和高的光电转换效率等优点,成为当前光电转换材料和纳米技术研究领域中的热点之一。染料敏化太阳能电池的研究不仅对探索制备廉价太阳能电池的途径有实际意义,其研究对半导体光电子学、纳米多孔材料、有机电解质、材料界面理论及光电化学等方面均具有重要的科学意义。本论文较为详细地综述了染料敏化太阳能电池的国内外研究进展,针对DSSC中电解质和对电极研究开发中存在的问题,开展了PEG基体聚合物电解质和低铂对电极的研究。通过对制备不同聚合物电解质基体的研究,探讨聚合物电解质离子导电的一般规律,考察聚合物电解质中不同的组成成分对电解质离子电导率以及聚合物准固态DSSC光电性能的影响,以期提高聚合物染料敏化太阳能电池的使用寿命和光电性能;制备了低铂含量的铂对电极和铂/碳黑复合对电极,研究其对DSSC光电性能的影响,以期获得高活性、制备成本更为低廉的对电极。主要研究内容如下:
     1.采用共混的方法制备了PEG/PVP聚合物电解质,对其组成进行了优化;通过对无机碘盐筛选,在该电解质体系中采用KI具有较高的离子导电性能;考察了KI浓度与聚合物电解质电导率的变化关系,用离子对模型对这一变化规律进行了解释;对聚合物电解质电导率?温度特性关系分析,电解质的电导率随着温度的升高而增加,其σ-T曲线符合Arrhenius方程;表征了碘及碘化钾在共混聚合物基体中的溶解特性,并用聚合物电解质组装了DSSC,测定了光电性能,讨论了PVP对其光电性能影响,在优化的条件下,获得了4.01%的光电转换效率;考察了共混聚合物电解质DSSC长期稳定性,表现出了优于液体电解质的长期稳定性,在两个月的测试时间内,总光电转换效率的变化在±5%以内。
     2.通过缩合反应制备了PEG-TEOS交联凝胶聚合物电解质。用FTIR和DSC对交联聚合物进行了表征,分析了以PEG与TEOS的交联反应,将液态的PEG-1000凝胶化。优化了I?/I3?氧化还原电对在PEG-TEOS交联凝胶聚合物基体中的浓度,获得了该电解质体系中离子电导率最大值为3.12毫西门子/厘米;采用拉曼光谱表征,证实了在聚合物电解质中I3?和I2n+3?(n = 1, 2, 3,…)的形成以及单质碘的溶解;在最优化电解质的条件下(交联聚合物电解质中含有KI 0.60摩尔/升和I2 0.06摩尔/升),该染料敏化太阳能电池在100毫瓦/平方厘米的光强下获得了4.97%的光电转换效率,也表现出了良好的稳定性。
     3.采用铂纳米粒子电沉积法制备了用于染料敏化太阳能电池的低铂含量的对电极,表征了铂纳米粒子的还原生成及其形貌;考察了该制备方法电沉积时间与其组装的DSSC的光电转换效率的关系,发现当FTO导电玻璃在铂纳米水溶胶中电沉积时间达到20分钟时,可以获得较好的光电效果并且对电极铂的含量相对较少。并与电化学电镀法、热分解法制备的铂对电极进行了比较,以铂纳米粒子电沉积法制备对电极的DSSC获得的光电性能与电化学电镀法制备的对电极相当,并高于热分解法制备的对电极。
     4.用NaBH4还原法将铂负载于碳黑之中,制备了用于DSSC的铂/碳黑复合对电极,表征了铂纳米粒子在碳黑上的负载及其形貌;并用循环伏安法比较了电化学电镀法制备的铂电极、碳黑电极及铂/碳黑复合电极在I?/I3?体系中的的催化活性;考察了铂/碳黑复合对电极中铂的负载量对DSSC光电性能的影响;通过光电性能的比较,发现采用铂/碳黑复合对电极的DSSC具有不低于采用铂金对电极的DSSC相当的光电性能,它们的光电转换效率分别为6.72%和6.63%。
     通过上述研究,以期对DSSC中电解质和对电极的进一步研究提供参考,并为DSSC的实际应用提供一些技术和工艺参数。
Dye-sensitized solar cells (DSSC) have been one of hot-spots in the field of materials for photoelectric conversion and nanotechnology because of its low-cost, easy-made and high-efficiency. It makes sense in research dye-sensitized solar cells not only in the aspect of groping the manufacture way for low cost and high performance solar cells but also in the aspect of its scientific values in the fields such as semiconductor photoelctronics, nanometer porous material, organic electrolytes and photo-electric chemistry. In this paper, the research progress of DSSC in domestic and overseas was reviewed. In order to solving present problems of the electrolyte and the electrode in DSSC, the polymer electrolyte of PEG matrix and the counter electrode with low platinum loading were studied. In this dissertation, different kinds of polymer matrix electrolytes were researched in order to improve the overall solar energy conversion efficiency and long-term stability of the DSSC. The transmission mechanism of the ionic conductivity in the polymer electrolyte and the affects of various compositions of the polymer electrolyte on the performances of DSSC were discussed. The counter electrodes of low platinum loading were also prepared and researched in order to obtaining the counter electrodes with high activity and low cost for application in DSSC. There are some major works in the following:
     1. Polyblend electrolytes consisting of KI and I2 dissolved in a blending polymer of polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG) were prepared and applied to DSSC. And the effects of polyblend electrolytes were investigated to improve the photovoltaic performance of DSSC. The influence of KI concentration on ionic conductivity of the polymer electrolyte was studied. Its result has also been proved by estimation using the ion pair model. By study different inorganic salts, it is concluded that the high solubility and good performance can be attained when potassium iodide was used. By study the character of conductivity-temperature for polymer electrolyte, it was found that followed the Arrhenius principle. The formation of I3? in polymer electrolytes had been characterized by XPS. The effects of polyblend polymer electrolytes on the DSSC were also evaluated. The light-to-electricity conversion efficiency of the DSSC assembled with optimized electrolyte composition was calculated to be 4.01%. The polyblend electrolyte showed the more stable than the liquid electrolyte, the total efficiency changes in the range of±5% for two month.
