用户名: 密码: 验证码:
染料敏化太阳能电池炭基对电极的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池(Dye-sensitized solar cells,简称DSSC)是根据光生伏特原理,将太阳能直接转化成电能的一种半导体光电器件。与传统的硅太阳能电池相比较,其主要的优点是成本低廉、制作工艺简单和性能稳定。传统的DSSC对电极(counter electrode, CE)采用的是贵金属Pt作为催化剂,导电玻璃作为基底。近年来,为了降低DSSC的制作成本,炭材料在DSSC对电极的应用越来越受到关注。大多数文献中报导将合成并炭化后的催化剂涂覆在导电玻璃基底表面制备炭对电极。这种工艺制备的对电极催化层导电性和催化活性都比较差,同时导致催化层附着性问题。本论文针对炭对电极制备中存在的问题,设计一种新型的结构一体化的炭基对电极,并进行了系统地研究。
     本论文采用自制的煤基炭CE同时代替FTO导电玻璃和Pt催化层组装DSSC进行了性能表征和测试。煤基炭CE具有无定形碳的结构,表现出良好的导电性和对I3-还原反应良好的催化活性,其中气煤基炭CE组装的DSSC经过封装测试其光电转化效率达到了相同实验条件下传统Pt电极的89%,表现出良好的光电性能;经过浸渍处理的气煤基炭CE,在不改变其效率的前提下,结构得到了改良,形成了底层致密表面多孔的结构;同时还对气煤基炭CE进行了表面修饰,结果显示表面修饰后的光电性能得到大幅度提高,其光电转化效率达到了7.16%与传统Pt电极的效率(7.21%)相当,超过了石墨电极电池效率30%。
     本论文自制的纯炭CE表面的有序介孔炭(ordered mesoporous carbon, OMC)催化层具有高度有序、紧密排列的碳骨架结构,DSSC电解质中的I3-和I-在有机电解液中尺寸大约为0.5和0.22nm,明显小于介孔的孔径(6-8nm),这有利于I3-快速进入介孔孔内发生还原反应,同时生成的I-也能快速的从孔内扩散到电解液中,揭示了具有OMC催化层的纯炭CE具有更高光电性能的原因。同时考察了OMC催化层不同炭化温度对纯炭CE光电性能的影响,不同炭化温度主要影响OMC催化层的碳骨架结构和催化层的比表面积,OMC催化层800℃炭化时具有最大的比表面积832.46m2/g,具有最好的光电性能。其电池效率达到了8.73%,稍高于传统Pt电极的电池效率(8.64%)。考察了不同介孔结构对纯炭CE性能的影响,与WMC催化层比较,OMC催化层表面高度有序的介孔结构能为有利于I3-扩散进入介孔内发生还原反应,同时有利于生成的I-从孔中向外扩散,OMC催化层纯炭CE具有更好的电池效率。与此同时在基底中分别掺杂了石墨和炭黑颗粒,考察了不同基底对纯炭CE光电性能的影响,当对电极催化活性欠佳时,提高对电极导电性可以在一定程度上提高电池效率;当对电极表面催化层对于I3-还原反应能提供良好催化活性时,对电极导电性改善不能进一步提高电池的效率
     纯炭CE和煤基炭CE表面含有一定数量和比例的含氧官能团,即-C-OH、O=C-O-和-COOH。当两种对电极表面含氧官能团数量发生变化时,会引起对电极的光电性能发生不同程度的变化,电子在对电极/电解质界面的传递过程中阻力发生变化,电池效率也会随之发生变化。
Dye-sensitized solar cell (DSSC) is a semiconductor optoelectronic device, which is based on photo-volts principle. Thus, solar energy can directly convert into electrical energy by DSSC. Compared with traditional silicon solar cells, the main advantages of DSSC are low cost, simply manufacturing process and stable performance. For the conventional DSSC counter electrode (CE), transparent conductive glass is used as a substrate and Pt is the most common used as catalyst. Recently, carbon materials attract more and more attention as counter electrodes in order to lower the cost of DSSC. According to previous studies, carbon counter electrodes (CE) were prepared by simply coating of synthesized catalyst particles on the substrate. The conductivity and catalytic activity of carbon counter electrodes in such a configuration is low, and the poor catalytic activity is usually resulted. Moreover, the poor adhesion between the catalyst layer and the substrate will cause many difficulties in the following cell assembly process. Herein, a novel carbon-based CE with integrated structure has been proposed and developed; and the performance of this CE was investigated systematically.
