用户名: 密码: 验证码:
Zn(Ⅱ)-NH_3-NH_4Cl-H_2O体系制备高纯锌理论及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对目前氟、氯、铁等杂质元素高的氧化锌物料、氧化锌矿常规方法难以处理以及无汞合金锌粉用高纯锌必须由0号锌用真空蒸馏或精馏法生产的问题。首次在Zn(Ⅱ)-NH_(3-)NH_4Cl-H_2O体系中,直接由复杂的氧化锌物料和锌焙砂生产高纯锌。对Zn(Ⅱ)-NH_(3-) NH_4Cl-H_2O体系计算并验证了浸出过程热力学数据、绘制了净化过程电位-pH图、确定了电积锌时阴阳极的电化学反应动力学方程、最佳电解工艺条件以及添加剂对阴极锌形貌与晶体生长方向的影响,并把基础理论用于指导处理锌焙砂与炼铅炉渣烟化炉氧化锌烟灰生产高纯锌的实践,进行了实验室小型试验和100t/a的半工业性试验,均获得成功。
    根据同时平衡原理和溶液电中性原理,进行了Zn(Ⅱ)-NH_(3-) NH_4Cl-H_2O体系热力学计算,绘制出ZnO在NH_(3-)NH_4Cl溶液中的溶解度图。揭示了体系中锌的溶解性能及高溶解度区域,发现ZnO在NH_(3-)NH_4Cl水溶液中的溶解度比在同浓度的NH(3-)(NH4)2SO4或NH_(3-)(NH_4)_2CO_3水溶液中溶解度要大。在[NH_3]/[NH_4Cl]<1时,锌平衡浓度随氨浓度的上升而迅速升高,但到[NH_3]/[NH_4Cl]>1后,几乎不再上升。在NH4Cl 5mol/L的条件下,随氨浓度的增加锌的配合物由ZnCl_i~(2-i)占优势逐渐转变成几乎全部为Zn(NH_3)_4~(2+)形式存在。ZnO在NH_(3-)NH_4Cl溶液中的溶解度验证实验表明,在不同的氨和铵浓度下,锌平衡浓度计算值与实际测定值的相对偏差的绝对平均值为11.37%。
    在浸出过程热力学计算的基础上,根据各杂质元素的精选配合物常数,计算出E_(Men /Me)-pH关系,绘制了Zn(Ⅱ)-NH_(3-)NH_4Cl-H_2O体系净化过程的E-pH图。发现了即使溶液中杂质元素浓度Me~(n+)<10~(-6)mol/L(Me表示Cu、Ni、Pb、Co)的情况下,E_((Cu~(2+)/Cu)、E_(Ni~(2+)/Ni)、E_(Pb~(2+)/Pb)及E_(Co~(2+)/Co)与E_(Zn~(2+)/Zn)的差均大于0.3v,因此锌粉可以很彻底的置换它们,而E_(Cu~+/Cu)与E_(Zn~(2+)/Zn)相差较小,因此置换前应尽量使铜以Cu~(2+)形式存在。E_(Cd~(2+)/Cd)、E_(Co~(2+)/Co)与E_(H~+/H_2)比较接近,在常温净化的情况下,不会发生酸法炼锌过程中锌粉置换时镉反溶现象。
    进行了Zn (Ⅱ)-NH_(3-)NH_4Cl-H_2O系电积过程阳极反应的理论分析和实验验证,确定了该体系阳极反应析出氮气。用稳态极化法研究了Zn(Ⅱ)-NH_(3-)NH_4Cl-H_2O体系电积过程中阳极与阴极反应电极过程动
Zinc oxide raw materials and zinc oxide ores, containing high fluorine, chloride and iron, can ’t be treated to produce electrowinned zinc by routine process. High-purity zinc using in non-mercury zinc powders is prepared only by using vacuum distillation or rectify process from zinc of the zero grade. In this article treating complex zinc oxide materials and preparing high-purity zinc are the primary objects of this study. A new process of preparing high-purity zinc directly from complex zinc oxide materials or zinc calcine was invented. The contents in this study include thermodynamic calculating, plotting potential-pH diagram of purification process, determining electrochemical kinetics of cathode reactions and anode reactions, effecting of additives on morphology and crystallographic orientations of electrowinned zinc in the system of Zn(II)-NH_(3-)NH_4Cl-H_2O, successfully applying basic theory to treat zinc calcine and zinc fume dusts from slags of smelting lead.
    According to the principles of simultaneous equilibrium and aqueous electronic charge neutrality, the thermodynamic data in the system of Zn(II)-NH_(3-)NH_4Cl-H_2O have been calculated and the solubility figures of ZnO in the system have been plotted. The solubility regular and high solubility areas of zinc oxide were discovered and this system has higher zinc solubility than ammoniacal ammonium sulfate system and ammoniacal ammonium carbonate system at same concentration. When ratio of ammonia concentration to ammonium chloride concentration is lower than 1/1, equilibrium solubility of zinc is almost proportionate to ammonia concentration. But when the ratio is larger than 1, the solubility almost not increases. When ammonium chloride concentration is constant, the dominated species of zinc are changed from ZnCl_i~(2-i) to Zn(NH_3)_4~(~(2+)) with the increasing of ammonia concentration. The absolute average error between experimental values and theoretically calculated values of zinc equilibrium concentration is 11.37% in ammoniacal ammonium chloride solution.
