用户名: 密码: 验证码:
高铁铟锌精矿无铁渣湿法炼锌提铟及铁源高值化利用工艺与原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文将湿法炼锌技术与“直接-共沉淀法”制备锰锌软磁铁氧体工艺相结合,开发无铁渣湿法炼锌提铟清洁生产新工艺和锌精矿铁源直接制备锰锌软磁铁氧体的新技术,实现铁源高值化利用及铁渣、二氧化硫零排放。这对湿法炼锌提铟工艺是一次重大进步,而且对锌矿铁资源制备锰锌软磁铁氧体也是首次尝试。以中性浸出渣为原料,研究了高温高酸还原氧化浸出、D2EHPA萃取提铟、硫化法初步净化、复盐深度脱硅,开路锌探索、复盐转化氨浸、电积锌粉或蒸发回收锌、锰锌铁氧体工艺、硫酸铵回收等过程的工艺和高温高酸浸出过程的理论,得出了一些有意义的结论。
     首次研究了中浸渣高温高酸浸出动力学,动力学方程符合收缩核模型。试验结果表明浸出过程分为三个阶段进行:第一阶段(≤15min)浸出速度很快,主要为ZnSO_4等易溶物料的溶解,第二阶段(15~60min)主要为ZnO等易溶于酸的锌物种的浸出,其表观活化能为51.792kJ/mol,化学反应为控制步骤。第三阶段(60~300min)主要为ZnFe_2O_4和ZnS的浸出,其表观活化能为20.720kJ/mol,受化学反应和外扩散混合控制。其宏观动力学方程为:
     15~60min:
     1-(1-a)~(1/3)=5.48[H~+]~(1.08)[Zn~(2+)]~(-1.76)[Fe~(3+)]~(-1.39)d_0~(-1)exp(-51792/RT)t+A_1
     60~300min:
     1-(1-a)~(1/3)=7.87×10~(-5)[H~+]~(0.40)[Zn~(2+)]~(-0.38)[Fe~(3+)]~(-0.45)d_0~(-1)exp(-20720/RT)t+A_2
     A_1,A_2为常数。
     研究了中浸渣中的铟提取工艺,结果表明,以硫化锌精矿为还原剂,高温高酸还原-氧化循环浸出高铁富铟中浸渣,锌、铁、锰的浸出率(%)分别为96.25、86.5及96.76,铟的浸出率保持在96%以上,Fe~(3+)的还原率也提高到94.05%以上;铁屑置换除铜方法可行,除铜率为94.61%,铜渣含Cu高达74.20%,铟回收率99.47%;首次用D2EHPA从含有大量Mn~(2+)、Zn~(2+)的硫酸亚铁溶液中直接萃取铟,缩短提铟流程,使铟、锌回收率大幅提高。在30%D2EHPA+70%磺化煤油、室温(298K)、萃取级数为3级、相比(O/A)=1:3、萃取时间为5min的综合条件下,铟的萃取率和反萃率均≥99%。从铟锌精矿到海绵铟,铟的直收率为94.33%,比现有流程提高25%以上,锌的回收率提高8%以上。
     选择比较了复盐水洗法、共沉粉氨浸法、锌萃取法和复盐转化氨
With the combination of zinc hydrometallurgy and directed co-precipitation method for preparing of Mn-Zn soft magnetic ferrite materials, a new clean process for hydrometallurgically extracting zinc, indium without ferrite residue emission and directly preparing Mn-Zn soft magnetic ferrite was developed in this dissertation. The ferrite resource in zinc concentrate got value-added utilization and the emission of ferrite residue and sulfur dioxide was avoided simultaneously. It's not only a great progress in hydrometallurgical extracting of zinc and indium, but also a first attempt to directly prepare Mn-Zn soft magnetic ferrite from ferrite resources in zinc ores. Using neutral leaching residue as raw material, systemic studies on the reductive and oxidative hot leaching with high concentration acid, solvent extraction of indium with D2EHPA, sulphide precipitation for primary purification, complex salt precipitation for deep purification, redundant zinc removing, complex salt transformation and ammonia leaching, producing zinc powder by electrowinning or recoverying zinc by vaporizing, Mn-Zn soft magnetic ferrite process and (NH_4)_2SO_4 recovery were carried out in this dissertation. And some meaningful conclusions were obtained.