     The self-made coal-based carbon CEs were used to instead both conductive glass substrate and Pt catalyst to assembly DSSC. The amorphous coal-based carbon CE exhibits high electrical conductivity and excellent catalytic activity toward the I3-reduction reaction. The gas coal-based carbon CE shows good photovoltaic performance with the cell efficiency up to89%of the conventional Pt/FTO electrode. The coal based carbon CE after impregnated demonstrates an integrated structure with a porous top surface and a dense bottom. The solar cell with surface modified coal-based carbon CE shows high solar-to-electricity conversion efficiency (η) of7.16%, which is30%higher than that of the cell with graphite electrode, comparable to that of the cell with Pt electrode (7.21%).
     The self-made pure carbon CE was also modified with an ordered mesoporous carbon (OMC) catalytic layer. The OMC layer shows a highly ordered, closely packed hexagonal tunnel structure. The pore width of OMC is6-8nm, which is much larger than the size of I3-and I-in the organic electrolyte (0.50nm and0.22nm, respectively). It benefits for I3-quickly accessing to active sites in the pores where reduction reaction occur, meanwhile, I-generated can quickly spread from the pore to the electrolytic fluid. It reveals why OMC catalyst layer of pure carbon CE has a higher optical photovoltaic performance. The influence of carbonization temperature of OMC catalyst layer on the optical and electrical properties of pure carbon CE was investigated. The carbonization temperature affects mesostructure and the specific surface area mainly; the OMC catalyst layer carbonized at800℃has the largest specific surface area (832.46m2/g), and displays the best photovoltaic performance also. The cell efficiency reached8.73%, slightly higher than the conventional Pt electrode cell efficiency (8.64%). The effect of the different mesoporous structures on performance of pure carbon CE was also investigated. Compared to wormlike mesoporous carbon (WMC) catalytic layer, highly ordered mesoporous structure is more benefit to I3-, and I-diffusion, thus the pure carbon CE with OMC catalytic layer has a better cell efficiency. The effect of substrate composite on the conductivity and cell performance was investigated. One can further lower the sheet resistance of substrate by using graphite and carbon black as conductive additives. When the catalytic activity of CE is poor, one can increase the cell efficiency to a certain extent by increasing the electrode conductivity; however, when the CE can provide a good catalytic activity for the I3-reduction, the improvement in the electrode conductivity have less influence on the cell efficiency.
     The influence of surface chemistry on the cell performance was discussed. Both pure carbon CE and coal-based carbon CE contain certain number and proportion of oxygen-containing functional surface groups, i.e.,-C-OH, O=CO-, and-COOH. Changing surface property can cause varying of the photovoltaic properties of the electrodes to some extent, the electron transfer process at the interface of counter electrode/electrolyte, thus resulting in the change of cell efficiency further.
引文
[1]彭振康.染料敏化太阳能电池中电极的制备与研究[D].广州:广州大学,2009.
    [2]唐笑.染料敏化太阳能电池中的光电极制备技术[J].材料导报,2006(3):97-100.
    [3]姜奇伟.染料敏化太阳能电池石墨对电极和电解质研究[D].厦门:华侨大学,2007.
    [4]黄振.碳材料在纳晶染料敏化太阳能电池对电极研究中的应用[D].长春:吉林大学,2007.
    [5]刘小东.染料敏化太阳能电池的对电极研究[D].天津:天津大学,2007.
    [6]吕向军.柔性染料敏化太阳能电池中染料和光电极的研究[D].呼和浩特:内蒙古大学,2009.
    [7]王富民.染料敏化太阳能电池的内部阻抗分析[J].天津大学学报,2007(3):265-268.
    [8]尹艳红.染料敏化太阳能电池对电极的研究进展[J].材料导报,2009(09).
    [9]李杨.染料敏化太阳能电池的性能研究[D].天津:天津大学,2010.
    [10]汪娜.染料敏化太阳能电池的大面积化研究[D].大连:大连理工大学,2010.