    According to the thermodynamic calculation and the critical stability constants of impurities, relationships between potential and pH values have been calculated out and potential-pH figures have been plotted in the system of Men+-NH_(3-)NH_4Cl-H_2O. When Men+ concentration (Me~(n+) representing Cu~(2+), Cu~+, Pb~(2+), Ni~(2+), Cd~(2+), Co~(2+)) is 10~(-6)mol/L, the subtractive values between E_(Me~(2+)/Me)(Me~(n+) representing Cu~(2+), Pb~(2+), Ni~(2+), Co~(2+)) and E_(Zn~(2+)/Zn) are higher than 0.3 volt. So impurities of Cu~(2+), Pb~(2+),
    Ni2+, Co2+ can be cemented completely. The value between ECu /Cu+and EZn 2 /Zn+ is small, so Cu+ must be oxidized to Cu2+ before cemented. The difference ofEZn 2 /Zn+andECd 2 /Cd+,EC o 2 /Co+ is small, cemented cadmium and cobalt aren’t resolved at room temperature in the system of Zn(II)-NH3-NH4Cl -H2O but they are resolved at high temperature in system of ZnSO4-H2O. Anodic reactions of electrowinning zinc, producing nitrogen, were analyzed theoretically and confirmed by experiments in the system of Zn (II)-NH3-NH4Cl-H2O. Electrochemical kinetics of cathode reactions and anode reactions were studied by using potentiostate. The electrochemical kinetics equation of anodic reactions was determined as follow. i 3.066 10 5 F [C l]1 .056 exp( 40171)RT阳 = × × ?? The electrochemical kinetics equation of cathodal reactions was determined as follow. i阴 = 0.065 × F [ Zn 2 +]2 .157 exp( ?10R9T50) The effects of various additives alone or multiply on cathodal linear polarization and cyclic voltammogram were investigated by using methods of scanning potentiostate and cyclic voltammeter. Cyclic voltammograms has been measured at stirring. We can conclude that glue stone absorbed on the cathodal surface affects on preventing cathodal electrochemistry reactions, not on the transfer velocity of zinc ions. We can conclude that T-B affects on preventing the transfer velocity of zinc ions for it is a strong cation and transfers with zinc-ammonia complexes. Zinc-T-C complex is easier to form than zinc-ammonia complex, which can largely increase transfer velocity. The effects of zinc concentration, electrode space, current density, temperature and additives(such as glue, T-B, T-C) alone or multiply on electroreduction Zn2+ ion have been studied. On the base of above experiments, the optimum conditions are as follows: zinc concentration more than 15g/L, electrode space 3cm, current density 400A/m2, temperature 40℃, glue stone 0.1g/L, T-B 0.1g/L, T-C more than 2mL/L, respectively. On the base of theoretical studies, a new process of preparing high-purity zinc directly from zinc calcine and complex zinc oxide fume dusts of smelting lead has been explored successfully in Zn(II)-NH3-NH4Cl-H2O system. After mini-experiment and expanded experiment in laboratory, the principle flowchart and the operational conditions were determined. The zinc content in the eletrowinned zinc is more than 99.999%, and the contents of impurities, such as Cu, Cd, Co, Ni, Fe, As, Sb, are all lower than 0.0001% respectively, but lead is lower than
    0.0003%. The leaching rate of zinc is more than 96% when treating zinc oxide fume dusts from slags of smelting lead and more than 91% when treating zinc calcine. Electrobath voltage and power consumption are 3.0 volt and range from 2500 to 2700kWh/t zinc respectively. This process can save 400 to 600 kWh per tone zinc in contrast with regular method. Semi-industrial experiments using zinc calcine as raw material have been accomplished. The expected objects were obtained and the data of designing factory were acquired. Leaching rate, electrowinning process and cathodal zinc quality are not affected by cycle using spent electrolyzed solution(after 8 experiments). In the electrowinned zinc contents of impurities are as following, Cu, As, Sb, Fe less than 0.0001%, Co, Ni less than 0.0002%, Cd less than 0.0005% and Pb less than 0.0010% respectively, which suits to produce non-mercury and non-lead zinc powders. Non-mercury zinc powders have been pulverized from electrowinned zinc. The zinc powders give off less gas than model 004/68 prepared by Shanghai Bailuoda Metal Ltd. Co.. Direct and total recovery rate of zinc is about 87% and 100% respectively. The consumption of additive T-C, calcine, liquid ammonia, zinc powders and power is 0.0375t, 1.134t, 0.53t, 0.060t, less than 3000kWh per tone of zinc respectively.
引文
[1]赵天从.重金属冶金学(下册).北京:冶金工业出版社,1981
    [2]彭容秋.有色金属提取冶金手册(锌镉铅铋).北京:冶金工业出版社,1992
    [3]彭容秋.重金属冶金学.长沙:中南工业大学出版社,1998.
    [4]梅光贵,王得顺,周敬元等.湿法炼锌学.长沙:中南大学出版社,2001
    [5]东北工学院重冶教研室.锌冶金.北京:冶金工业出版社,1978.