    The kinetics on the hot leaching of neutral residue with high concentration acid was investigated. The results showed the leaching reactions followed the shrinking core model. The leaching process was consisted of the following three stages distinguished by the leaching time. During the first stage (t≤15min), ZnSO_4 dissolved in the solution and the leaching rate was very fast. During the second stage (15~60min), zinc oxide and other zinc dissoluble species dissolved chiefly, the apparent activation energy was 51.792kJ/mol. The leaching rate was controlled by the chemical reaction. While in the third stage (60~300min), zinc ferrite and zinc sulfide were mainly leached out slowly, the apparent activation energy was 20.72kJ/mol. The leaching reaction was simultaneously controlled by the chemical reaction and extemal diffusion. The following expressions were the kinetic equations of leaching reaction: 15~60min:
    1-(1-a)~(1/3)=5.48[H~+]~(1.08)[Zn~(2+)]~(-1.76)[Fe~(3+)]~(-1.39)d_0~(-1)exp(-51792/RT)t+Ai 60~300min:
    1-(1-a)~(1/3)=7.87×10~(-5)[H~+]~(0.40)[Zn~(2+)]~(-0.38)[Fe~(3+)]~(-0.45)d_0~(-1)exp(-20720/RT)t+A_2 where A1 and A2 are both constants.
    Process of the recovery of indium from neutral leaching residue has been investigated. The zinc sulfide concentrate was used as reductive reagent. The leaching ratio of Zn、Fe、Mn was 96.25%、86.5% and 96.76%, respectively, when neutral leaching residue bearing high iron and indium was circularly reductive and oxidative leached with high concentration acid at high temperature. The leaching ratio of
引文
[01] 赵天从.重金属冶金学(下册).北京:冶金工业出版社,1981
    [02] 彭容秋.有色金属提取冶金手册(锌镉铅铋).北京:冶金工业出版社,1992
    [03] 彭容秋.重金属冶金学.长沙:中南工业大学出版社,1998.
    [04] 梅光贵.王得顺,周敬元等.湿法炼锌学.长沙:中南大学出版社,2001
    [05] 徐鑫坤.魏旭.锌冶金学.昆明:云南科技出版社,1994,8
    [06] 刘志宏.国内外锌冶炼技术的现状及发展动向.世界有色金属,2000,(1):23~26
    [07] 刘彦龙.中国电池行业市场分析.2002年中国国际铅锌年会论文集,北京安泰科信息开发有限公司,云南昆明:2002,84~97
    [08] 蔡军林.韶冶铅锌密闭鼓风炉技术改造.有色冶炼,1998,(4):24~28
    [09] 李夏林.韶冶铅锌密闭鼓风炉Ⅰ系统技术改造实践.有色冶炼,2001,(5):12~15
    [10] Sasaoka Hideo, Tatsuta Norio, Kadoya Hiroki. Recent operational improvements in the ISF plant. Metallurgical Review of MMIJ, 1996, 13(1): 154~165
    [11] Nishikaw a M, Oshita T. Improvements in ISP operation with a single condenser at Hachinohe smelter. Proceedings of the 1st International Conference on Processing Materials for Properties. Publ by Minerals, Metals & Materials Soc (TMS). 1993: 401~404
    [12] Miyake Masakazu. Zinc-lead smelting at Hachinohe Smelter. Metallurgical Review of Mining and Metallurgical Institute of Japan, 1995, 12(1): 39~50
    [13] Takewaki Masahiro, Kubota Harutoshi. Zinc-lead smelting and refining at Sumitomo Harima Works. Metallurgical Review of Mining and Metallurgical Institute of Japan, 1995, 12(1): 77~95
    [14] 末立清,张宇光,肖立新.干粉粘合剂在竖罐炼锌生产中应用的研究.矿冶,2000,9(2):63~66
    [15] 陈志强.论降低长沙锌厂竖罐渣含锌的主要途径.湖南有色金属,1999,15(1):26~29
    [16] 傅志华,蒋绍坚,周乃君.竖罐蒸馏炼锌的节能技术.冶金能源,1995,14(2):32~36
    [17] Gray P M J. Warner zinc process. Proceedings of the International Symposium on Zinc, Published by Australasian Instistitue of Mining & Metallurgy, 1993: 483