    [11]陈勇民.单晶硅太阳能电池铝背场的特性研究[D].武汉:中南大学,2010.
    [12]李洪昊.单晶硅太阳能电池表面织构制备方法研究[D].大连:大连理工大学,2010.
    [13]王瑶.单晶硅太阳能电池生产工艺的研究[D].长沙:湖南大学,2010.
    [14]李亚丹.硅太阳能电池关键技术研究[D].哈尔滨:黑龙江大学,2009.
    [15]王艺帆.多晶硅太阳能电池片绒面化处理增效的研究[D].南昌:南昌大学,2008.
    [16]王涛.硅太阳能电池研究[D].北京:国防科学技术大学,2006.
    [17]田娜.聚合物太阳能电池光伏材料的研究进展[J].高分子通报,2011(2):85-91.
    [18]聚合物太阳能电池研究获新进展[J].现代材料动态,2011(5):23-24.
    [19]郭军.有机薄膜太阳能电池[J].材料导报,2011,25(17):51-54.
    [20]张天慧.有机太阳能电池材料研究新进展[J].有机化学,2011(2):260-272.
    [21]巩峰.染料敏化太阳能电池阻抗分析[D].天津:天津大学,2007.
    [22]张力.染料敏化太阳能电池的研究进展[J].化工时刊,2008,22(10):59-63.
    [23]IMOTO K, TAKAHASHI K, YAMAGUCHI T, et al. High-performance carbon counter electrode for dye-sensitized solar cells[J]. Solar Energy Materials and Solar Cells, 2003,79(4):459-469.
    [24]N. P. Counter-electrode function in nanocrystalline photoelectrochemical cell configurations[J]. Coordination Chemistry Reviews,2004,248(13-14):1421-1446.
    [25]TAKUROU N, MURKACHI S Highly Efficient Dye-Sensitized Solar Cells Based on Carbon [J]. The Electrochemical Society,2009,153(12):A2255-A2261.
    [26]CHEN J, LI K, LUO Y, et al. A flexible carbon counter electrode for dye-sensitized solar cells[J]. Carbon,2009,47(11):2704-2708.
    [27]MICHEAL D, ADESCH S, MOTOR 0. Low-temperature fabrication of dye-sensitizedsolar cells by transfer of composite porous layers[J]. nature,2005,4:607-611.
    [28]于哲勋.染料敏化太阳能电池的研究与发展现状[J].中国材料进展,2009(Z1):8-15.
    [29]胡滨,染料敏化太阳能电池中电解质的研究进展[J].化工新型材料,2009(9):14-17.
    [30]吕向军.柔性染料敏化太阳能电池中染料和光电极的研究[D].呼和浩特:内蒙古大学,2009.
    [31]南辉.大面积染料敏化太阳能电池的结构组件设计与性能测试[J].青海大学学报(自然科学版),2009(6):4-6.
    [32]王智.Ti0_2介孔薄膜电阻对染料敏化太阳能电池光电转换性能的影响[J].功能材料,2009(5):779-782.
    [33]J. M. KROON N, J. B. Nanocrystalline Dye-sensitized Solar Cells Having Maximum Performance[J]. Wiley InterScience,2006,15:1-18.
    [34]EASWARA,MOORTHI, RAMASAMY, et al. Nanocarbon counterelectrode for dye-sensitized solar cells[J]. American Institute of Physics,2007,90(173103):1-3.
    [35]黄婵燕.Ti0_2纳米管的制备及其在太阳能电池中的应用[J].上海有色金属,2011(02).
    [36]李胜军.染料敏化太阳能电池新型Ti02薄膜电极的制备及性能[D].哈尔滨:哈尔滨工程大学材料学,2008.
    [37]林逍.大面积全柔性染料敏化太阳能电池光电性能优化[J].物理化学学报2011(11):2577-2582.
    [38]赵旺.TiO_2纳米颗粒/纳米线复合光阳极的染料敏化太阳能电池[J].功能材料,2011(S3):431-434.
    [39]新染料有助改进太阳能电池效率[J].光机电信息,2011(2):41-42.
    [40]李祥高.染料敏化太阳能电池用敏化剂[J].化学进展,2011(Z1):569-588.