    [6]徐鑫坤,魏旭.锌冶金学.昆明:云南科技出版社,1994,8
    [7]刘志宏.国内外锌冶炼技术的现状及发展动向. 世界有色金属, 2000, (1):23~26
    [8]王忠实.中国锌冶金现状.有色冶炼,1996, (6):1~5
    [9]陈邦俊.世界铅锌工业现状与展望. 世界有色金属,1997, (5): 19~24
    [10]刘彦龙.中国电池行业市场分析. 2002 年中国国际铅锌年会论文集,北京安泰科信息开发有限公司,云南昆明:84~97
    [11]蔡军林.韶冶铅锌密闭鼓风炉技术改造.有色冶炼,1998,(4):24~28
    [12]李夏林. 韶冶铅锌密闭鼓风炉Ⅰ系统技术改造实践. 有色冶炼,2001,(5):12~15
    [13]Sasaoka Hideo, Tatsuta Norio, Kadoya Hiroki. Recent operational improvements in the ISF plant. Metallurgical Review of Mining and Metallurgical Institute of Japan, 1996, 13(1): 154~165
    [14]Nishikawa M, Oshita T. Improvements in ISP operation with a single condenser at Hachinohe smelter. Proceedings of the 1st International Conference on Processing Materials for Properties. Publ by Minerals, Metals & Materials Soc (TMS). 1993: 401~404
    [15]Miyake Masakazu. Zinc-lead smelting at Hachinohe Smelter. Metallurgical Review of Mining and Metallurgical Institute of Japan, 1995,12(1): 39~50
    [16]Takewaki Masahiro, Kubota Harutoshi. Zinc-lead smelting and refining at Sumitomo Harima Works. Metallurgical Review of Mining and Metallurgical Institute of Japan, 1995,12(1): 77~95
    [17]未立清,张宇光,肖立新.干粉粘合剂在竖罐炼锌生产中应用的研究.矿冶,2000,9(2):63~66
    [18]陈志强.论降低长沙锌厂竖罐渣含锌的主要途径.湖南有色金属,1999,15(1):26~29
    [19]傅志华,蒋绍坚,周乃君.竖罐蒸馏炼锌的节能技术.冶金能源,1995,14(2): 32~36
    [20]Gray P M J. Warner zinc process. Proceedings of the International Symposium on Zinc, Published by Australasian Instistitue of Mining & Metallurgy, 1993: 483
    [21]Warner N A, Davies M W, Holdsworth M L, et al. Direct zinc smelting with virtually zero gas emission. Proceedings of the 2nd International Symposium on Metallurgical Processes for the Year 2000 and Beyond and the 1994 TMS Extraction and Process Metallurgy Meeting. Part 2 (of 2) Minerals, Metals & Materials Soc (TMS),1994: 333
    [22]Surapunt, Supachai Nyamai, Christopher M , et al. Phase relations and distributions of minor elements in the Cu-Zn-S, Cu-Zn-Fe-S and Cu-Zn-Pb-S systems at 1473 K. Metallurgical Review of MMIJ (Mining and Metallurgical Institute of Japan), 1995, 12(2): 84~97
    [23]Gray Phillip. Warner process. Mining Magazine, 1992, 166 (1): 14
    [24]Surapunt Supachai, Itagaki Kimio. Thermochemical evaluation of new zinc production processes using liquid copper as smelting medium. Metallurgical Review of MMIJ (Mining and Metallurgical Institute of Japan), 1994, 11(2): 84~103
    [25]曹修运.锌十万吨浸出试生产回顾及展望.株冶科技,1997,25(2):1~5
    [26]匡立春.锌焙砂中铁的浸出与利用.湖南有色金属, 2000, (6): 17~20
    [27]曹修运.日本秋田冶炼厂锌冶炼生产介绍(一).株冶科技,1992,20(2): 84~101
    [28]曹修运.日本秋田冶炼厂锌冶炼生产介绍(二).株冶科技,1992,20(4):217~228
    [29]郭天立.新建电锌厂浸出工序的试生产.有色冶炼, 1995, (1): 17~21
    [30]李夏湘,何醒民.论常规法与热酸浸出黄钾铁矾法炼锌工艺流程的选择.湖南有色金属, 2000, (6):15~16
    [31]Elgersma F, Witkamp G J,Van Rosmalen G. Simultaneous dissolution of zinc ferrite and precipitation of ammonium jarosite. Hydrometallurgy, 1993, 34(1): 23 ~ 47
    [32]Dutrizac J E. Effectiveness of jarosite species for precipitating sodium jarosite. JOM, 1999, 51(12): 30~32
    [33]Seyer Sylvain, Chen Tzong T, Dutrizac John E Jarofix. Addressing iron disposal in the zinc industry. JOM, 2001 ,53 (12): 32~35
    [34]J E Dutrizac. The effect of seeding on the rate of precipitation of ammonium jarosite and sodium jarosite. Hydrometallurgy, 1996, 42(3): 293~312
    [35]王顺才,张豫.热酸浸出黄钾铁矾工艺的生产实践.有色冶炼, 2001, (2): 19~22
    [36]Mario Pelino, Carlo Cantalini, Carlo Abbruzzese, et al.Treatment and recycling of goethite waste arising from the hydrometallurgy of zinc, Hydrometallurgy, 1996, 40(1-2): 25~35
    [37]Gord A R, Pickering R W. Improved leaching technology in the electrolytic zinc industry. Metallurgical Transactions B (Process Metallurgy), 1975, 6B(1): 43-53
    [38]钟竹前,梅光鬼,李云瑶,等.高温锌焙砂热酸浸出—亚硫酸锌还原—针铁矿法试验研究.有色金属, 1981, (1): 82~87
    [39]林书英.仲针铁矿法在温州冶炼厂锌技改工程中的应用.有色金属(冶炼部分), 1996, (5):4~6
    [40]张元福,陈家蓉,黄光裕,等.针铁矿法从氧化锌烟尘浸出液中除氟氯的研究.湿法冶金, 1999, (2): 36~40
    [41]Cheng T C-M,Demopoulos G P. Analysis of the hematite precipitation process from a crystallization point of view. TMS Annual Meeting, 1997, 599~617
    [42]Dutrizac J E. Physical chemistry of iron precipitation in the zinc industry. IEEE International Conference on Acoustics, 1979 Metall Soc of AIME, 1980: 532~564