    [18] Warner N A, Davies M W, Holdsworth M L, et al. Direct zinc smelting with virtually zero gas emission. Proceedings of the 2nd International Symposium on Metallurgical Processes for the Year 2000 and Beyond and the 1994 TMS Extraction and Process Metallurgy Meeting. Part 2 (of 2) Minerals, Metals & Materials Soc (TMS), 1994: 333
    [19] Surapunt, Supachai Nyamai, Christopher M, et al. Phase relations and distributions of minor elements in the Cu-Zn-S, Cu-Zn-Fe-S and Cu-Zn-Pb-S systems at 1473 K. Metallurgical Review of M MIJ (Mining and Metallurgical Institute of Japan), 1995, 12(2): 84~97
    [20] Gray Phillip. Warner process. Mining Magazine, 1992, 166 (1): 14
    [21] Surapunt Supachai, Itagaki Kimio. Thermochemical evaluation of new zinc production processes using liquid copper as smelting medium. Metallurgical Review of MMIJ, 1994, 11(2): 84~103
    [22] 曹修运。锌十万吨浸出试生产回顾及展望.株冶科技,1997,25(2):1~5
    [23] 匡立春.锌焙砂中铁的浸出与利用.湖南有色金属,2000,(6):17~20
    [24] 曹修运.日本秋田冶炼厂锌冶炼生产介绍(一).株冶科技,1992,20(2):84~101
    [25] 曹修运.日本秋田冶炼厂锌冶炼生产介绍(二).株冶科技,1992,20(4):217~228
    [26] 郭天立.新建电锌厂浸出工序的试生产.有色冶炼,1995,(1):17~21
    [27] 闵华阳,李冰.关于湿法炼锌净化工序几个问题的探讨.有色矿冶,2000,(2):26~28
    [28] 刘中清,唐谟堂.硫酸锌溶液低温锑盐除钴研究.湿法冶金,1999,(4):22~27
    [29] 王德全,林茂森.砷净液与锑净液除钴的进展.有色金属(冶炼部分),1995,(4):9~11
    [30] 张林.株冶三段逆锑连续净化试生广之我见.株冶科技,1997,25(4):7~20
    [31] Vakil Singh. Technological innovation in the zinc electrolyte purification process of a hydrometallurgical zinc plant through reduction in zinc dust consumption. Hydrometallurgy, 1996, 40(1-2): 247~262
    [32] Tozawa K. Nishimura T, Akabori M. Comparsion between purification process for zinc leach solutions with arsenic and antimony trioxides. Hydrometallurgy, 1992, 30(3): 445~461
    [33] Oluf Bockman, Terje φstvold. Products formed during cobalt cementation on zinc in zinc sulfate electrolytes, Hydrometallurgy. 2000, 54(2-3): 65~78
    [34] R Raghavan, P K Mohanan, S K Verma. Modified zinc sulphate solution purification technique to obtain low levels of cobalt for the zinc electrowinning process. Hydrometallurgy, 1999, 51(2): 187~206
    [35] A Nelson, G P Demopoulos, G Houlachi. The effect of solution constituents and novel activators on cobalt cementation. Canadian Metallurgical Quarterly, 2000, 39(2): 175~186
    [36] Liana Muresan, G Maurin, L Oniciu, et al. Influence of metallic impurities on zinc electrowinning from sulphate electrolyte. Hydrometallurgy, 1996, 43(1-3): 345~354
    [37] M Petrova, Z Noncheva, Ts Dobrev, et al. Investigation of the processes of obtaining plastic treatment and electrochemical behaviour of lead alloys in their capacity as anodes during the electroextraction of zinc I. Behaviour of Pb-Ag, Pb-Ca and Pb-Ag-Ca alloys. Hydrometallurgy, 1996, 40(3): 293~318
