用户名: 密码: 验证码:
声纳图像处理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声纳图像处理是海洋研究开发的关键技术,在经济军事等方面都有着重要的研究价值和应用价值,而光学图像处理中的一些算法并不能简单在声纳图像处理中得到有效应用,因此对声纳图像处理的研究是紧迫而有价值的。本文针对声纳图像不同于光学图像的基本特征展开讨论,主要围绕以下几个问题进行研究:问题一:提高声纳图像去噪性能的同时不破坏物体边缘;问题二:获取清晰、可靠、全面的声纳图像;问题三:准确分割声纳图像;问题四:准确实现声纳图像的检索、识别、跟踪等后期处理,并针对这四个问题在四个章节中一一给出相应的解决方案,研究了声纳图像的去噪、融合、分割和检索,通过大量的仿真对比实验验证所提方法的可行性、有效性和可靠性。
     对于声纳图像的去噪部分,本文以在光学图像领域中比较流行的小波域图像去噪方法为中心进行探讨。首先,介绍两种较新的小波形式——超小波和形态小波,并将超小波中的轮廓波和表面波、形态小波中的形态哈尔小波和形态中值小波应用在声纳图像去噪中,以探讨其性能是否如在光学图像去噪中有效;其次,在形态小波完备重构条件下,将非线性滤波器中的中点滤波器与形态小波相结合,构建了形态中点小波,并利用多重化、提升、增强等手段对形态中点小波进行强化处理,使其去噪性能更加优异;最后,将各种小波变换应用在声纳图像去噪中进行仿真对比实验,实验数据表明本文所提算法不仅拥有更加优异的去噪性能,而且在保边能力上更加突出。
     对于声纳图像的融合部分,本文探讨的是是否可以通过融合的手段使所获声纳图像更加清晰、准确、可靠,仍旧是以光学领域中比较流行的小波域图像融合方法为中心进行探讨。首先,将超小波中的脊波和曲波、以及小波包应用在声纳图像融合中,虽然这些算法在光学图像领域中已经比较成熟,但是声纳图像融合的应用却很少,本文探讨了这些算法在声纳图像融合中的适用情况;其次,源于小波包的思想,本文提出了形态小波包的概念,结合去噪部分构建的形态中点小波,建立了形态中点小波包,将其应用在声纳图像融合中,与现有的其它小波进行仿真对比实验,实验结果表明所提方法融合效果最好;最后,本文将融合技术应用在去噪中,提出了基于多形态小波包基声纳图像融合去噪法,实验结果表明所提方法比单一的形态小波包去噪效果更佳,保边效果更好。
     对于声纳图像的分割部分,本文力求寻找一种更加细致全面的分割方法,并能克服在声纳图像分割中阴影带来的负面效应。首先,介绍了光学图像分割中的水平集分割法和谱聚类分割法,将其应用在声纳图像分割系统中,并通过灰度阈值变换预处理克服声纳图像分割中的阴影效应;其次,考虑图像分割与数字抠图之间的联系与区别,现有的图像分割基本上是基于像素点强度或者梯度的运算,而数字抠图考虑的则是透明度或颜色值百分比,因此本文将数字抠图考虑到图像分割中,建立了基于数字抠图的图像分割法,使分割考虑的因素更加全面,并在数字抠图中使用了比较前沿的谱抠图方法,另一方面,针对声纳图像分割时误将阴影作为目标分割出来的弊端,提出了形态学顶帽和底帽变换的预处理方案,建立基于谱抠图的声纳图像分割系统;最后,对各种分割方法进行仿真对比实验,实验数据表明所提方法能够更好的对声纳图像前景目标进行分类。
     对于声纳图像的检索部分,本文主要讨论图像检索如何在声纳图像这一特殊图像上实现。首先,介绍了光学图像中占据优势的基于传统互信息的图像检索方法和改进的基于区域生长分割的互信息图像检索方法,并将其应用在声纳图像检索中,探讨其存在的不足;其次,针对声纳图像检索主要基于前景目标检索的具体要求,引入区域互信息的思想,并对前景区域互信息进行加权,将加权区域互信息代替原有的全局互信息,构建基于最大加权区域互信息的声纳图像检索系统;最后,将改进的互信息检索方法与其它互信息检索方法在声纳图像检索系统中进行仿真对比实验,通过仿真对比实验可以看出,所提方法更多的考虑了声纳图像自身的问题,更加适用于声纳图像检索。
Sonar image processing, as the key technology in marine research and development, has important research value and application value in economic and military aspects, and some of the reliable optical image processing algorithms can not simply be effectively applied in sonar image processing, therefore it is urgent and valuable for the research of sonar image processing. Based on the basic characteristics of sonar image different from optical image, this paper did the research focusing on the following several major issues: problemⅠ:to improve the performance of sonar image denoising without destroying the edge; problemⅡ:to obtain clear, reliable, comprehensive sonar image; problemⅢ:to get accurate sonar image segmentation; problemⅣ:to complete sonar image post-processing such as image retrieval, identification, tracking and so on. Then the corresponding solutions for these four questions were given one by one in the four chapters of this paper, sonar image denoising, fusion, segmentation and retrieval were done respectively, and the feasibility, validity and reliability of the proposed methods were verified through a lot of simulation comparing experiments.