    [43]闵华阳,李冰.关于湿法炼锌净化工序几个问题的探讨.有色矿冶,2000,(2):26~28
    [44]刘中清,唐谟堂.硫酸锌溶液低温锑盐除钴研究.湿法冶金,1999,(4):22~27
    [45]张家国,王辉.试论我厂硫酸锌溶液的锑盐净化.株冶科技,1992,20(1):32~42
    [46]王德全,林茂森.砷净液与锑净液除钴的进展.有色金属(冶炼部分),1995,(4):9~11
    [47]郭天立.硫酸锌溶液逆锑净化实践.有色金属(冶炼部分), 1995, (6): 22~24
    [48]梅光贵,杨国安.采用铅锑合金锌粉深度净化硫酸锌溶液.株冶科技,1976,(1):24
    [49]张林.株冶三段逆锑连续净化试生广之我见.株冶科技,1997, 25(4): 7~20
    [50]Vakil Singh.Technological innovation in the zinc electrolyte purification process of a hydrometallurgical zinc plant through reduction in zinc dust consumption. Hydrometallurgy, 1996, 40(1-2): 247~262
    [51]Tozawa K. Nishimura T, Akabori M. Comparsion between purification process for zinc leach solutions with arsenic and antimony trioxides. Hydrometallurgy, 1992, 30(3):445~461
    [52]Zeng Qing-heng; Chou Shi-zhen. New-type zinc powder for cobalt elimination in depth purification of ZnSO4 solutions. Zinc '85: Proceedings of International Symposium on Extractive Metallurgy of Zinc 1985, Japan Lead Zinc Development Assoc, Jpn Mining & Metallurgical Inst of Japan: 127~140
    [53]Oluf B?ckman, Terje (?)stvold. Products formed during cobalt cementation on zinc in zinc sulfate electrolytes, Hydrometallurgy. 2000, 54(2-3): 65~78
    [54]R Raghavan, P K Mohanan, S K Verma. Modified zinc sulphate solution purification technique to obtain low levels of cobalt for the zinc electrowinning process. Hydrometallurgy, 1999, 51(2): 187~206
    [55]A Nelson, G P Demopoulos ,G Houlachi. The effect of solution constituents and novel activators on cobalt cementation. Canadian Metallurgical Quarterly, 2000,39(2):175~186
    [56]Liana Muresan, G Maurin, L Oniciu, et al. Influence of metallic impurities on zinc electrowinning from sulphate electrolyte. Hydrometallurgy, 1996, 43(1-3): 345~354
    [57]M. Petrova, Z Noncheva, Ts Dobrev, et al. Investigation of the processes of obtaining plastic treatment and electrochemical behaviour of lead alloys in their capacity as anodes during the electroextraction of zinc I. Behaviour of Pb-Ag, Pb-Ca and Pb-Ag-Ca alloys. Hydrometallurgy, 1996, 40(3): 293~318
    [58]St Rashkov, Y Stefanov, Z Noncheva, et al. Investigation of the processes of obtaining plastic treatment and electrochemical behaviour of lead alloys in their capacity as anodes during the electroextraction of zinc II. Electrochemical formation of phase layers on binary Pb-Ag and Pb-Ca, and ternary Pb-Ag-Ca alloys in a sulphuric-acid electrolyte for zinc electroextraction. Hydrometallurgy, 1996, 40(3): 319~334
    [59]魏昶,何蔼平,任国民.锌电积过程中杂质行为及其相互反应.昆明理工大学学报, 1996, 21(6): 71~74
    [60]李仕雄,刘爱心.电解液质量对锌电积过程的影响及其在线控制.中国有色金属学报, 1998, 8(3): 519~522
    [61]谭见贤.锑对锌电解沉积的影响特征.有色冶炼,1995, (5): 42~43
    [62]Harvey T I, Yen W Tai, Paterson. Kinetic investigation into the pressure oxidation of sphalerite from a complex concentrate. Minerals Engineering, 1993, 6(8-10): 949~967
    [63]Jean-pierre Corriose, Proger Gély, Philippe Viers. Thermodynamic and kinetic study of the pressure leaching of zinc sulfide in aqueous sulfuric acid. Hydrometallurgy, 1988, 21(1): 85~102
    [64]Chalkley M E, Collins M J, Ozberk E. Behaviour of sulphur in the Sherritt zinc pressure leach process. Proceedings of the International Symposium on Zinc ,1993: 325
    [65]Collins M J, Mc-Conaghy E T, Stauffer R F, et al. Starting up the Sherritt zinc pressure leach process at Hudson Bay. JOM, 1994, 46(4): 51~58
    [66]Ozberk E, Jankola W A, Vecchiarelli M, et al. Commercial operations of the Sherritt zinc pressure leach process. Hydrometallurgy, 1995, 39(1-3): 49~52
    [67]Ozberk E, Collins M J, Makwana M, et al. Zinc pressure leaching at the Ruhr-Zink Refinery. Hydrometallurgy, 1995, 39(1-3): 53~62
    [68]Jankola W A. Zinc pressure leaching at Cominco. Hydrometallurgy, 1995, 39(1-3): 63~70
    [69]B D Krysa. Zinc pressure leaching at HBMS. Hydrometallurgy, 1995, 39(1-3): 71~77
    [70]Baldwin Susan A, Demopoulos George P, Papangelakis Vladimiros G. Mathematical modeling of the zinc pressure leach process. Metallurgical and Materials Transactions B: 1995, 26(5): 1035~1047