    [38] St Rashkov, Y Stefanov, Z Noncheva, et al. Investigation of the processes of obtaining plastic treatment and electrochemical behaviour of lead alloys in their capacity as anodes during the electroextraction of zinc Ⅱ. Electrochemical formation of phase layers on binary Pb-Ag and Pb-Ca, and ternary Pb-Ag-Ca alloys in a sulphuric-acid electrolyte for zinc electroextraction. Hydrometallurgy, 1996, 40(3): 319~334
    [39] 魏昶,何蔼平,任国民.锌电积过程中杂质行为及其相互反应.昆明理工大学学报,1996,21(6):71~74
    [40] 李仕雄,刘爱心.电解液质量对锌电积过程的影响及其在线控制.中国有色金属学报,1998,8(3):519~522
    [41] 谭见贤.锑对锌电解沉积的影响特征.有色冶炼,1995,(5):42~43
    [42] Walter Jude, Robert J Allen, Amiran Bar-ilan. Process for electrowinning of massive zinc with hydrogen anodes US patent 4412894, 1983
    [43] Wiesener K, Scheneider W, Moebius A. Hydrogen diffusion electrodes as anodes for the metal winning electrolysis. Journal of the Electrochemical Society, 1989, 136(12): 3770~3772
    [44] Furuya N, Mineo N. High speed zinc electrowinning using a hydrogen gas-diffusion electrode. Journal of applied Electrochemistry, 1990, 20 (5): 475~478
    [45] R J Allen. Fule-scale hydrogen gas-diffusion anode for immersed tank electrowinning and electroplating. Electrochemistry in Mineral and Metal Processing Ⅲ, (Pennington, New Jersey: 1 Electrochemical Society), 1992: 565~570
    [46] Robert J Allen, Peter C Foller, Ravindra J Vora, et al. Full-scale hydrogen anodes for immersed-tank electrowinning. JOM, 1993, 45 (3): 49~53
    [47] Bestetti M, Ducati U, Kelsall G, et al. Zinc electrowinning with gas diffusion anodes: State of the art and future developments. Canadian Metallurgical Quarterly, 2001, 40(4): 459~469
    [48] Harvey T I, Yen W Tai, Paterson. Kinetic investigation into the pressure oxidation of sphalerite from a complex concentrate. Minerals Engineering, 1993, 6(8-10): 949~967
    [49] Jean-pierre Corriose, Proger Gely, Philippe Viers. Thermodynamic and kinetic study of the pressure leaching of zinc sulfide in aqueous sulfuric acid. Hydrometallurgy, 1988, 21(1): 85~102
    [50] Collins M J, Mc-Conaghy E T, Stauffer R F, et al. Starting up the Sherritt zinc pressure leach process at Hudson Bay. JOM, 1994, 46(4): 51~58
    [51] Ozberk E, Jankola W A, Vecchiarelli M, et al. Commercial operations of the Sherritt zinc pressure leach process. Hydrometallurgy, 1995, 39(1-3): 49~52
    [52] Ozberk E, Collins M J, Makwana M, et al. Zinc pressure leaching at the Ruhr-Zink Refinery. Hydrometallurgy, 1995, 39(1-3): 53~62
    [53] Jankola W A. Zinc pressure leaching at Cominco. Hydrometallurgy, 1995, 39(1-3): 63~70
    [54] Baldwin Susan A, Demopoulos George P, Papangelakis Vladimiros G. Mathematical modeling of the zinc pressure leach process. Metallurgical and Materials Transactions B: 1995, 26(5): 1035~1047
    [55] Harvey T I, Yen W T. Influence of chalcopyrite, galena and pyrite on the selective extraction of zinc from base metal sulphide concentrates. Minerals Engineering, 1998, 11 (1): 121
    [56] Buban K R, Collins M J, Masters I M. Iron control in zinc pressure leach processes. JOM, 1999, 51(12): 23~25
    [57] 夏光祥,方兆珩.高铁硫化锌精矿直接浸出新工艺研究.有色金属(冶炼部分),2001,(3):8~10
    [58] Babcan J. Synthesis ofjarosite. KFe_3(SO_4)_2(OH)_6. Geol Zb. 1971, 22(2): 299-304.