     For sonar image denoising, this paper discussed the denosing methods in wavelet domain which are more popular in optical image denoising. Firstly, this paper introduced two relatively new wavelet forms-beyond wavelet and morphological wavelet, and made the application of contourlet and surfacelet in the former, morphological Haar wavelet and morphology median wavelet in the latter in sonar image denoising in order to discuss if its performance is as effective as in optical image denoising; secondly, the midpoint filter of nonlinear filter and morphology wavelet were combined together to construct the morphological midpoint wavelet under the perfect reconstruction condition, and then it was improved by multiplying, lifting, and enhancing to get more excellent denoising performance; finally, the simulation comparative experiments were taken and the results showed that the proposed algorithm has not only more excellent denoising performance but also more outstanding edge preserving capacity.
     For sonar image fusion, this paper discussed the problem that if getting a clear, accurate and reliable sonar image through fusion technique is feasible, and still in wavelet domain which is more popular in optical image fusion. Firstly, the application of ridgelet and curvelet of beyond wavelet and wavelet packet were maken in sonar image fusion, although these algorithms are relatively mature in optical image processing, they are rarely applied in sonar image fusion, so this paper discussed their feasibility; secondly, this paper proposed the concept of morphological wavelet packet from wavelet packet thoughts, and established morphological midpoint wavelet packet based on morphological midpoint wavelet constructed in denosing part, then applied in sonar image fusion, the simulation comparative experiments results showed that the proposed method is feasible and validity; finally, this paper made the fusion technology applied in image denoising and gave sonar image fusion denoising method based on multiple morphological wavelet packets, the experimental results showed that the proposed method has a better denoising effect and edge preserving ability.
     For sonar image segmentation, this paper tried to find a more meticulous and comprehensive segmentation method, and at the same time can overcome the negative effects of the shadow part in sonar image. First of all, several kinds of optical image segmentation methods were introduced:level set method and spectral clustering method, and the shadow effect in sonar image segmentation was overcome through the gray threshold transformation; secondly, by considering the relationship and difference between image segmentation and digital matting:the existing image segmentation is essentially based on pixel intensity or gradient operator, while digital matting considers transparency or the color percentage, this paper combined the two algorithms together to establish a new image segmentation method based on digital matting, and used the forefront spectral matting method in digital matting, on the other hand, aiming at the disadvantage that usually take shadow as target in sonar image segmentation, this paper gave morphological hat and bottom transformation preprocessing plan to set up a sonar image segmentation system based on spectral matting; thirdly, the simulation comparative experiments of various segmentation methods were taken, and the experimental results showed that the proposed method can get a better sonar image forground target segmentation.