    [71]Harvey T I, Yen W T. Influence of chalcopyrite, galena and pyrite on the selective extraction of zinc from base metal sulphide concentrates. Minerals Engineering, 1998,11(1): 1~21
    [72] Buban K R,Collins M J, Masters I M. Iron control in zinc pressure leach processes. JOM, 1999,51(12) :23~25
    [73]夏光祥,方兆珩.高铁硫化锌精矿直接浸出新工艺研究.有色金属(冶炼部分), 2001, (3): 8~10
    [74]Walter Jude, Robert J Allen, Amiran Bar-ilan. Process for electrowinning of massive zinc with hydrogen anodes US patent 4412894,1983
    [75]Robert J Allen, Saugus, Mass. Gas electrode assembly for use in electrochemical cells and method. US patent 5047133, 1991
    [76]Wiesener K, Scheneider W, Moebius A. Hydrogen diffusion electrodes as anodes for the metal winning electrolysis. Journal of the Electrochemical Society, 1989, 136(12): 3770~3772
    [77]Furuya N, Mineo N. High speed zinc electrowinning using a hydrogen gas-diffusion electrode. Journal of applied Electrochemistry, 1990, 20 (5 ): 475~478
    [78]Allen R J. Fule-scale hydrogen gas-diffusion anode for immersed tank electrowinning and electroplating. Electrochemistry in Mineral and Metal Processing Ⅲ, (Pennington, New Jersey:l Electrochemical Society), 1992: 565~570
    [79]Allen Robert J, Foller Peter C, Vora Ravindra J, et al. Full-scale hydrogen anodes for immersed-tank electrowinning. JOM, 1993, 45 (3): 49~53
    [80]Furuya N, Sakakibarat. High speed zinc electrowinning system using a hydrogen anode and a rotating aluminium disc cathode. Journal of Applied Electrochemistry, 1996, 26(1): 58~62
    [81]Bestetti M, Ducati U, Kelsall G, et al. Zinc electrowinning with gas diffusion anodes: State of the art and future developments. Canadian Metallurgical Quarterly, 2001, 40(4): 459~469
    [82]戴祖源,周杰南.自氯化锌溶液中电积锌.有色金属(冶炼部分),1987, (1): 22~25
    [83]曾振欧,赵瑞荣.酸性氯化物水溶液电积锌初探.湖南有色金属,1990, (20): 37~41
    [84]曾振欧.氯化物水溶液电积锌的电极过程动力学.中南矿冶学院学报,1989, 20(1): 45~51
    [85]Majima Hiroshi, Peters Ernest, Awakura Yasuhiro, et al. Fundamental studies on chlorine behavior as related to zinc electrowinning from aqueous chloride electrolytes. Metallurgical Transactions B (Process Metallurgy), 1990, 21 (2): 251~258
    [86]Baik D S, Frav D I. Electrodeposition of zinc from high acid zinc chloride solutions. Journal of Applied Electrochemistry , 2001, 31(10): 1141~1147
    [87]N E Tuffrey, V Jiricny, J W Evans. Fluidized bed electrowinning of zinc from chloride electrolytes. Hydrometallurgy, 1985, 15(1): 33~54
    [88]Copham P M, Fray D J. Use of rotating electrodes in the electrolysis of molten zinc chloride electrolytes. Metallurgical Transactions B (Process Metallurgy), 1990,21(6): 977~985
    [89]Copham P M, Fray D J. Selecting an optimum electrolyte for zinc chloride electrolysis. Journal of Applied electrochemistry, 1991, 21(2): 158
    [90]Zhao Guangwen, Inman D. Electrowinning zinc from chloride melts in bipolar cell. Transaction Nonferrous Society, 1995, 5(1): 45~48
    [91]Limpo Gil José Luis, Figueiredo J M, Amer Amezaga Sebastian, et al. Method for the recovery of zinc ,copper and lead of oxidized and/or sulfurized ores and materials. EP0434831A1, 1991
    [92]Limpo J L, Amer S, Figueiredo J M, et al. Hydrometallurgical treatment of complex sulphide ores using highly concentrated ammonium chloride solutions. ICHM'92, Proceedings of the Second International Conference on Hydrometallurgy (vol.2). Changsha, China, 1992: 302~309
    [93]Limpo J L, Figueiredo J M, Amer S, et al. The CENIM-LNETI process: a new process for the hydrometallurgical treatment of complex sulphides in ammonium chloride solutions. Hydrometallurgy, 1993, 28(2): 149~161.
    [94]Limpo J L, Luis A, Gomez C. Reactions during the oxygen leaching of metallic sulphides in the CENIM-LNETI process. Hydrometallurgy, 1993, 28(2): 163~178.
    [95]Limpo J L, Luis A. Solubility of zinc chloride in ammoniacal ammonium chloride solutions. Hydrometallurgy, 1993,32(2): 247~260
    [96]Figueiredo J M, Novais A Q, Limpo-Gil J, et al. The CENIM-LNETI process for zinc recovery from complex sulphides. International Symposium World Zinc’93, The Australasian Institute of Mining and Metallurgy, Hobart, 1993: 333~339
    [97]Figueiredo J M, Novais A Q, Limpo-Gil J, et al. The CENIM-LNETI process for zinc recovery from complex sulphides. Lead and zinc’95. Sendai, Japan,1995