     2. The cross-linked PEG-1000 was prepared by condensation reaction with tetraethoxysilane (TEOS). With the cross-linked PEG-1000 as polymer host, the highest ionic conductivity of the polymer electrolyte was achieved 3.12 mS·cm-1. FT-Raman spectra were obtained to confirm the formation of I3? and polyiodides (I2n+3?, here n = 1, 2, 3,…) and complete dissolution of iodine in the polymer electrolyte. Based on the optimized cross-linked PEG electrolyte, the best result of the quasi-solid state dye-sensitized solar cell (QS-DSSC) was the light-to-electricity conversion efficiency of 4.97%. The polymer electrolyte also showed the good stable for application in DSSC.
     3. Platinum nanoparticles were electrodeposited on FTO conducting glass substrate as counter electrode for application in dye-sensitized solar cells (DSSC). Images of TEM and SEM showed that platinum nanoparticles were with the mean size of 20-30 nm and homogeneously distributed on the surface of the FTO conductive glass sheet. Using such a counter electrode, DSSC showed 6.40% overall energy conversion efficiency under one sun illumination. It exhibited the same high-performance as the DSSC with a platinum counter electrode prepared by electroplating. Furthermore, the present preparation method for the platinum counter electrode has the advantage of low platinum loading.
     4. Pt/Carbon black counter electrode was prepared for application in DSSC. The image of TEM and XRD pattern showed that platinum was successfully supported and homogeneously dispersed on the carbon black powder. The cyclic voltammetry reveals that the Pt/Carbon black electrode showed high electrocatalytic activity in iodide/triiodide redox reaction. Using such a counter electrode with low platinum loading (1.5 wt% platinum loading on carbon black), DSSC achieved 6.72% overall energy conversion efficiency under one sun illumination. It exhibited the same high-performance as the DSSC with a platinized counter electrode.
     Based on above result of the research, we hope that the reference could be offer for further study in DSSC and the techniques and technological parameters could be provided for practical application of DSSC.
引文
[1] Becquerel A.E. On Electric Effects under the Influence of Solar Radiation [J] Comtes Rendus del’Academie des Sciences, 1839, 9: 31-33.
    [2] Adams W.G., Day R.E. Photovoltaic effect in Selenium [J] Proceedings of the Royal Society of London Series A, 1876, 25: 113-120.
    [3] Kavan L., Gratzel M. Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis [J] Electrochimica Acta, 1995, 40: 643-652.
    [4] O'Regan B., Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J] Nature, 1991, 353: 737-740.
    [5] Gratzel M. Perspectives for dye-sensitized nanocrystalline solar cells [J] Progress In Photovoltaics: Research and Applications, 2000, 8: 171-185.
    [6] Gratzel M. Dye-sensitized solid-state heterojunction solar cells [J] MRS Bulletin, 2005, 30: 23-27.
    [7] Gratzel M. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells [J] Inorganic Chemistry, 2005, 44: 6841-6851.
    [8] Fujihira M., Ohishi N., Osa T. Photocell using covalently-bound dyes on semiconductor surfaces [J] Nature, 1977, 268: 226-235.
    [9] Tennakone K., Kumara G.R., Kottegoda I.R., Perera V.P. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc [J] Chemical Communications, 1999, 15: 15-21.
    [10] Sayama K., Suguhara H., Arakawa H. Photoelectrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye [J] Chemistry Of Materials, 1998, 10: 3825-3828.
    [11] Gratzel M. Dye-sensitized solar cells [J] Journal of Photochemistry and Photobiology C, 2003, 4: 145-153.
    [12] Gratzel M. Conversion of sunlight to electric power by nanocrytalline dye-sensitized solar cells [J] Journal of Photochemistry and Photobiology A, 2004, 16: 3-14.
    [13]梁茂,陶占良,陈军.染料敏化太阳电池中的敏化剂[J]化学通报, 2005, 12: 889-896.
    [14]孔凡太,戴松元,王孔嘉.染料敏化纳米薄膜太阳电池中的染料敏化剂[J]化学通报, 2005, 5: 338-345.
    [15] Lagref J.J., Nazeeruddin M.K., Gratzel M. Molecular engineering on semiconductor surfaces: design, synthesis and application of new efficient amphiphilic ruthenium photosensitizers for nanocrystalline TiO2 solar cells [J] Synthetic Metals, 2003, 138: 333-339.
    [16] Gratzel M. Photoelectrochemical cells [J] Nature, 2001, 414: 338-344.
    [17] Desilvestro J., Gratzel M., Kavan L., Moser J., Augustynski J. Highly efficient sensitization of titanium dioxide [J] Journal Of The American Chemical Society, 1985, 107: 2988-2995.
    [18] Oskam G., Bergeron B.V., Meyer G.J., Searson P.C. Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells [J] Journal of Physical Chemistry, 2001, 105: 6867-6874.
    [19] Kang M.G., Ryu K.S., Chang S.H., Park N.G. A new ionic liquid for a redox electrolyte of dye-sensitized solar cells [J] ETRI Journal, 2004, 26: 647-652.
    [20] Song M.Y., Kim D.K., Jo S.M., Kim D.Y. Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment [J] Synthetic Metals, 2005, 155: 635-638.
    [21] Nishikitani Y., Kubo T., Asano T. Modeling of photocurrent in dye-sensitized solar cells fabricated with PVDF-HFP-based gel-type polymeric solid electrolyte [J] Comptes rendus Chimie, 2006, 9: 631-638.