     For sonar image retrieval, this paper focused on how image retrieval successfully achieved for the special sonar image. Firstly, the existing outstanding image retrieval method based on mutual information and improved region growing segmentation MI in optical image retrieval were introduced, and their shortcomings were explored though the application in sonar image retrieval; secondly, in view of the specific requirement that sonar image retrieval is primarily forground target retrieval, this paper introduced the idea of region mutual information and weighted the forground mutual information, and built the sonar image retrieval system based on maximum weighted region mutual information by means of making the weighted region mutual information instead of the original global mutual information; thirdly, this paper compared the improved mutual information retrieval method with other mutual information retrieval methods in sonar image retrieval system, and the results showed that the proposed method is more suitable for sonar image retrieval.
引文
[1]Cervenka P, Mousoustier C. Postprocessing and corrections of bathymetry derived from sidescan sonar systems. IEEE Journal of Oceanic Engineering.1994,19(4): 619-629P
    [2]Moustier C, Lonsdale P F, Shor A N. Simultaneous operation of the seabeam multibeam echosounder and the seaMARC Ⅱ bathymetric sidescan sonar system. IEEE Journal of Oceanic Engineering.1990,15(2):84-94P
    [3]Chatillon J, Bouhier M E, Zakharia M E. Synthetic aperture sonar for seabedimaging: relative merits of narrow-band and wide-band approached. IEEE journal of Oceanic Engineering.1992,17(1):95-105P
    [4]Michael P H, Peter T G. Broad-band synthetic apeture sonar. IEEE journal of Oceanic Engineering.1992,17(1):80-94P
    [5]Loggins C. D. A comparison of forward-looking sonar design alternatives. OCEANS, MTS/IEEE Conference and Exhibition, Honolulu,2001,3:1536-1545P
    [6]Waite A. D.实用声纳工程.王德石译.第三版.电子工业出版社.2004:79-97页
    [7]Rafacel C G, Richard E W.数字图像处理(第二版).阮秋琦,阮宇智等译,北京:电子工业出版社.2010:85-500页
    [8]Lee J S. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Machine Intell.1980,2(2):165-16P
    [9]侯建华.基于小波及其统计特性的图像去噪方法研究.华中科技大学博士学位论文.2007:1-50页
    [10]Huang H C, Lee T C M. Data adaptive median filters for signal and image denoising using a generalized SURE criterion. IEEE Signal Processing Letters.2006,13(9): 561-564P
    [11]Yuan S Q, Tan Y H. Impulse noise removal by a global-local noise detector and adaptive median filter. Signal Processing.2006,86(8):2123-2128P
    [12]Ng P E, Ma K K. A switching median filter with boundary discriminative noise detection for extremely corrupted images. IEEE Transactions on Image Processing. 2006,15(6):1506-1516P
    [13]Jiang S, Hao X. Hybrid fourier-wavelet image denoising. Electronics Letters.2007, 43(20):1081-1082P
    [14]Valova I, Kosugi Y. Hadamard-based image decomposition and compression. IEEE Transactions on Information Technology in Biomedicine.2000,4(4):306-319P
    [15]Shivamurti M, Narasimhan S. V. Analytic discrete cosine harmonic wavelet transform(ADCHWT) and its application to signal/image denoising. International Conference on Signal Processing and Communications(SPCOM), Bangalore,2010,7: 1-5P
    [16]Kakumani A, Mendhurwar K A. Microarray image denoising using independent component analysis. Computer Application.2010,1(11):87-93P
    [17]Grossman A, Moriet J. Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anai.1984,15(4):723-736P