    [59] Dutrizac J E. Effectiveness of jarosite species for precipitating sodium jarosite. JOM, 1999, 51(12): 30~32
    [60] Seyer Sylvain, Chen Tzong T, Dutrizac John E Jarofix. Addressing iron disposal in the zinc industry. JOM, 2001, 53 (12): 32~35
    [61] J E Dutrizac. The effect of seeding on the rate of precipitation of ammonium jarosite and sodium jarosite. Hydrometallurgy, 1996, 42(3): 293~312
    [62] 王顺才,张豫.热酸浸出黄钾铁矾工艺的生产实践.有色冶炼,2001,(2):19~22
    [63] Mario Pelino, Carlo Cantalini, Carlo Abbruzzese, et al. Treatment and recycling of goethite waste arising from the hydrometallurgy of zinc. Hydrometallurgy, 1996, 40(1-2): 25~35
    [64] Gord A R. Pickering R W. Improved leaching technology in the electrolytic zinc industry. Metallurgical Transactions B (Process Metallurgy), 1975, 6B(1): 43-53
    [65] 钟竹前,梅光贵,李云瑶,等.高温锌焙砂热酸浸出—亚硫酸锌还原—针铁矿法试验研究.有色金属,1981,(1):82~87
    [66] 林书英.仲针铁矿法在温州冶炼厂锌技改工程中的应用.有色金属(冶炼部分),1996,(5):4~6
    [67] PT Davey, T R Scott. Removal of iron from leach liquors by the goethite process. Hydrometallurgy, 1976, (2): 25-33.
    [68] Cheng T C-M, Demopoulos G P. Analysis of the hematite precipitation process from a crystallization point of view. TMS Annual Meeting, 1997, 599~617
    [69] Dutrizac J E. Physical chemistry of iron precipitation in the zinc industry. IEEE International Conference on Acoustics, 1979 Metall Soc of AIME, 1980: 532~564
    [70] G P Demopoulos, G Pouskouleli. Solvent extraction of iron(Ⅲ) from acid sulphate solutions by mono (2-ethylhexyl) phosphoric acid. Can. Metall. Quart. 1989, 28 (1), 13-18.
    [71] G P Demopoulos, I O Mihaylov, G Pouskouleli. Synergistic extraction of iron (Ⅲ) from sulphuric acid solutions with mixed Kelex 100-Alkyl phosphorus acid extractants. Solvent Extr. Ion Exch. 1993, 11 (1), 67-89.
    [72] G P Demopoulos, F T Principe. Solvent extraction removal of iron from zinc process solutions using organophosphorus extraction. B Mishra(Ed), Proceedings of the EPD Congress. The Minerals Metals and Materials Society, 1998: 267-287.
    [73] G P Demopoulos, R Molnar, L I Rosato. Bench scale and mini-pilot plant investigations on the selective removal of iron from zinc process solutions by solvent extraction. J E Dutrizac, G B Harris(Eds). Iron Control and Disposal. The Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, Canada, 1996: 395-415.
    [74] E M L Peek, F Goedhart, G Weert. Process evaluation of steel pickle liquor pyrohydrolysis in a commercial Keramchemie fluid bed reactor. J E Dutrizac, G BHarris(Eds), Iron Control and Disposal. The Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, Canada, 1996: 483-503.
    [75] T Sato, T Nakamura. Extraction of iron (Ⅲ) from sulphuric and hydrochloric acid solutions by di-2(ethylhexyl)phosphoric acid. In: Proceedings of the International Solvent Extraction Conference ISEC'71, 1971: 238-248.
    [76] T Sato, T Nakamura, M Ikeno. The extraction of iron (Ⅲ) from aqueous acid solutions by di(2-ethilhexil)phosphoric acid. Hydrometallurgy, 1985, 15: 209-217.
    [77] G P Demopoulos, D L Gefvert. Iron (Ⅲ) Removal from base metals electrolyte solutions by solvent extraction. Hydrometallurgy, 1984, 12: 299-315.