    [41]裴娟.三苯胺类光敏染料用于染料敏化太阳能电池的研究[D].天津:南开大学,2009.
    [42]王丽秋.一种新型太阳能电池菁染料光敏剂的合成及其性能研究[J].燕山大学学报,2011(2):105-108.
    [43]杨琳.染料敏化太阳能电池中酞菁光敏剂的固定基团的研究进展[J].信息记录材料,2011(5):22-28.
    [44]张吉.染料敏化太阳能电池中具有不同电子给体的吩噻嗪类有机光敏染料的理论研究[J].高等学校化学学报,2011,32(6):1343-1348.
    [45]陈振宁.染料敏化太阳能电池中凝胶电解质的研究[J].材料科学与工艺,2011(1):95-98.
    [46]李品将.染料敏化太阳能电池中PEG基体聚合物电解质和低铂负载量对电极研究[D].厦门:华侨大学,2008.
    [47]秦达,染料敏化太阳能电池固态电解质[J].化学进展,2011(z1):557-568.
    [48]王惟嘉.杨英,郭学益,等.准固态聚合物电解质在染料敏化太阳能电池中的应用[J].化学通报,2011(2):144-149.
    [49]新型印刷技术将太阳能电池印在纸上[J].技术与市场,2011(2):110.
    [50]冯树铭.PET薄膜在太阳能电池背板上的应用[J].聚酯工业,2011(4):15-16.
    [51]冯小明.染料敏化太阳能电池光阳极和对电极的研究[D].长沙:湘潭大学,2010.
    [52]巩翠翠.染料敏化太阳能电池改性PEDOT:PSS对电极的制备[J].微细加工技术,2008(6):58-60.
    [53]巩翠翠.染料敏化太阳能电池改性PEDOT:PSS对电极的制备[J].微细加工技术,2008(6):58-60.
    [54]巩峰.染料敏化太阳能电池阻抗分析[D].天津:天津大学,2007.
    [55]黄振.碳材料在纳晶染料敏化太阳能电池对电极研究中的应用[D].长春:吉林大学,2007.
    [56]姜奇伟.染料敏化太阳能电池石墨对电极和电解质研究[D].厦门:华侨大学,2007.
    [57]李雷勇.多壁碳纳米管对电极染料敏化太阳能电池的制备及电化学性能[J].硅酸盐学报,2011(11):1800-1801.
    [58]刘小东.染料敏化太阳能电池的对电极研究[D].天津:天津大学,2007.
    [59]李品将.染料敏化太阳电池中铂金对电极的制备及性能之比较:第六届中国功能材料及其应用学术会议,中国湖北武汉,2007[C].
    [60]李璞.丝网印刷法制备柔性染料敏化太阳能电池碳对电极[J].大连工业大学学报,2009,28(4):274-276.
    [61]张海波.用丝网印刷法制备Pt电极及其性能[J].材料研究学报,2008,22(5):479-484.
    [62]李晓冬.高性能染料敏化太阳能电池的制备与研究[D].华东师范大学纳米物理学,2011.
    [63]李杨.染料敏化太阳能电池的性能研究[D].天津:天津大学,2010.
    [64]马换梅.染料敏化太阳能电池低铂对电极的制备和性能[J].化学工业与工程,2011(06).
    [65]孙惠成.染料敏化太阳能电池基础研究及产业化新进展[J].硅酸盐学报,2011(7):1045-1052.
    [66]刘贵山.富勒烯C-(60)电沉积方法制备染料敏化太阳能电池对电极及性能分析[J].大连工业大学学报,2011(1):50-53.
    [67]刘建本.多壁碳纳米管对电极染料敏化太阳能电池的制备及电化学性能[J].硅酸盐学报,2011,39(11):1800-1805.
    [68]LEE W J, RAMASAMY E, LEE D Y, et al. Performance variation of carbon counter electrode based dye-sensitized solar cell[J]. Solar Energy Materials and Solar Cells, 2008,92(7):814-818.
    [69]DENARO T, BAGLIO V, GIROLAMO M, et al. Investigation of low cost carbonaceous materials for application as counter electrode in dye-sensitized solar cells[J]. Journal of Applied Electrochemistry,2009,39(11):2173.