    [18]Daubeehies I, Grossman A, Meyer Y. Painless nonorthogonal expansions. J. Math. Phys.1986,27(5):1271-1283P
    [19]Daubechies I. Orthonormal bases of compactly supported wavelets. Comm. on Pure and Appl. Math.1988,41(7):909-996P
    [20]Mallat S G. A theory for multiresolution signal decomposition:the wavelet representation. IEEE Trans, pattern Anal. Machine Intell.1989,11(7):674-693P
    [21]Coifman R R, Meyer Y, Wickerhauser M V. Size properties of wavelet packets. Wavelet and Their Applications.1992:453-470P
    [22]Kovacevic J, Vetterli M. Perfect reconstruction filter banks with rational sSampling factors. IEEE Trans on Signal Processing.1993,41(6):2047-2066P
    [23]Sweldens W. The lifting scheme:a construction of sSecond generation wavelets. SIAM J. Math. Anal.1997,29(2):511-546P
    [24]Goodman T N T, Lee S L. Wavelets of multiplicity. Trans of Amer.1994,342: 307-324P
    [25]Donovan G, Geronimo J S, Hardin D. Construction of orthogonal wavelets using fractal interpolation function. SIAM J Math. Anal.1996,27:1158-1192P
    [26]Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage. Biometrika.1994,81(3):425-455P
    [27]Chang S G, Yu B, Vetterli M. Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Transactions on Image Processing,2000,9(9): 1522-1531P
    [28]Bruce A G, Gao H Y. WaveShrink:shrinkage functions and thresholds. Proceedings of SPIE-The International Society for Optical Engineering.1995,2569:270-281P
    [29]Gao H Y. Wavelet shrinkage denoising using the nonnegative garrote. Journal of Computational and Graphical Statistics.1998,7(4):469-488P
    [30]Mallat S, Hwang W L. Singularity detection and processing with wavelets. IEEE Transactions on Information Theory.1992,38(2):617-643P
    [31]Boubchir L, Fadili J M. A closed-form nonparametric Bayesian estimator in the wavelet domain of images using an approximateα-stable prior. Pattern Recognition Letters.2006,27(12):1370-1382P
    [32]Boubchir L, Fadili J M, Bloyet D. Bayesian denoising in the wavelet-domain using an analytical approximate α-stable prior. Proceedings of International Conference on Pattern Recognition,2004,4:889-892P
    [33]Fadili J M, Boubchir L. Analytical form for a Bayesian wavelet estimator of images using the Bessel K form densities. IEEE Transactions on Image Processing.2005, 14(2):231-240P
    [34]Achim A, Tsakalides P, Bezarianos A. SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling. IEEE Transactions on Geoscience and Remote Sensing.2003,41(8):1773-1784P
    [35]Crouse M S, Nowak R D, Baraniuk R G. Wavelet-based statistical signal processing using hidden Markov models. IEEE Transactions on Signal Processing.1998,46(4): 886-902P
    [36]Fan G, Xia X G. Image denoising using a local contextual hidden Markov model in the wavelet domain. IEEE Signal Processing Letters.2001,8(5):125-128P
    [37]Romberg J K, Choi H, Baraniuk R G. Bayesian tree-structured image modeling using wavelet-domain hidden Markov models. IEEE Transactions on Image Processing. 2001,10(7):1056-1068P
    [38]Malfait M, Roose D. Wavelet-based image denoising using a Markov random field a priori model. IEEE Transactions on Image Processing.1997,6(4):549-565P
    [39]Donoho D L. Wedgelets:Nearly-minmax estimation of edges. Ann. Statist.1999,27: 859-897P
    [40]Pennec E L, Mallat S. Sparse geometric image representations with bandelets. IEEE Transactions on Image Processing.2005,14(12):2091-2106P
    [41]Chen C, Chan K L, C F Chen. Brushlet features of texture image retrieval. Digital Image Computing Techniques and Applications(DICTA), Melbourne,2002:1-4P