    [22] Gratzel M. Mesoscopic solar cells for electricity and hydrogen production from sunlight [J] Chemistry Letters, 2005, 34:8-13.
    [23] Dai S., Weng J., Sui Y., Shi C., Huang Y., Chen S., Pan X., Fang X., Hu L., Kong F., Wang K. Dye-sensitized solar cells, from cell to module [J] Solar Energy Materials and Solar Cells 2004, 84: 125-133.
    [24] Sastrawan R., Beier J., Belledin U., Hemming S., Hinsch A., Kern R., Vetter C., Petrat F. M., Prodi-Schwab A., Lechner P., Hoffmann W. New interdigital design for large area dye solar modules using a lead-free glass frit sealing [J] Progress in Photovoltaics: Research and Applications, 2006, 15: 612-616.
    [25] McConnell R.D. Assessment of the dye-sensitized solar cell [J] Renewable and Sustainable Energy Reviews, 2002, 6: 273-295.
    [26]张欣宇. A12O3/TiO2复合光催化薄膜的制备、表征及性能研究[J]材料导报, 2005, 19: 89-89.
    [27] Nazeeruddin M.K., Kay A., Rodicio I., Humphry-Baker R., Mueller E., Liska P., Vlachopoulos N.,Gratzel M. Conversion of light to electricity by cis-X2bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl?, Br?, I?, CN?, and SCN?) on nanocrystalline titanium dioxide electrodes [J] Journal Of The American Chemical Society, 1993, 115-124.
    [28] Hao S.C., Wu J.H., Fan L.Q., Huang Y.F., Lin J.M., Wei Y.L. The influence of acid treatment of TiO2 porous film electrode on photoelectric performance of dye-sensitized solar cell [J] Solar Energy, 2004, 76: 745-750.
    [29] Spivack J., Siclovan T., Gasaway S., Williams E., Yakimov A., Gui J. Improved efficiency of dye sensitized solar cells by treatment of the dyed titania electrode with alkyl(trialkoxy)sllanes [J] Solar Energy Materials and Solar Cells, 2006, 90: 1296-1307.
    [30] Murayama M., Mori T. Evaluation of treatment effects for high-performance dye-sensitized solar cells using equivalent circuit analysis [J] Thin Solid Films, 2006, 509: 123-126.
    [31] Nazeeruddin M.K., Humphry-Baker R., Liska P., Gratzel M. Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell [J] Journal Of Physical Chemistry B, 2003, 107: 8981-8987.
    [32] Lewis L.N., Spivack J.L., Gasaway S., Williams E.D., Gui J.Y., Manivannan V., Siclovan O.P. A novel UV-mediated low-temperature sintering of TiO2 for dye-sensitized solar cells [J] Solar Energy Materials and Solar Cells, 2006, 90: 1041-1051.
    [33] Hart J.N., Cervini R., Cheng Y.B., Simon G.P., Spiccia L. Formation of anatase TiO2 by microwave processing [J] Solar Energy Materials and Solar Cells, 2004, 84: 135-143.
    [34] Kim H., Auyeung R.C., Ollinger M., Kushto G.P., Kafafi Z.H., Pique A. Laser-sintered mesoporous TiO2 electrodes for dye-sensitized solar cells [J] Applied Physics A: Materials Science and Processing, 2006, 83: 73-76.
    [35]曾隆月,史成武,方霞琴,张华,戴松元,王孔嘉.纳米ZnO在染料敏化薄膜太阳电池中的应用[J]中国科学院研究生院学报, 2004, 21: 393-397.
    [36]曾隆月,戴松元,王孔嘉,史成武,孔凡太,胡林华,潘旭.染料敏化纳米ZnO薄膜太阳电池机理初探[J]物理学报, 2005, 54: 53-57.
    [37] Fernando C.A. Efficient charge separation process in a dye sensitized p-Cu2O/p-CuCNS photoelectrochemical cell [J] Solar Energy Materials and Solar Cells, 1993, 28: 375-380.
    [38] Keis K., Vayssieres L., Lindquist S.E., Hagfeldt A. Nanostructured ZnO electrodes forphotovoltaic applications [J] Nanostructured Materials, 1999, 12: 487-490.
    [39] Guo P., Aegerter M.A. Ru(II) sensitized Nb2O5 solar cell made by the sol-gel process [J] Thin Solid Films, 1999, 351: 290-294.
    [40] Islam M.R., Masui M., Muranoi T., Kikuma I., Takeuchi M. Photo properties of the dye-sensitized metal oxide powder thick films [J] Applied Surface Science, 1997, 113-114: 485-488.
    [41] Mane R.S., Pathan H. M., Lokhande C.D., Han S.H. An effective use of nanocrystalline CdO thin films in dye-sensitized solar cells [J] Solar Energy, 2006, 80: 185-190.
    [42] Turkovic A., Cmjak O.Z. Dye-sensitized solar cell with CeO2 and mixed CeO2/SnO2 photoanodes [J] Solar Energy Materials and Solar Cells, 1997, 45: 275-281.
    [43] Nakasa A., Usami H., Sumikura S., Hasegawa S., Koyama T., Suzuki E. A high voltage dye-sensitized solar cell using a nanoporous NiO photocathode [J] Chemistry Letters, 2005, 34: 500-501.
    [44] Wang Z.S, Huang C.H, Huang Y.Y. A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode [J] Chemistry of Materials, 2001, 13: 678-682.
    [45] Ito S., Makri Y., Kitamura J. Fabrication and characterization of mesoporous SnO2/ZnO composite electrodes for efficient dye solar cells [J] Journal of Materials Chemistry, 2004, 14: 385-390.
    [46] Chappel S., Chen S.G., Zaban A. TiO2-coated nanoporous SnO2electrodes for dye-sensitized solar cells [J] Langmuir, 2002, 18: 3336-3342.