    [70]YEN M, YEN C, LIAO S, et al. A novel carbon-based nanocomposite plate as a counter electrode for dye-sensitized solar cells[J]. Composites Science and Technology, 2009,69(13):2193-2197.
    [71]LEE Y, CHEN C, CHONG L, et al. A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells[J]. Electrochemistry Communications,2010,12(11):1662-1665.
    [72]VEERAPPAN G, BOJAN K, RHEE S. Sub-micrometer-sized Graphite As a Conducting and Catalytic Counter Electrode for Dye-sensitized Solar Cells[J]. ACS Applied Materials & Interfaces,2011,3(3):857-862.
    [73]MA H, CHEN B, BU C, et al. Stability study of carbon-based counter electrodes in dye-sensitized solar cells[J]. Electrochimica Acta,2011,56(24):8463-8466.
    [74]李宝华.煤基炭材料用作锂离子电池负极[J].宁夏大学学报(自然科学版),2001(2):229-230.
    [75]李宝华.煤基炭材料的结构及其嵌锂行为[J].电池,2002(2):66-68.
    [76]李永峰.煤基纳米和微米炭材料的电弧法制备研究[D].大连:大连理工大学,2004.
    [77]李会荣.煤局部结构芳香环氧化反应机理的数值实验[D].西安:西安科技大学,2006.
    [78]李清.煤基活性炭的定向制备与再生研究[J].河南化工,2011(8):3-4.
    [79]戚绪尧.煤中活性基团的氧化及自反应过程.kdh(1)[D].北京:中国矿业大学,2011.
    [80]MINGXING Wu QIONG Z. Two flexible counter electrodes based on molybdenum and tungsten nitrides for dye-sensitized solar cells[J]. Journal of Materials Chemistry, 2011:10761-10766.
    [81]QINGQING MIAO, MINGXING W. Studies of high-efficient and low-cost dye-sensitized solar cells[J]. Frontiers of Optoelectronics in China,2011,4(1):103-107.
    [82]WANG G, HUANG C, XXING W, et al. Micro-meso hierarchical porous carbon as low-cost counter electrode for dye-sensitized solar cells[J]. Electrochimica Acta, 2011,56(16):5459-5463.
    [83]ZHANG D W, LI X D, LI H B, et al. Graphene-based counter electrode for dye-sensitized solar cells[J]. Carbon,2011,49(15):5382-5388.
    [84]姜华玮.有序介孔复合炭膜的制备及其性能研究[J].新型炭材料,2010(4):273-278.
    [85]姜华玮.具有介孔中间层复合炭膜的制备及其性能研究[D].大连:大连理工大学,2010.
    [86]杜慷慨.林志勇.碳纤维表面氧化的研究[J].华侨大学学报(自然科学版),1999(2):32-37.
    [87]王六平.硝酸氧化对沥青烯基有序介孔炭电化学性能的影响[J].新型炭材料,2011(3):204-210.
    [88]郭兴梅.酸氧化处理对碳球表面基团含量的影响[J].现代化工,2009(S1):177-179.
    [89]MINGXING Wu, XIAO L, TONGHUA W. Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes[J]. The Royal Society of Chemistry,2011,4:2308-2315.
    [90]LEE W J, RAMASAMY E, LEE D Y, et al. Efficient Dye-Sensitized Solar Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes[J]. ACS Applied Materials & Interfaces, 2009,1(6):1145-1149.
    [91]LI K, LUO Y, YU Z, et al. Low temperature fabrication of efficient porous carbon counter electrode for dye-sensitized solar cells[J]. Electrochemistry Communications, 2009,11(7):1346-1349.
    [92]CHOI H J, SHIN J E, LEE G, et al. Effect of surface modification of multi-walled carbon nanotubes on the fabrication and performance of carbon nanotube based counter electrodes for dye-sensitized solar cells[J]. Current Applied Physics,2010,10(2, Supplement):S165-S167.
    [93]GIUSEPPE C, ALOGERO F B. Single wall carbon nanotubes deposited on stainless steel sheet substrates as novel counter electrodes for ruthenium polypyridine based dye sensitized solar cells[J]. The Royal Society of Chemistry,2010,39:2903-2909.