    [42]Candes E J. Ridgelets:theory and applications. Ph. D. Thesis, Department of Statistics, Stanford University,1998
    [43]Candes E J, Donoho D L. Curvelet-a surprisingly effective nonadaptive representation for objects with edges. In Curve and Surface Fitting. Saint-Malo, Vanderbilt University Press,1999
    [44]Do M N, Vetterli M. Contourlets:a directional multiresolution image representation. Proc. of IEEE International Conference on Image Processing,2002:357-360P
    [45]Lu Y, Do M N. Multidimensional directional filter banks and surfacelets. IEEE Transactions on Image Processing.2007,16:918-931P
    [46]Candes E J, Donoho D L. New tight frames of curvelets and optimal representations of objects with C2 singularities. Commun. on Pure and Appl. Math.,2004:219-266P
    [47]赵春晖,季亚新.基于二代曲波变换和PCNN的高光谱图像融合.哈尔滨工程大学学报.2008,29(7):729-734页
    [48]朱为,李国辉,涂丹.一种基于第2代曲波变换的尺度相关图像去噪方法.中国图象图形学报.2008,13(12):2281-2285页
    [49]许学斌,张德运,张新曼,潘煜.采用二代曲波变换和反向传播神经网络的人脸识别方法.西安交通大学学报.2008,42(10):1213-1216页
    [50]Hampson F J, Pesquet J C. M-band nonlinear subband decompositions with perfect reconstruction. IEEE Trans. Image Processing,1998,7(11):1547-1560P
    [51]Cha H, Chaparro L F. Adaptive morphological representation of signals:polynomial and wavelet methods. Multidimen. Syst. Signal Process.1997,8:249-271P
    [52]Claypoole R L, Baraniuk R G, Nowak R D. Adaptive wavelet transforms via lifting. Dept. Elect. Comput. Eng., Rice Univ., Houston, TX, Tech,1999,3:1513-1516P
    [53]Heijmans H J A M, Goutsias J. Nonlinear multiresolution signal decomposition schemes-Part Ⅱ:morphological wavelets. IEEE Tans. Image Processing.2000,9: 1897-1913P
    [54]戴青云,余英林.一种基于形态小波的在线掌纹的线特征提取方法.计算机学报.2003,26(2):234-239页
    [55]汤春瑞,刘丹丹.基于NSCT循环抽样的声纳图像去噪方法.计算机应用.2009,29(1):68-70页
    [56]尚政国,赵春晖,孙岩.基于FRIT循环抽样声纳图像去噪新方法.计算机工程与应用.2007,43(10):1-3页
    [57]赵春晖,李誉斐.基于偏微分方程的声纳图像去噪.黑龙江大学自然科学学报.2008,25(1):10-14页
    [58]Sorin M, Alexandru I. Sonar image denoising using a bayesian approach in the wavelet domain. Recent Advances in Stochastic Modeling and Data Analysis (ASMDA), Chania,2007:621-629P
    [59]Enfang S, Zhengyan S, Hongyu B, Yuanshou L. Sonar image denoising based on HMT model in morphological wavelet domain. International Conference on Image Analysis and Signal Processing (IASP), Zhejiang,2010:214-218 P
    [60]桑恩方,沈郑燕,卞红雨,葛光涛.形态小波域声纳图像去噪算法.数据采集与处理.2010,25(3):324-329页
    [61]尚政国,赵春晖,冯敏.基于Curvelet变换水下声纳图像去噪研究.应用科技.2007,34(5):11-15页
    [62]Zhengguo S, Chunhui Z, Jian W. Application of multi-resolution analysis in sonar image denoising. Journal of Systems Engineering and Electronics.2008,19(6): 1082-1089P
    [63]Li H, Manjunath B S, Mitra S K. Multi-sensor image fusion using the wavelet Graphical Models and Image Processing.2003,12(1):1-14P
    [64]Nabaa N, Bishop R H. Solution to a multisensor tracking problem with sensor registration errors. IEEE Trans, on AES.1999,35(1):354-363P
    [65]Mabler R P S. Information theory analysis for date fusion. Lockheed Martin Tactical Defense System, Eagom, MN, USA,1998
    [66]Simgh R P, Baily W H. Fuzzy logic application to multisensor-multitarget correlation. IEEE Trans. on AES.1997,33(3):752-768P
    [67]刘卫光,李跃,张休社,范文新.图像信息融合与识别.北京:电子工业出版社,2008,2-105页
    [68]赵巍,毛士艺.一种基于假彩色的像素级多传感器图像融合算法.电子学报,2003,3(3):368-371页
    [69]Yun Z, Gang H. An IHS and wavelet integrated approach to improve pan-sharpening visual quality of natural colour IKONOS and QuickBird images. Information Fusion. 2005,6(3):225-234P