    [98]Amer S, Figueiredo J M, Luis A. The recovery of zinc from the leach liquors of the CENIM-LNETI process by solvent extraction with di(2-ethylhexyl)phosphoric acid. Hydrometallurgy, 1995,37(3): 323~337
    [99]Novais A Q, Figueiredo J M, Medeiros A R. The zinc and copper solvent extraction operations in the CENIM-LNETI process for treatment of complex sulphide concentrates. IV International Symposium on the Polymetallic Sulphides of the Iberian Pyrite Belt. Lisboa, Portugal. 1998
    [100]Olper Marco, Fracchia Pier Luigi, Maccagni Massimo. Process for recovering zinc and lead from flue dusts from electrical steel works and for recycling said purified metals to the furnace, and installation for implementing said process. EP0551155A1, 1993
    [101]Olper M, Wiaux J P. EZINEX, le procede electrolytique de valorisation des poussieres d'acieries electriques, Revue de Metallurgie. Cahiers D'Informations Techniques 95, 1998:1231~1237 (In French)
    [102]Olper M. EZINEX process. TMS Annual Meeting. TMS. Published by Minerals, Metals & Materials Society (TMS): 1994:513
    [103]Olper M. EZINEX process: A new and advanced way for electrowinning zinc from a chloride solution. Proceedings of the International Symposium on Zinc. Publish by Australasian Inst of Mining & Metallurgy. 1993: 491
    [104]Olper M, Maccagni M. Electrolytic zinc production from crude zinc oxides with the Ezincx Process. 2000 TMS Fall Extraction & Processing, Pittsburgh, 2000
    [105]邓良勋,吴保庆.络合物电解制锌.有色金属(冶炼部分), 1996, (3): 16~18
    [106]邓良勋,吴保庆.络合物电解制锌. ZL93104303.4, 1997
    [107]彭德富.调整产品结构是解决我国干电池污染的主要途径.环境保护, 2001,(5):33~35
    [108]谭春娥,魏昶,何蔼平.碱性锌锰电池无汞化的发展.云南冶金,2001, (1):35~37
    [109]池克.无汞锌粉的现状及展望.电池工业,2000,(2):85~87
    [110]耿世昌,刘月娟.环保型碱性锌锰电池生产工艺研究.电池,1998,28(6):278~282
    [111]王金良.碱性锌锰电池的无汞化.电池,1998,28(3):112~116
    [112]Uemura Toyohido, Motomura Tomotaka, Yamaguchi Tomiko, et al. Zinc alloy powder for alkaline cell and method to produce the same. EP0500313, 1992
    [113]Nakade Kazuhiko. Manufacture of zinc alloy powder for Alkaline cell. JP3152870, 1991
    [114]West, Jack Thomas, Bonacker, et al. Electrochemical cell, gelled anode, and coated current collector therefore. US patent5721068, 1998
    [115]Tayama Kishio, Yamauchi Hajime. Production of high-purity zinc and production device. JP10121160, 1998
    [116]Raymond K F Lam, Danil R Marx. Vacuum distillation apparatus for producing ultra high purity material. US patent 5698158,1997
    [117]Kanda Minoru, Kimura Etsuji. Production of high purity zinc. JP8295957,1996
    [118]Tanno Fumio, Matsuzaki Kenji. Process for purifying zinc and rectifying column for purifying zinc, WO0250320, 2002
    [119]Nagasaki Hidenori. Production of distilled zinc of high purity. JP58171536,1983
    [120]王瑞恒,王子谦.高纯锌的生产.有色金属(冶炼部分), 2001,(2): 39~41
    [121]徐鑫坤,王先黔,万倩.用电积精炼法制取高纯锌的研究,有色金属(冶炼部分),1992, (4):15~17
    [122]Watanabe Kiyoyoshi. Production of zinc having high purity. JP60017088, 1985
    [123]唐谟堂,鲁君乐.Zn(Ⅱ)-NH3-(NH4)2SO4-H2O 体系热力学研究.中南矿冶学院学报,1994, 25(6): 701~705
    [124]欧阳民,唐谟堂.Zn(Ⅱ)-NH3-(NH4)2CO3-H2O 系热力学平衡研究.第 5 届全国铅锌会议论文集,南宁:1995, 9
    [125]欧阳明.兰坪氧化锌矿冶金化工新工艺研究[D].长沙:中南工业大学, 1994, 3
    [126]唐谟堂,欧阳民.硫铵法制取等级氧化锌. 中国有色金属学报, 1998, 8(1): 118~121
    [127]吴本泰.从菱锌矿制氧化锌技术.CN88102610,1988
    [128]倪景清,唐天彪.一种制取氧化锌的方法.CN90105488.7, 1990
    [129]刘健.氨浸法从菱锌矿直接制取活性 ZnO.有色金属(冶炼部分),1993,(3):25~26
    [130]杨国华.氨水·碳铵联合法浸取络合制备高纯度活性氧化锌方法, CN00112249.5,2000
    [131]将元春,付永吉,冉龙鸣.生产高分散性活性氧化锌的方法. CN94111865.7, 1995
    [132]Coco Guzman Antonio, Garcia Carcedo Fernando, Alguacil Priego Francisco Jose, et al. Process for obtaining a high purity zinc oxide by leaching Waelz oxide with ammonium carbonate solutions. ES2110355, 1998
    [133]柯家骏,陈劲松.湿法冶金中金属——氨络合物体系平衡的研究. 有色金属(冶炼部分), 1983,(4): 30~34
    [134]石西昌,赵瑞荣,蒋汉瀛.Zn(Ⅱ)-Cl--NH3-CO32--H2O 系的热力学分析. 中南工业大学学报, 1998, 29(2):193~196
    [135]V van der Pas, D B Dreisinger. A fundamental study of cobalt cementation by zinc dust in the presence of copper and antimony additives. Hydrometallurgy, 1996, 43(1-3): 187~205