    [47] Bandaranayake K.M.P. Senevirathna I., Weligamuwa P. Dye-sensitized solar cells made from nanocryatalline TiO2 films coated outer layers of different oxide materlials [J] Coordination Chemistry Reviews, 2004, 248: 1277-1281.
    [48] Wang P., Klein C., Robin H B. High molar extinction coefficient sensitizer for stable dye-sensitized solar cells [J] Journal Of The American Chemical Society, 2005, 127: 808-809.
    [49] Nogueira A.F., Fernando L., Formiga A.L. Sensitization of TiO2 by supramolecules containing Zinc porphyrins and ruthenium-polypyridyl complexes [J] Inorganic Chemistry, 2004, 43: 396-398.
    [50]吴宇平,戴晓兵,马军旗.锂离子电池?应用与实践[M]化学工业出版社,北京, 2004.
    [51] Wang Z.S., Huang C.H., Huang Y.Y. Photoelectric behavior of nanocrystalline TiO2 electrode with a novel terpyridyl ruthenium complex [J] Solar Energy Materials and Solar Cells, 2002, 71:261-271.
    [52] Falaras P., Hugot-Le G.A., Bernard M.C. Characterization by resonance Raman spectroscopy of sol-gel TiO2 films sensitized by the Ru(PPh3)2(dcbipy)Cl2 complex for solar cells application [J] Solar Energy Materials and Solar Cells, 2000, 64: 167-184.
    [53] Nazeetuddin M.K., Gratzel M. Conversion of light to electricity by cis-X2Bis(2,2'-bipyridyl -4,4'-dicarboxylate) ruthenium charge-transfer sensitizes (X = Cl?, Br?, I?, CN? and SCN?) on nanocrystalline TiO2 electrodes [J] Journal Of The American Chemical Society, 1993, 115: 6382-6390.
    [54] Olea A., Ponce G., Sebastian P. J. Electron transfer via organic dyes for solar conversion [J] Solar Energy Materials and Solar Cells, 1999, 59: 137-143.
    [55] Tennakone K., Kumara G.R.R.A., Wijayantha K.G.U., Kottegoda I.R.M., Perera V.P.S., Aponsu G.M.L.P. A nanoporous solid-state photovoltaic cell sensitized with copper chlorophyllin [J] Journal of Photochemistry and Photobiology A, 1997, 108: 175-177.
    [56] Wang X.F., Xiang J.F., Wang P., Koyama Y., Yanagida S., Wada Y., Hamada K., Sasaki S., Tamiaki H. Dye-sensitized solar cells using a chlorophyll a derivative as the sensitizer and carotenoids having different conjugation lengths as redox spacers [J] Chemical Physics Letters, 2005, 408: 409-414.
    [57] Urano T., Hino E., Ito H., Shimizu M., Yamaoka T. Study of radical generated from coumarin dye-sensitized photo-initiator systems in high-speed photopolymer coating layers using laser flash photolysis [J] Polymers For Advanced Technologies, 1998, 9: 825-830.
    [58] Hara K., Tachibana Y., Ohga Y., Shinpo A., Suga S., Sayama K., Sugihara H., Arakawa H. Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes [J] Solar Energy Materials and Solar Cells, 2003, 77: 89-103.
    [59] Li S.L., Jiang K.J., Shao K.F., Yang L.M. Novel organic dyes for efficient dye-sensitized solar cells [J] Chemical Communications, 2006, 2792-2794.
    [60] Schmidt-Mende L., Bach U., Humphry-Baker R., Horiuchi T., Miura H., Ito S., Uchida S., Grazel M. Organic Dye for Highly Efficient Solid-State Dye-Sensitized Solar Cells [J] Advanced Materials, 2005, 17: 813-815.
    [61] Hara K., Sato T., Katoh R., Furube A., Yoshihara T., Murai M., Kurashige M., Ito S., Shinpo A.,Suga S., Arakawa H. Novel conjugated organic dyes for efficient dye-sensitized solar cells [J] Advanced Functional Materials, 2005, 15: 246-252.
    [62] Horiuchi T., Miura H., Uchida S. Highly efficient metal-free organic dyes for dye-sensitized solar cells [J] Journal of Photochemistry and Photobiology A, 2004,164: 29-32.
    [63] Horiuchi T., Miura H., Sumioka K., Uchida S. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes [J] Journal of the American Chemical Society, 2004, 126: 12218-12219.
    [64]姚巧红,单璐,李富友,等.纳米晶TiO2电极上半菁衍生物敏化染料[J]物理化学学报, 2003, 19: 635-640.
    [65]张莉,任焱杰.菁类染料敏化的固态纳米TiO2光电化学电池[J]高等化学学报, 2001, 7: 1105-1107.
    [66] Jianjun H., Hagefeldt A. Lindquist S.E. Phthalocyanine-sensitized Nanostructureed TiO2 Electrodes Prepared by a Novel Anchoring Method [J] Langmuir, 2001, 17: 2734-2747.
    [67]孙世国,彭孝军,高云玲,等.铼联吡啶系列光敏染料的合成[J]高等学校化学学报, 2004, 25: 820-822.
    [68]杨新国,孙景志,汪茫,等.卟啉类光电功能材料的研究进展[J]功能材料, 2003, 2: 113-117.
    [69] Cherian S. Wamser C.C. Adsorption and Photoactivity of Tetra(4-carbox-yphenyl) porphyrin(TCPP) on Nnaoparticulate TiO2 [J] Journal of Physical Chemistry B, 2004, 104: 3627-3629.
    [70]张莉,杨迈之,高恩勤,等.五川甲菁染料的敏化作用及其在Gratzel型太阳能电池中的应用[J]高等化学学报, 2000, 21: 1543-1546.