    [78] Y Hoh, J Wang, T Ma. Solvent extraction separation study of Fe(Ⅲ) and Zn(Ⅱ) from aqueous solutions with D2EHPA and D2EHPA mixed with TBP in hydrocarbon diluents. Proceedings of the International Solvent Extraction Conference ISEC'83, 1983: 403-404.
    [79] K K Sahu, R P Das. Synergistic extraction of iron (Ⅲ) at higher concentrations in D2EHPA-TBP mixed solvent systems. Metall. Trans. B, 1997, 28 (2):
    [80] F Principe, G P Demopoulos. Comparative study of iron(Ⅲ) separation from zinc sulphate- sulphuric acid solutions using organophosphorus extractants, OPAP and D2EHPA—Part Ⅰ: Extraction. Hydrometallurgy, 2004, 74: 93-102
    [81] F Principe, G P Demopoulos. Comparative study of iron(Ⅲ) separation from zinc sulphate-sulphuric acid solutions using organophosphorus extractants, OPAP and D2EHPA—Part Ⅱ. Stripping. Hydrometallurgy, 2005, 79: 97-109
    [82] G P Demopoulos, D L Gefvert. Iron (Ⅲ) Removal from base metals electrolyte solutions by solvent extraction. Hydrometallurgy, 1984, 12: 299-315
    [83] H Majima, T Izaki, S Sanuki. Reductive stripping of Fe(Ⅲ)-loaded D2EHPA with the aqueous solutions containing sulfur dioxide. Metall Trans B, 1985, 16: 187-194.
    [84] C Lupi, D Pilone. Reductive stripping in vacuum of Fe(Ⅲ) from D2EHPA. Hydrometallurgy, 2000, 57(3), 201-207
    [85] J Sun, T J O'Keefe. An evaluation of steel scrap as a reducing agent in the galvanic stripping of iron from D2EHPA. Minerals Engineering, 2002, 15 (3): 177-185
    [86] K Verbeken, M Verhaege, E Wettinck. Separation of iron from a zinc sulphate electrolyte by combined liquid-liquid extraction and electro-reductive stripping. Proceedings of the TMS Fall Extraction and Processing Conference, Lead-Zinc 2000, Pittsburgh, PA, USA: 779-788
    [87] 王兴尧,康晓红,谢慧琴,等.闪锌矿氧化浸出与协同萃取分离耦合研究.化学工程,2005,33(2):1-3
    [88] 王兴尧,康晓红,谢慧琴,等.闪锌矿的耦合浸出与铁的分离.过程工程学报,2004,4(3):228-232
    [89] J Chen, Y Shuqiu, L Huizhou, et al. New mixed solvents systems for the extraction and separation of ferric iron in sulphate solutions. Hydrometallurgy, 1992, 30: 401-416
    [90] Y Shuqui, W Zhichun, J Chen.. Iron removal from sulphuric acid solutions by solvent extraction with mixtures of extractants. J E Dutrizac, A J Monhemius, Iron Control in Hydrometallurgy. Ellis Horwood, Chichester, UK, 1986: 334-352
    [91] M R C Ismael, J M R Carvalho. Synergistic extraction of iron(Ⅲ) from aqueous sulphuric acid solutions, a viable alternative to jarosite production. D C Shallcross, R Paimin, L M Prvcic(Eds). Proceedings of the International Solvent Extraction Conference (ISEC'96), 1996, 1: 599-604
    [92] M R C Ismael, J M R Carvalho. Extraction of iron (Ⅲ) from aqueous sulphuric acid solution using a packed column. M Cox, M Hidalgo, M Valiente(Eds.), Proceedings of the International Solvent Extraction Conference (ISEC'99), 1999, 2: 915-919
    [93] M R C Ismael. Iron removal by liquid-liquid extraction. Ph D Thesis, Instituto Superior T ecnico, Technical University of Lisbon, 1999
    [94] F Delmas, M Ehle, RO Koch, et al. Development of a selective extractant for iron in hydro-metallurgical process solutions in order to reduce the amount of ferric sludges. D C Shallcross, R Paimin, L M Prvcic(Eds), Proceedings of the International Solvent Extraction Conference ISEC'96, University of Melbourne, 1996, 1: 293-298