    [70]Sharma R K. Multistream video fusion using local principle components analysis. Infrared Technology and Applications.1998,3436:717-725P
    [71]朱晓松,茅耀斌,戴跃伟,王执铨.一种基于HVS的小波水印方案.南京理工大学学报,2001,25(3):262-268页
    [72]Burt P J, Adlson E H. The laplacian pyramid as a compact image code. IEEE Trans. Commu..1983,31(4):532-540P
    [73]Toet A, Valeton J M. Merging thermal and visual images by a contranst pyramid. Optical engineering.1989,28(7):789-792P
    [74]Toet A. Multiscale contrast enhancement with applications to image fusion. Optical engineering.1992,31(5):1026-1031P
    [75]Toet A. A morphological pyramid image decomposition. Pattern Recognition Letters. 1989,9(4):255-261P
    [76]Reed S, Petillot Y, Bell J. Fusing sonar images for mine detection and classification. IEEE Journal of Oceanic Engineering.2003,28(1):90-105P
    [77]汪海涛,唐劲松,苑秉成.合成孔径声纳多子阵数据融合算法.压电与声光.2010,32(3):510-512页
    [78]Somajyoti M, Steve S, Hugh F D. Multisensor data fusion for underwater navigation. Robotics and Autonomous Systems.2001,35(2):97-108P
    [79]Singh H, Roman C, Whitcomb L, Yoerger D. Advances in fusion of high resolution underwater optical and acoustic data. Proceedings of the 2000 International Symposium on Underwater Technology, Tokyo,2000:206-211P
    [80]王琪,刘雁春,暴景阳.多波束测深仪与侧扫声纳信号检测技术分析.海军大连舰艇学院学报.2002,25(6):33-35页
    [81]阳凡林.多波束和侧扫声纳数据融合及其在海底底质分类中的应用.武汉大学博士学位论文.2003:74-84页
    [82]Hoelscher U, Kraus D. Unsupervised image segmentation and image fusion for multi-beam/multi-aspect sidescan sonar images. OCEANS'98 Conference Proceedings, Nice,1998,1:571-576P
    [83]Reed S, Ruiz IT, Capus C, Petillot Y. The fusion of large scale classified side-scan sonar image mosaics. IEEE Transactions on Image Processing.2006,15(7): 2049-2060P
    [84]Glasbey C A. An analysis of histogram based thresholding algorithms. CVGIP-GMIP. 1993,55(6):532-537P
    [85]Li N, Liu M, Li Y. Image segmentation algorithm using watershed transform and level set method. IEEE International Conferent on Acoustics, Speech and Signal Processing (ICASSP), Honolulu,2007:613-616P
    [86]Chang H, Yeung D Y. Robust path-based spectral clustering with application to image segmentation. IEEE International Conference on Computer Vision, Beijing,2005: 278-285P
    [87]Dai D, Chantler M J, Lane D M, Williams N. A spatial-temporal approach for segmentation of moving and static objects in sector scan sonar image sequences. International Conference on Image Processing and its Applications. Edinburgh,1995: 163-167P
    [88]Mignotte M, Collet C, Perez P, Bouthemy P. Sonar image segmentation using an unsupervised hierarchical MRF model. IEEE Transactions on Image Processing.2000, 9(7):1216-1231P
    [89]Xiaodong T, Zhong L, Lu L. Study of sonar image segmentation based on markov random field. World Congress on Intelligent Control and Automation, Dalian,2006: 9618-9622P
    [90]Ning S, Taebo S, Hernsoo H, Sonar image segmentation based on markov gauss-rayleigh mixture model. International Workshop on Geoscience and Remote Sensing, Shanghai,2008,12:704-709P
    [91]Zhuofu L, Enfang S, Zhenpeng L. Sonar image segmentation using snake models based on cellular neural network. IEEE International Conference on Information Acquisition,2005,6:5P
    [92]Enfang S, Zhengyan S, Chang F, Yuanshou L. Sonar image segmentation based on implicit active contours. IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai,2009:228-231P
    [93]Xiu F Y, Zhe H Z, Peter X. L, Hong L G. Sonar image segmentation based on GMRF and level-set models. Ocean Engineering.2010,37(10):891-901P