    [71] Hao S.C., Wu J.H., Huang Y.F., et al. Nature dyes as photosensitizers for dye-sensitized solar cells [J] Solar Energy, 2005, 25: 368-373.
    [72] Plass R., Pelet S., Krueger J., Gratzel M., Bach U. Quantum dot sensitization of organic-inorganic hybrid solar cells [J] Journal of Physical Chemistry B, 2002,106: 7578-7580.
    [73] Nozik A.J. Quantum dot solar cells. Quantum dot solar cells [J] Next Generation Photovoltaics, 2004, 196-222.
    [74] Peter L.M., Wijayantha K.G., Riley D.J., Waggett J.P. Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2 [J] Journal Of Physical ChemistryB, 2003, 107: 8378-8381.
    [75] Shen Q., Toyoda T. Characterization of nanostructured TiO2 electrodes sensitized with CdSe quantum dots using photoacoustic and photoelectrochemical current methods [J] Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes and Review Papers, 2004, 43: 2946-2951.
    [76] Shen Q., Arae D., Toyoda T. Photosensitization of nanostructured TiO2 with CdSe quantum dots: effects of microstructure and electron transport in TiO2 substrates [J] Journal of Photochemistry and Photobiology A, 2004, 164: 75-80.
    [77] Diguna L.J., Murakami M., Sato A., Kumagai Y., Ishihara T., Kobayashi N., Shen Q., Toyoda T. Photoacoustic and photoelectrochemical characterization of inverse opal TiO2 sensitized with CdSe quantum dots [J] Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications and Review Papers, 2006, 45: 5563-5568.
    [78] Kusama H., Arakawa H. Influence of alkylaminopyridine additives in electrolytes on dye-sensitized solar cell performance [J] Solar Energy Materials and Solar Cells, 2004, 81: 87-99.
    [79] Kusama H., Arakawa H. Influence of aminothiazole additives in I?/I3? redox electrolyte solution on Ru(II)-dye-sensitized nanocrystalline TiO2 solar cell performance [J] Solar Energy Materials and Solar Cells, 2004, 82: 457-465.
    [80] Kusama H., Arakawa H. Influence of aminotriazole additives in electrolytic solution on dye-sensitized solar cell performance [J] Journal of Photochemistry and Photobiology A, 2004, 164: 103-110.
    [81] Kusama H., Arakawa H. Influence of benzimidazole additives in electrolytic solution on dye-sensitized solar cell performance [J] Journal of Photochemistry and Photobiology A, 2004, 162: 441-448.
    [82] Kusama H., Arakawa H., Kurashige M. Influence of nitrogen-containing heterocyclic additives in I?/I3? redox electrolytic solution on the performance of Ru-dye-sensitized nanocrystalline TiO2 solar cell [J] Journal of Photochemistry and Photobiology A, 2005, 169: 169-176.
    [83] Kusama H., Arakawa H. Influence of pyrazole derivatives in I?/I3? redox electrolyte solution on Ru (II)-dye-sensitized TiO2 solar cell performance [J] Solar Energy Materials and Solar Cells, 2005, 85: 333-344.
    [84] Kusama H., Arakawa H. Influence of quinoline derivatives in I?/I3? redox electrolyte solution onthe performance of Ru (II)-dye-sensitized nanocrystalline TiO2 solar cell [J] Journal of Photochemistry and Photobiology A, 2004, 165: 157-163.
    [85]史成武,戴松元,王孔嘉,等.染料敏化纳米薄膜太阳电池中电解质的研究进展[J]化学通报, 2005, 68: w001-w005.
    [86] Nazeeruddin M.K., Pechy P., Renouard T. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells [J] Journal of the American Chemical Society, 2001, 123: 1613-1624.
    [87] Bonhote P., Dias A.P., Papageorgiou N., Kalyanasundaram K., Gratzel M. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts [J] Inorganic Chemistry, 1996, 35: 1168-1178.
    [88] Gratzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J] Journal of Photochemistry and Photobiology A, 2004, 164: 3-14.
    [89] Kawano R., Matsui H., Matsuyama C., Sato A., Susan M.A., Tanabe N., Watanabe M. High performance dye-sensitized solar cells using ionic liquids as their electrolytes [J] Journal of Photochemistry and Photobiology A, 2004, 164: 87-92.
    [90] Mikoshiba S., Murai S., Sumino H., Kado T., Kosugi D., Hayase S. Ionic liquid type dye-sensitized solar cells: increases in photovoltaic performances by adding a small amount of water [J] Current Applied Physics, 2005, 5: 152-158.
    [91] Wang P., Zakeeruddin S. M., Gratzel M., Kantlehner W., Mezger J., Stoyanov E.V., Scherr O. Novel room temperature ionic liquids of hexaalkyl substituted guanidinium salts for dye-sensitized solar cells [J] Applied Physics A: Materials Science and Processing, 2004, 79: 73-77.
    [92] Wang P., Zakeeruddin S.M., Moser J.E., Gratzel M. A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells [J] Journal of Physical Chemistry B, 2003, 107: 13280-13285.
    [93]史成武,戴松元,王孔嘉,郭力,潘旭,孔凡太,胡林华. 1-甲基-3-己基咪唑碘在染料敏化太阳电池中的应用研究[J]化学学报, 2005, 63: 1205-1209.
    [94] Tennakone K., Kumara G.R., Kumarasinghe A.R., Wijayantha K.G., Sirimanne P.M. A dye-sensitized nano-porous solid-state photovoltaic cell [J] Semiconductor Science and Technology, 1995, 10: 1689-1693.
    [95] O'Regan B., Schwartz D.T. Large Enhancement in Photocurrent Efficiency Caused by UVIllumination of the Dye-Sensitized Heterojunction TiO2/RuLL'NCS/CuSCN: Initiation and Potential Mechanisms [J] Chemistry of Materials, 1998, 10: 1501-1509.