    [136]Trina M Dreher, Amy Nelson, George P Demopoulos, et al. The kinetics of cobalt removal by cementation from an industrial zinc electrolyte in the presence of Cu, Cd, Pb, Sb and Sn additives, Hydrometallurgy. 2001, 60(2): 105~116
    [137]刘志宏,唐朝波,张多默,等.锑盐除钴净化工艺研究.中南工业大学学报(自然科学版), 2000,31(3): 225~227
    [138]钟竹前,梅光贵.电位 pH 图在湿法冶金中的应用.有色金属, 1979, (3): 28~36
    [139]钟竹前,梅光贵.电位 pH 图在湿法冶金中的应用.有色金属, 1979, (4): 29~35
    [140]Tang Motang, Zhao Tiancong. The thermodynamic study on the basic and negative potential field of the systems of Sb-S-H2O and Sb-Na-S-H2O. J. Cent.-South Inst. Min. Metall., 1988,19(1):35~43
    [141]Tang Motang, Zhao Tiancong,Lu Junle, et al. Principle and application of the new chlorination-hydrolization process. 中南矿冶学院学报. 1992, 23(4): 405~411
    [142]Robert M Smith, Arthur E Matell. Critical Stability Constants. Inorganic Complexes (Vol 4), New York and London: Plenum Press,1976
    [143]Barin I, Knacke O. Thermochemical Properties of Inorganic Substance. Berlin:Springer, 1973; Supplement 1997
    [144]Allen J Bard, Roger Parsons, Joseph Jordan. Standard potentials in aqueous solution. New york and Bessel, 1985:787~802
    [145]I Ivanov, Y Stefanov, Z Noncheva, et al. Insoluble anodes used in hydrometallurgy :Part I, Corrision resistence of lead and anode alloy anodes. Hydrometallurgy, 2000, 57(2):109~124
    [146]C Lupi, D Pilone. New lead alloy anodes and organic depolariser utilization in zinc electrowinning. Hydrometallurgy, 1997, 44(3):347~358
    [147]张玉萍. 锌电积用阳极的研究与发展. 湿法冶金,2001,(4):169~171
    [148]梁镇海,边书田,任所才,等.硫酸中钛基二氧化铅阳极研究. 稀有金属材料与工程,2001,30(3):232~234
    [149]Ueda, Watanabe M, Kameyama A T. Performance Characterisitics of a New Type of Lead Dioxide-coated Titanium Anode. Journal of Applied Eletrochemistry, 1997, 27(8):970~ 974
    [150]邹忠,李劼,丁凤其,等. 梯度功能型金属氧化物涂层阳极(DSA)的制备.功能材料,2001,32(4):431~433
    [151]邹忠.钛基稀土掺杂金属阳极涂层的电催化性能及抗钝化问题研究[D].长沙:中南工业大学,1997
    [152]J L Fernández, M R Gennero de Chialvo, A C Chialvo. Kinetic study of the chlorine electrode reaction on Ti/RuO2 through the polarisation resistance: Part I, experimental results and analysis of the pH effects. Electrochimica Acta, 2002, 47(7):1129~1136
    [153]J L Fernández, M R Gennero de Chialvo, A C Chialvo. Kinetic study of the chlorine electrode reaction on Ti/RuO2 through the polarisation resistance: Part II, mechanistic analysis. Electrochimica Acta, 2002, 47(7): 1137~1144
    [154]J L Fernández, M R Gennero de Chialvo, A C Chialvo. Kinetic study of the chlorine electrode reaction on Ti/RuO2 through the polarisation resistance: Part III, proposal of a reaction mechanism. Electrochimica Acta, 2002, 47(7): 1145~1152
    [155]Laurence D Burke, John F O'Neill. Some aspects of the chlorine evolution reaction at ruthenium dioxide anodes. Journal of Electroanalytical Chemistry, 1979,101(3): 341~349
    [156]J Kiwi, M Gr?tzel. Oxidation of chloride to chlorine in aqueous solution via redox catalysis. Chemical Physics Letters, 1981, 78 (2): 241~245
    [157]J A Harrison, S D Hermijanto. The oxidation of chloride ions and bromide ions on ruthenium dioxide electrodes, Journal of Electroanalytical Chemistry, 1987, 225(1-2): 159~175
    [158]L Tomcsányi, A De Battisti. Identification of the adsorbed intermediate of the electro-oxidation of chloride by the cv technique, Electrochimica Acta, 1996,41(18): 2917~2919
    [159]L Tomcsányi, A De Battisti, G Hirschberg,et al. The study of the electrooxidation of chloride at RuO2/TiO2 electrode using CV and radiotracer techniques and evaluating by electrochemical kinetic simulation methods, Electrochimica Acta, 1999, 44(14): 2463~2472
    [160]D V Kokoulina and L V Bunakova. Oxygen evolution at the oxide electrodes RuO2 and RuO2+TiO2 in chloride solutions.Journal of Electroanalytical Chemistry, 1984, 164(2): 377~383
    [161]潘懋.钌钛金属阳极涂层改进的途径探讨.氯碱工业,1994, (1):14~19
    [162]刘惠章,陈康宁.含 Ru 多元涂层的研究.氯碱工业,1994, (8):31~33
    [163]刘树奇,佟泽颖,马战国,等.金属阳极涂层评价试验. 氯碱工业,2000, (2):12~13
    [164]Yoshio Takasu, Kohji Tsukada, Katsunori Nishimura, et al. An application of the thermal desorption method to the surface characterization of RuO2—IrO2 and RuO2—TiO2 coated titanium electrodes. Electrochimica Acta, 1992, 37(6): 1029~1031