    [94]Chenadec G L, Boucher J M. Sonar image segmentation using the angular dependence of backscattering distributions. Oceans.2005,1:147-152P
    [95]Pinto M, Ferreira B, Matos A, Cruz N. Sidescan sonar image segmentation and feature extraction. OCEANS.2009,10:1-9P
    [96]Flickner M, Sawhney H. Query by image and video content:the QBIC System. IEEE Computer.1995,28 (9):23-32P
    [97]Pentland A, Picard R W, Sclaroff S. Photobook:tools for content-based manipulation of image database. Proc. SPIE,1994,2185:34-47P
    [98]Smith J R, Chang S F. VisuaISEEK:a fully automated content-based image query system. Proc. ACM Multimedia,1996:87-98P
    [99]Ma W Y, Manjunath B. NETRA:A toolbox for navigating large image databases. Multimedia Systems.1999,7(3):184-198P
    [100]Carson C, Thomas M, Belongie S, Hellerstein J M, Malik J. Blobworld:a system for region-based image indexing and retrieval. Proc. Visual Information Systems.1999: 509-516P
    [101]Wang J Z, Li J, Wiederhold G. SIMPLIcity:semantics-sensitive integrated matching for picture libraries. IEEE Trans, on PAMI,2001,23(9):1-17P
    [102]Yong R, Huang T S, Ortega M, Mehrotra S. Relevance feedback:a powerful tool in interactive content-based image retrieval. IEEE Tram. on Circuits and Systems for Video Technology.1998,8(5):644-655P
    [103]Go'mez J, Vicedo J L. Next-generation multimedia database retrieval. IEEE MultiMedia.2007,14(3):106-107P
    [104]Muneesawang P, Guan L. Multimedia database retrieval:a human-centered approach Springer Science.2006.42-26P
    [105]Darilmaz I. Wavelet Based Similarity Measurement Algorithm for Seafloor Morphology. Boston:Department of Mechanical Engineering, Massachusetts institute of technology,2006:1-73P
    [106]胡海平,小波图像压缩编码与小波图像闽值降噪的研究,上海大学博士学位论文, 2002:9-39页
    [107]闫敬文,屈小波.超小波分析及应用.北京:国防工业出版社.2008:1-182页
    [108]Do M N. Directional multiresolution image repersentations. PhD thesis, Swiss Federal Insitute of Techology, Lausanne, Switzerland, December 2001:34-90P
    [109]Bamberger R H, Smith M J T. A filter bank for the directional decomposition of image: theory and design. IEEE Trans. Signal Proc.1992,40(4):882-893P
    [110]YAO K C, Mignotte M, Collet C. Unsupervised segmentation using a self-organizing map and a noise model estimation in sonar imagery. Pattern Recognition.2000,33: 1575-1584P
    [111]Shuyuan Y, Min W, Licheng J, Ruixia W, Zhaoxia W. Image fusion based on a new contourlet packet. Information Fusion.2010,11(2):78-84P
    [112]Shuyuan Y, Min W, ZhanWen L, Licheng J. Image fusion using a NSDFB-based contourlet packet. International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen,2007,28:690-693P
    [113]ShuyuanY, Min W, Licheng J. Radar target recognition using contourlet packet transform and neural network approach. Signal Processing.2009,89(4):394-409P
    [114]Zhenghua S, Guodong L, Lixin G, Lin Z, Wenming F. Image watermarking based on wavelet-based contourlet packet transform with best tree. International Symposium on Electronic Commerce and Security, Nanchang,2009:203-207P
    [115]Zhenghua S, Zhijun L, Guodong L, Ren Z, Lixin G. Remote sensing image fusion based on wavelet-based contourlet packet. International Conference on Environmental Science and Information Application Technology, Wuhan,2010:112-115P
    [116]Eslami R, Radha H, Wavelet-based contourlet packet image coding. Conference on Information Sciences and Systems, The Johns Hopkins University,2005.