    [96]武卫兵,靳正国,华缜,邱继军.电化学沉积法制备CuSCN固体电解质薄膜的研究[J]太阳能学报, 2006, 27: 141-145.
    [97] Tennakone K., Senadeera G.K., De Silva D.B., Kottegoda I.R. Highly stable dye-sensitized solid-state solar cell with the semiconductor CuBr3S(C4H9)2 as the hole collector [J] Applied Physics Letters, 2000, 77: 2367-2369.
    [98] Tennakone K., Perera V.P., Kottegoda I.R., Kumara G.R. A. Dye-sensitized solid state photovoltaic cell based on composite zinc oxide/tin (IV) oxide films [J] Journal of Physics D: Applied Physics, 1999, 32: 374-381.
    [99] Bandara J., Weerasinghe H. Solid-state dye-sensitized solar cell with p-type NiO as a hole collector [J] Solar Energy Materials and Solar Cells, 2005, 85: 385-390.
    [100] Bach U., Lupo D., Comte P., Moser J.E., Weissortel F., Salbeck J., Spreitzer H., Gratzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J] Nature, 1998, 395: 583-585.
    [101] Kruger J., Plass R., Gratzel M., Matthieu H.J. Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4 '-dicarboxy- 2,2' bipyridine)-bis(isothiocyanato) ruthenium(II) [J] Applied Physics Letters, 2002, 81: 367-369.
    [102] Stergiopoulos T., Arabatzis L.M., Katsaros G. Binary polyethylene oxide / titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells [J] Nano Letters, 2002, 2: 1259-1261.
    [103] Wang P., Dai Q., Zakeeruddin S.M. Ambient temperature plastic crystal electrolyte for efficient, all-solid-state dye-sensitized solar cell [J] Journal of the American Chemical Society, 2004, 126: 13590-13591.
    [104] Wang H., Li H., Meng Q.. Solid-state composite electrolyte LiI/3-hydroxypropionitrile/SiO2 for dye-sensitized solar cells [J] Journal of the American Chemical Society, 2005, 127: 6394-6401.
    [105] Wang P., Zakeeruddin S.M., Gratzel M. Solidifying liquid electrolytes with fluorine polymer and silicananoparticles for quasi-solid dye-sensitized solar cells [J] Journal of Fluorine Chemistry, 2004, 125: 1241-1245.
    [106] Xue B., Wang H., Hu Y., Li H., Wang Z., Meng Q., Huang X., Chen L., Sato O., Fujishima A. Highly efficient dye-sensitized solar cells using a composite electrolyte consisting of LiI (CH3OH)4-I2, SiO2 nano-particles and an ionic liquid [J] Chinese Chemical Letters, 2004, 21: 1828-1830.
    [107] Huo Z., Dai S., Wang K., Kong F., Zhang C., Pan X., Fang X.. Nanocomposite gel electrolyte with large enhanced charge transport properties of an I3?/I? redox couple for quasi-solid-state dye-sensitized solar cells [J] Solar Energy Materials and Solar Cells, 2007, 91: 1959-1965.
    [108]戴松元,史成武,翁坚,等.染料敏化纳米薄膜太阳电池最新研究和产业化前景[J]太阳能学报, 2005, 26: 121-126.
    [109] Kubo W., Murakoshi K., Kitamura T., Yoshida S., Haruki M., Hanabusa K., Shirai H., Wada Y., Yanagida S. Quasi-solid-state dye-sensitized TiO2 solar cells: Effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine [J] Journal of Physical Chemistry B, 2001, 105: 12809-12815.
    [110] Ren Y., Zhang, Z., Fang, S. Yang M., Cai S. Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells [J] Solar Energy Materials and Solar Cells, 2002, 71: 253-259.
    [111] Komiya R., Han L., Yamanaka R. Highly efficient quasi-solid state dye-sensitized solar cell with ion conducting polymer electrolyte [J] Journal of Photochemistry and Photobiology A, 2004, 164: 123-127.
    [112]李学萍,方世璧,康俊杰,等.聚硅氧烷为基体的聚合物电解质准固态染料敏化太阳电池[J]太阳能学报, 2007, 28: 929-935.
    [113] Kaneko M., Hoshi T. Dye-sensitized Solar Cell with Polysaccharide Solid Electrolyte [J] Chemistry Letters, 2003, 32: 872-875.
    [114] Wu J.H., Hao S.C., Lan Z., Lin J.M., Huang M.L., Huang Y.F., Fang L.Q., Yin S., Sato T. A Thermoplastic Gel Electrolyte for Stable Quasi-Solid-State Dye-Sensitized Solar Cells [J] Advanced Functional Materials 2007, 17: 2645-2652.
    [115] Wu J.H., Lan Z., Lin J.M., Huang M.L., Hao S.C., Sato T., Yin S. A Novel Thermosetting Gel Electrolyte for Stable Quasi-Solid-State Dye-Sensitized Solar Cells [J] Advanced Materials. 2007, 19: 4006-4011.
    [116] Imoto K., Suzuki M., Takahashi K., Yamaguchi T., Komura T., Nakamura J., Murata K. Activated carbon counter electrode for dye-sensitized solar cell [J] Electrochemistry, 2003, 71: 944-946.
    [117] Imoto K., Takahashi K., Yamaguchi T., Komura T., Nakamura J., Murata K. High-performance carbon counter electrode for dye-sensitized solar cells [J] Solar Energy Materials and Solar Cells, 2003, 79: 459-469.
    [118] Hao S.C., Fan L.Q., Wu J.H., Huang Y.F., Lin J.M. Influence of modification of counter electrode on photoelectric properties of dye-sensitized TiO2 Solar cells [J] Chemical Research in Chinese Universities, 2004, 20: 205-209.