    [94]JIANG Q W, LI G R, WANG F, et al. Highly ordered mesoporous carbon arrays from natural wood materials as counter electrode for dye-sensitized solar cells[J]. Electrochemistry Communications,2010,12(7):924-927.
    [95]RAMASAMY E, CHUN J, LEE J. Soft-template synthesized ordered mesoporous carbon counter electrodes for dye-sensitized solar cells[J]. Carbon,2010,48(15):4563-4565.
    [96]RAMASAMY E, LEE J. Ferrocene-derivatized ordered mesoporous carbon as high performance counter electrodes for dye-sensitized solar cells[J], Carbon,2010,48(13):3715-3720.
    [97]TING C, CHAO W. Efficiency improvement of the DSSCs by building the carbon black as bridge in photoelectrode[J]. Applied Energy,2010,87(8):2500-2505.
    [98]UK LEE S, SEOK CHOI W, HONG B. A comparative study of dye-sensitized solar cells added carbon nanotubes to electrolyte and counter electrodes[J]. Solar Energy Materials and Solar Cells,2010,94(4):680-685.
    [99]LI P, WU J, LIN J, et al. High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells[J]. Solar Energy, 2009,83 (6):845-849.
    [100]NAM J G, PARK Y J, KIM B S, et al. Enhancement of the efficiency of dye-sensitized solar cell by utilizing carbon nanotube counter electrode[J]. Scripta Materialia, 2010,62 (3):148-150.
    [101]PENG S, CHENG F, SHI J, et al. High-surface-area microporous carbon as the efficient photocathode of dye-sensitized solar cells[J]. Solid State Sciences, 2009,11(12):2051-2055.
    [102]SEUNG I, CHA B. Pt-free transparent counter electrodes for dye-sensitized solar cells prepared from carbon nanotube micro-balls[J]. The Royal Society of Chemistry, 2009,20:659-662.
    [103]WANG G, XING W, ZHOU S. Application of mesoporous carbon to counter electrode for dye-sensitized solar cells[J]. Journal of Power Sources,2009,194(1):568-573.
    [104]CONTESCU P. Surface acidity of carbons characterized by their continuous pK distribution and Boehm titration[J]. Carbon,1996,35(1):83-94.
    [105]ALICIA M, OICKLE S. Standardization of the Boehm titration:Part Ⅱ. Method of agitation, effect of filtering and dilute titrant[J]. CARBON,2010(48):3313-3322.
    [106]BANDOSZ T. Surface Chemistry of Activated Carbons:Combining the Results of Temperature-Programmed Desorption, Boehm,and Potentiometric Titrations[J]. Journal of Colloid and Interface Science,2001 (240):252-258.
    [107]GOERTZEN S L, THERIAULT K D, OICKLE A M, et al. Standardization of the Boehm titration. Part I. C02 expulsion and endpoint determination[J]. Carbon,2010,48(4):1252-1261.
    [108]KIM Y S, YANG S J, LIM H J, et al. Effects of carbon dioxide and acidic carbon compounds on the analysis of Boehm titration curves[J]. Carbon,2012,50(4):1510-1516.
    [109]KIM Y S, YANG S J, LIM H J, et al. A simple method for determining the neutralization point in Boehm titration regardless of the C02 effect[J]. Carbon,2012.
    [110]何强.几种木材表面化学成分分布特征的XPS分析[J].贵州林业科技,2011,39(2):56-61.
    [111]刘杰.PAN基ACF的结构表征-XPS与元素分析[J].新型炭材料,1999,14(1):48-52.
    [112]宋艳江.表面处理碳纤维增强聚酰亚胺复合材料力学性能[J].复合材料学报,2008,25(5):64-68.
    [113]吴小利.碳纳米管的表面修饰及FTIR, Raman和XPS光谱表征[J].光谱学与光谱分析,2005,25(10):1595-1598.
    [114]GHODS P, ISGOR 0 B, BROWN J R, et al. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties[J]. Applied Surface Science,2011,257(10):4669-4677.
    [115]MILOSEV I, KOSEC T, STREHBLOW H H. XPS and EIS study of the passive film formed on orthopaedic Ti-6A1-7Nb alloy in Hank's physiological solution[J]. Electrochimica Acta,2008,53(9):3547-3558.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700