    [117]王咏胜,付永庆.复轮廓波包的构造及其图像去噪应用.光子学报.2010,39(9):1697-1707页
    [118]Zhenghua S, Cuiqun H, Guodong L, Ren Z, Zhijun L. Image Watermarking Based On Ridgelet Packet with best tree. International Conference on Environmental Science and Information Application Technology, Wuhan,2010:116-120P
    [119]Pajares G, Jesus M D L. A wavelet-based image fusion tutorial. Pattern Recognition, 2004,37(9):1855-1872P
    [120]Brown L G. A survey of image registration techniques. ACM Computering Survey. 1992,24(4):325-376P
    [121]Do M N, Vetterli M. The finite ridgelet transform for image representation. IEEE Transactions on Image Processing.2003,12(1):1-14P
    [122]Candes E J. On the representation of mutilated sobolev funtions. SIAM J. Math. Anal. 1999,33:2495-2509P
    [123]焦李成,侯彪,王爽,刘芳.图像多尺度几何分析理论与应用——后小波分析理论与应用.西安:西安电子科技大学出版社,2008,12-389页
    [124]杨建国,小波分析及其工程应用.北京:机械工业出版社,2005,26-139页
    [125]王婷,李杰,赵呜.基于小波包变换的图像融合技术的应用.同济大学学报(自然科学版).2006,34(9):1137-1141页
    [126]郎文杰.基于小波包分析的图像融合去噪方法.河北理工大学学报(自然科学版)2010,32(2):42-44页
    [127]郎文杰.基于多个小波包基分析的图像融合去噪方法研究.长春理工大学学报(自然科学版).2009,32(4):677-679页
    [128]Wang J, Cohen M F. An iterative optimization approach for unified image segmentation and matting. IEEE International Conf. on Computer Vision, Beijing, 2005:936-943P
    [129]Park S, Min S. Optimal topology design of magnetic devices using level-set method. IEEE Transactions on Magnetics.2009,45(3):1610-1613P
    [130]Vese L, Chan T. A multiphase level set framework for image segmentation using the mumford and shah model. International Journal of Computer Vision.2002,50(3): 271-293P
    [131]Li C, Kao C Y, Gore J. Implicit active contours driven by local binary fitting energy. IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Minneapolis, 2007:1-7P
    [132]Li C, Xu C, Gui C. Level set evolution without reinitialization:a new variational formulation. IEEE Conference on Computer Vision and Pattern Recognition, San Diego,2005,1:430-436P
    [133]Poter T, Duff T. Compositing digital images. Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, New York,1984:253-259P
    [134]杜振龙.图像——视频抠像技术的研究.浙江大学博士学位论文,2007:10-87页
    [135]林生佑,潘瑞芳,杜辉,石教英.数字抠图技术综述.计算机辅助设计与图形学学报.2007,19(4):473-479页
    [136]Levin A, Rav-Acha A, Lischinski D. Spectral matting. IEEE Transactions on Pattern Analysis and Machine Intelligence.2008,30(10):1699-1712P
    [137]Levin A, Lischinski D, Weiss Y. A closed form solution to natural image matting. IEEE Transactions on Pattern Analysis and Machine Intelligence.2008,30 (2): 228-242P
    [138]吴玉娥,何发智,黄志勇.具有纠偏性的图像抠图的全局优化方法.计算机辅助设计与图形学学报.2010,22(2):264-271页
    [139]陈箫枫,潘保昌,郑胜林,赵全友,梁坚.用顶帽变换估计并消除图像背景.微计算机信息.2008,24(3):310-311页
    [140]Maes F, Collignon A, VAndermeulen D. Multimodality image registration by maximization of mutual information. IEEE Transaction on Medical Imaging.1997,16: 187-198P
    [141]吕庆文,陈武凡.基于互信息量的图像分割.计算机学报.,2006,29(2):296-301页
    [142]魏伟一,李战明.基于改进PCNN和互信息熵的自动图像分割.计算机工程.2010,36(13):199-204页
    [143]支力佳,张少敏,赵大哲等.基于灰度共生矩阵和梯度相位互信息的医学图像检索.东北大学学报(自然科学版).2010,31(3):358-365页
    [144]李顺山,杨明星,庄天戈.基于互信息方法的医学图像检索.红外与毫米波学报.2001,20(6):370-374页
    [145]Rijsbergen V. Information retrieval. London:Butterworths,1979
    [146]Collignon A, Maes F, Delaere D. Automated multimodality image registration using information theory. Information Processing in Medical Imaging,1995:263-274P
    [147]范自柱,刘二根,徐保根.互信息在图像检索中的应用.电子科技大学学报,2007,36(6):1311-1314页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700