    [119] Ma T.L., Fang X.M., Akiyama M., Inoue K., Noma H., Abe E. Properties of several types of novel counter electrodes for dye-sensitized solar cells [J] Journal Of Electroanalytical Chemistry, 2004, 574: 77-83.
    [120] Wang G., Lin R., Lin Y., Li X., Zhou X., Xiao X. A novel high-performance counter electrode for dye-sensitized solar cells [J] Electrochimica Acta, 2005, 50: 5546-5552.
    [121] Saito Y., Kitamura T., Wada Y., Yanagida S. Application of poly(3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells [J] Chemistry Letters, 2002, 1060-1061.
    [122] Saito Y., Kubo W., Kitamura T., Wada Y., Yanagida S. I?/I3? redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells [J] Journal of Photochemistry and Photobiology A, 2004, 164: 153-157.
    [123]王桂强.高分子在染料敏化纳晶TiO2太阳电池中的应用研究[J]化工新型材料, 2006, 34: 39-42.
    [124]方晓明,张正国,马婷丽.染料敏化纳米薄膜太阳电池的新型对电极研究[J]太阳能学报, 2006, 27: 111-115.
    [125] Olsen E., Hagen G., Eric Lindquist S. Dissolution of platinum in methoxy propionitrile containing LiI/I2 [J] Solar Energy Materials and Solar Cells, 2000, 63: 267-273.
    [126] Wang W.B., Luo Z., Xiao X.R., Lin Y. Nanostructure Pt electrode obtained via self-assembly of nanoparticles on conductive oxide-coated glass substrate [J] Chinese Journal of Chemistry, 2004, 22: 256-258.
    [127] Chen J.M., Ma Y.T., Wang G.Q., Wang Z.P., Zhou X.W., Lin Y., Li X.P., Xiao X.R. A novel method for preparing platinized counter electrode of nanocrystalline dye-sensitized solar cells [J] ChineseScience Bulletin, 2005, 50: 11-14.
    [128] Khelashvili G., Behrens S., Weidenthaler C., Vetter C., Hinsch A., Kern R., Skupien K., Dinjus E., Bonnemann H. Catalytic platinum layers for dye solar cells: A comparative study [J] Thin Solid Films, 2006, 511-512: 342-348.
    [129] Suzuki K., Yamaguchi M., Kumagai M., Yanagida S. Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells [J] Chemistry Letters, 2003, 32: 28-29.
    [130] Halme J., Toivola M., Tolvanen A., Lund P. Charge transfer resistance of spray deposited and compressed counter electrodes for dye-sensitized nanoparticle solar cells on plastic substrates [J] Solar Energy Materials and Solar Cells, 2006, 90: 872-886.
    [131] Fang X., Ma T., Akiyama M., Guan G., Tsunematsu S., Abe E. Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells [J] Thin Solid Films, 2005, 472: 242-245.
    [132] Shuji H., Shibata Y., Takashima W., Kaneto K. Performance of dye sensitized solar cells equipped with ionic liquid electrolytes and PEDOT-coated counter electrodes [J] Nippon Kagakkai Koen Yokoshu, 2003, 83: 68-72.
    [133] Dissanayake M., Bandara L., Bokolawala R. A novel gel polymer electrolyte based on polyacrylonitrile [J] Materials Research Bulletin, 2002, 37: 867-874.
    [134]郝三存,吴季怀,林建明,黄昀昉.铂修饰光阴极及其在纳晶太阳能电池中的应用[J]感光科学与光化学, 2004, 22: 175-182.
    [135] Reddy C.S., Han X., Zhu Q.Y., Mai L.Q., Chen W. Dielectric spectroscopy studies on (PVP+PVA) polyblend film [J] Microelectronic Engineering, 2006, 83: 281-283.
    [136] Hugo W.B., Newton J.M. The solubility of iodine in aqueous solutions on non-ionic surface-active agents [J] Journal of Pharmacy and Pharmacology, 1963, 15: 731-741.
    [137] Del Rio C., Acosta J.L. Conductivity studies of solid polymer electrolytes based on polyethers and polyphosphazene blends [J] Polymer Bulletin, 1997, 38: 63-69
    [138] Lide D.R. CRC Handbook of Chemistry and Physics, 79th edition [M] CRC Press (Boca Raton, Florida, USA) 1998.
    [139] Gu G.Y., Bouvier S., Wu C., Laura R., Rzeznik M., Abraham K.M. 2-Methoxyethyl (methyl) carbonate-based electrolytes for Li-ion batteries [J] Electrochimica Acta, 2000, 45: 3127-3139.
    [140] Robinson R.A., Stokes R.H. Electrolyte solutions [M] Butterworths Press, 1959.
    [141]郭炳坤,徐徽,王先友,等.锂离子电池[M]中南大学出版社,长沙, 2002.
    [142] McFarland E.W., Tang J. A photovoltaic device structure based on internal electron emission [J] Nature, 2003, 421: 616-618.
    [143] Moulder J.F., Stickle W.F., Sobol P.E., Bomben K.D., Handbook of X-ray Photoelectron Spectroscopy, 2nd ed. [M] Perkin-Elmer Corporation (Physical Electronics), 1992.
    [144] He J., Benko G., Korodi F., Pol?vka T., Lomoth R., Akermark B., Sun L., Hagfeldt A., Sundstrom V. Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode [J] Journal of the American Chemical Society, 2002, 124: 4922-4932.
    [145] Wang H., Liu X., Wang Z., Li H., Li D., Meng Q., Chen L. Effect of iodine addition on solid-state electrolyte LiI/3-Hydroxypropionitrile (1:4) for dye-sensitized solar cells [J] Journal of Physical Chemistry B, 2006, 110: 5970-5974.