    [165]Chiaki Iwakura, Kazuhiro Hirao, Hideo Tamura. Preparation of ruthenium dioxide electrodes and their anodic polarization characteristics in acidic solutions. Electrochimica Acta, 1977, 22(4): 335~340
    [166]李海涛. 纳米级细晶表面电极材料的制备. 氯碱工业,1998,(2):9~11
    [167]Juliane Cristina Forti, Paulo Olivi, Adalgisa R de Andrade. Characterisation of DSA-type coatings with nominal composition Ti/Ru0.3Ti(0.7-x)SnxO2 prepared via a polymeric precursor. Electrochimica Acta, 2001, 47(6): 913~920
    [168]S Music, S Popovic, M Maljkovic, et al. Influence of synthesis procedure on the formation of RuO2. Materials Letters, 2002, 56(5): 806~811
    [169]K Boto. Organic additives in zinc electroplating. Electrodeposition and Surface Treatment, 1975,3(2): 77-95
    [170]B C Tropathy, S C Das. Zinc electrowinning from acid sulfate solutions. Part I: Effect of sodium lauryl sulfate. Journal of Applied Electrochemistry, 1997, 27(6): 673~678
    [171]S C Das. The effects of 4-ethylpyridine and 2-cyanopyridine on zinc electrowinning from acid sulfate solutions. Journal of Applied Electrochemistry, 1997, 27(7): 738~744
    [172]B C Tripathy, S C Das, G T Hefter. Zinc electrowinning from acid sulfate solutions: Part Ⅱ, Effect of triethyl-benzylammonium chloride. Journal of Applied Electrochemistry, 1998, 28(8): 915~920
    [173]B C Tripathy, S C Das, P Singh, et al. Zinc electrowinning from acidic sulphate solutions. Part Ⅲ: Effects of Quaternary ammonium bromides. Journal of Applied Electrochemistry, 1999, 29(12):1229~1235
    [174]M Sanchez Cruz, F Alonso, J M Palacios. The effect of concentration of TBACl on the electrodepostion of zinc from chloride and perchlorate electrolytes. Journal of Applied Electrochemistry, 1990, 20(6):611~618
    [175]J M Wang, L Zhang, C Zhang, et al. Effects of Bismuth ion and tetrabutylammonium bromides on the dendritic growth of zinc in alkaline zincate solution. Journal of power sources, 2001,102:139~143
    [176]吴水清.镀锌及其合金的研究进展.表面技术,2000,29(6):1~5
    [177]王云燕,舒余德,谢勤,等.碱性锌酸盐体系锌及锌铁合金电镀添加剂.电镀与涂饰,2001,20(3):12~16
    [178]蔡加勒,周绍民.碱性锌镍合金电沉积中 Tetren 的基本效应.厦门大学学报(自然科学版),1994,33(3):325~329
    [179]杜捍义,李异.碱性电镀光亮锌镍合金的研究.电镀与涂饰,1997,16(3):16~21
    [180]C Müller, M Sarret, M Benballa. Complexing agents for a Zn-Ni alkaline bath. Journal of Electroanalytical Chemistry, 2002,519(1): 85~92
    [181]L I Antropo.理论电化学.北京:高等教育出版社(吴仲达,朱耀武,吴万伟译),1982:405
    [182]龚竹青.理论电化学.长沙:中南大学出版社,1982
    [183]李敦钫,张显忠.提高锌电积电流密度的研究.有色金属(冶炼部分),1998,(5):13~15
    [184]付运康.锡对锌电积过程中电流效率的影响.湿法冶金,1998,(4):47~49
    [185]Yang Shenghai, Tang Motang. Thermodynamic of Zn( Ⅱ )-NH3-NH4Cl-H2O system. Transaction of nonferrous metal society, 2000, 10(6):830~833
    [186]唐谟堂,杨声海.Zn(Ⅱ)-NH3-NH4Cl-H2O 体系电积锌及阳极反应机理.中南工业大学学报,1999, 30(2):153~156
    [187]杨声海,唐谟堂.Zn(II)-NH3-NH4Cl-H2O 体系电积生产金属锌.有色金属(冶炼部分),2001, (1): 7~9
    [188]梁力群.我厂锌电积大面积锑“烧板”及扭转.有色金属(冶炼部分),1997,(6):17~19
    [189]王德全.锌电积过程中杂质影响的行为特点.有色金属(冶炼部分),1989,(5):35~38
    [190]何贻柏,谭见贤.锌系统“大烧板”攻关实践.株冶科技,1994,(2):32~34
    [191]郭天立.湿法炼锌生产中杂质锑的净化.有色矿冶,1997,(3): 42~47
    [192]房恒安.利用副产氧化锌生产电积锌的研究.有色冶炼,1994,(5):35~37
    [193]姜澜,付高峰,王德全.选择性氯化焙烧脱除氧化锌烟尘中的氟氯.有色金属, 2001, (3): 28~31
    [194]付一鸣,顾立民,王德全.铅烟化炉氧化锌烟尘选择性氯化焙烧脱氟、氯的研究.有色矿冶,1998,(3):22~25
    [195]李岚,徐家振,贺家齐,等.氧化锌烟尘脱氯研究.中国有色金属学报,1998,8(S2):409~411
    [196]郭万精,黄光歧.石灰-三氯化铁中和法处理含砷废水的研究.有色金属(冶炼部分),1981,(3):7~10
    [197]杨佼庸.水溶液中砷的状态和含砷废水处理.有色金属(冶炼部分),1981,(3):11~14
    [198]鲁君乐,张训鹏.Fe-As-H2O 系电位-pH 图及湿法炼锌除砷过程分析.有色金属(冶炼部分),1985, (4):46~51
    [199]汤学金.氢氧化物共沉法从废水中除砷的研究.湖南冶金情报,1981,(1):80~90.
    [200]易求实.弱碱性氨浸中的铁盐两段除砷方法.湖北化工.2000,(2):35~36
    [201]张才明.次氧化锌氧化水解除砷方法的研究及应用.有色金属(冶炼部分),1997,(2):9~11
    [202]李自强,李春.氧化锌生产新工艺中除砷的研究.有色金属(冶炼部分),1994,(4):9~11
    [203]杨声海,唐谟堂.由氧化锌烟灰生产高纯锌工艺研究.中国有色金属学报,2001, 11(6): 110-1113
    [204]Yang Shenghai, Tang Motang. Preparation of high-purity zinc from zinc calcine by an ammonia process. A new century international conference on metallurgical high technology and new materials of heavy nonferrous metals. Kunming,china: Yunnan science and technology press, 2002, 616-620
    [205]杨声海,唐谟堂,龙运炳,等.一种高纯锌及其制备方法.CN99115463.0,1999,7,9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700