    [146] Huang S.Y., Schlichthorl G., Nozik A.J., Gratzel M., Frank A.J. Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells [J] Journal of Physical Chemistry B, 1997, 101: 2576-2582.
    [147] Cahen D., Hodes G., Gratzel M., Guillemoles J.F., Riess I. Nature of photovoltaic action in dye-sensitized solar cells [J] Journal of Physical Chemistry B, 2000, 104: 2053-2059.
    [148] Papageorgiou N. Counter-electrode function in nanocrystalline photoelectrochemical cell configurations [J] Coordination Chemistry Reviews, 2004, 248: 1421-1446.
    [149] Koo J.N., Kim D. Poly(ethylene glycol) electrolyte gels prepared by condensation reaction [J] Journal of Applied Polymer Science, 2002, 86: 948-956.
    [150] Bhattarai N., Ramay H. R., Gunn J., Matsen F. A., Zhang M. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release [J] Journal of Controlled Release, 2005, 103: 609-624.
    [151] Tadayyoni M.A., Gao P., Weaver M.J. Application of surface-enhanced Raman spectroscopy to mechanistic electrochemistry: oxidation of iodide at gold electrodes [J] Journal of electroanalytical chemistry and interfacial electrochemistry, 1986, 198: 125-136.
    [152] Loos K.R., Jones A.C. Structure of triiodide ion in solution. Raman evidence for the existence of higher polyiodide [J] Journal of Physical Chemistry, 1974, 78: 2306-2311.
    [153] Klaeboe P. The Raman spectra of some iodine, bromine, and iodine monochloride charge-transfer coomplexes [J] Journal of the American Chemical Society, 1967, 89: 3667-3671.
    [154] Cowie J.M., Cree S.H. Electrolytes dissolved in polymers [J] Annual Review of Physical Chemistry, 1989, 40: 85-91.
    [155] Armand M. Polymers with Ionic Conductivity [J] Advanced Materials, 1990, 2: 278-284.
    [156] Law M., Greene L.E., Johnson J.C., Saykally R., Yang P. Nanowire dye-sensitized solar cells [J] Nature Materials, 2005, 4: 455-459.
    [157] Nogueira A.F., Durrant J.R., De Paoli M.A. Dye-Sensitized Nanocrystalline Solar Cells Employing a Polymer Electrolyte [J] Advanced Materials, 2001, 13: 826-830.
    [158] Teranishi T., Hosoe M., Tanaka T., Miyake M. Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition [J] Journal of Physical Chemistry B, 1999, 103: 3818-3827.
    [159] Pron’kin S.N., Tsirlina G.A., Petrii O.A., Vassiliev S.Y. Nanoparticles of Pt hydrosol immobilised on Au support: an approach to the study of structural effects in electrocatalysis [J] Electrochimica Acta, 2001, 46: 2343-2351.
    [160] Aika K., Ban L.L., Okura I., Namba S., Turkevich J. Chemisorption and catalytic activity of a set of platinum catalysts [J] Journal of the Research Institute for Catalysis, 1976, 24: 54-61.
    [161] Bradley J.S., Schmid G. Clusters and Colloids [M] Wiley Interscience Publications, New York, 1994.
    [162] Popov A.I., Geske D.H. Studies on the Chemistry of Halogen and of Polyhalides [J] Journal of the American Chemical Society, 1958, 80: 1340-1351.
    [163] Huang Z., Liu X., Li K., Li D., Luo Y., Li H., Song W., Chen L., Meng Q. Application of carbon materials as counter electrodes of dye-sensitized solar cells [J] Electrochemistry Communications, 2007, 9: 596-598.
    [164] Peter L.M., Duffy N.W., Wang R.L. Transport and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells [J] Journal of Electroanalytical Chemistry, 2002, 524-525: 127-136.
    [165] Kambilia A., Walkera A.B., Qiua F.L. et al. Electron transport in the dye sensitized nanocrystalline cell [J] Physica E, 2002, 14: 203-209.
    [166] Ferber J., Stangl R., Luther J. An electrical model of the dye-sensitized solar cell [J] Solar EnergyMaterials and Solar cells, 1998, 53(1-2): 29-54.
    [167] Sodergren S., Hagfeldt A., Olsson J., et al. Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells [J] Journal of Physical Chemistry, 1994, 98: 5552-5556.
    [168] Nelson J., Chandler R.E. Random walk models of charge transfer and transport in dye sensitized systems [J] Coordination Chemistry Reviews, 2004, 248: 1181-1184.
    [169] Kay A., Gratzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon power [J] Solar Energy Materials and Solar Cells, 1996, 44: 99-105.
    [170] Hauch A., Georg A. Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells [J] Electrochim Acta., 2001, 46: 3457-3463.
    [171] Lindstrom H., Holmberg A., Magnusson E., Lindquist S.E., Malmqvist L., Hagfeld A. A new method for manufacturing nanostructured electrodes on plastic substrates [J] Nano Letters., 2001, 1: 97-100.
    [172] Kinoshita K. Carbon: Electrochemical and Physicochemical Properties [M] Wiley Interscience Publications, New York, 1987, p226-379.
    [173] Kamau G.N. Surface preparation of glassy carbon electrodes [J] Analytica Chimica Acta, 1988, 207: 1-16.
    [174]傅小波,余皓彭峰,王红娟,吕平.碳纳米管负载高分散Pt纳米颗粒的制备及表征[J]无机化学学报, 2006, 6: 1148-1154.
    [175]李文震,周振华,周卫江,李焕巧,赵新生,汪国雄,孙公权,辛勤.直接甲醇燃料电池阴极Pt/C催化剂的制备与表征[J]催化学报, 2003, 6: 465-470.
    [176] Schmid G. Large clusters and colloids, metals in theembryonic state [J] Chemical Reviews, 1992, 92: 1709-1727.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700