    [95] F Delmas, C Nogueira, L Aires, et al. Use of hydrocarbon-soluble aminimethylenephosphonic acid derivatives for the solvent extraction of metals ions from aqueous solutions. WO 98/14621, 1998
    [96]F Delmas, C Nogueira, M Ehle, et al. Novel highly efficient selective extractants for iron in zinc hydrometallurgy. J E Dutrizac, G B Harris(Eds), Iron Control and Disposal. The Canadian Institute of Mining Metallurgy and Petroleum, Montreal, Canada, 1996: 381-394
    [97]F J Alguacil, S Amer. The extraction of iron (III) from aqueous sulphate solutions by primene 81R sulphate. Hydrometallurgy, 1986, 15: 337-350
    [98]F J Alguacil, S Amer, A Luis. The influence of the diluent on the extraction of iron (III) from aluminium sulphate solutions by the amine primene 81R sulphate. Hydrometallurgy, 1987,18:65
    
    [99]P Mahi, N T Bailes. Extraction of iron from aluminiferous chloride leach solutions by Alamine 336. Hydrometallurgy, 1985.13: 293-304
    [100]A J Van der Zeeuw. I-Composition of complexes with nickel, cobalt (II) and iron (III). Hydrometallurgy, 1979, 4: 21-37
    [101]M I Stefanakis, A J Monhemius. The extraction of iron (III) from aluminium nitrate with Versatic acid. Proceedings of the International Solvent Extraction Conference (ISEC'83), 1983: 401-402
    [102]M I Stefanakis, A J Monhemius. Determination of organic phase complexes formed on extraction of iron (III) from aluminium nitrate solutions with Versatic 10. Hydrometallurgy, 1985,15:113-139
    [103]M I Stefanakis, A J Monhemius. Computer modelling of the solvent extraction of iron by Versatic acid from aluminium nitrate solutions. Hydrometallurgy, 1987.19, 187-198.
    [104]J S Preston. Solvent extraction of metals by carboxylic acids. Hydrometallurgy, 1985,14: 171-188
    [105] A W Fletcher, D S Flett, J C Wilson. Solvent extraction of ferric ion by a carboxilic acid. Bull Inst Miner Metall. 1964, 693 (8): 765-777
    [106]G Thorsen, H F Svendsen, A Grislingas. The integrated organic leaching-solvent extraction operation in hydrometallurgy. G B Renato(Ed.), Hydrometallurgical Process Fundamentals. Plenum Press, New York, 1984: 269-292
    [107]G Thorsen. Process for extraction and separation of metals using liquid cations exchangers. Nrit Patent 1474944, 1977
    [108] A J Monhemius, X Yu, S B Dougill. Kinetics and mechanisms of precipitation of nickel ferrite by hydrolytic stripping of iron from Versatic acid using formic acid solutions. D H Logsdail, M J Slater(Eds), Solvent Extraction in Process Industry, Elsevier Applied Science, London, 1993, (1): 251-265
    
    [109]D Collier, R Heng, R Lehmann, et al. The Versatic acid process—a solution to the iron problem in the zinc industry. J E Dutrizac, A J Monhemius(Eds), Iron Control in Hydrometallurgy. Ellis Horwood, Chichester, UK, 1986: 297-311
    
    [110] 兰兴华.锌溶剂萃取进展.世界有色金属,2004,(8):28—31
    
    [111]M A Garcia, A Mejias, D Martin, et al. Upcoming zinc mine projects: the key for success is ZINCEX solvent extraction. Proceedings of the TMS Fall Extraction and Processing Conference, Lead-Zinc 2000, p 751-761
    [112]Wen-Qing Qin, Zhou-yue Lan, Wei-zhong Li. Recovery of zinc from low-grade zinc oxide ores by solvent extraction. Journal of Central South University of Technology, 2003, 10(2): 98-102
    [113]Limpo Gil Jose Luis, Figueiredo J M, Amer Amezaga Sebastian, et al. Method for the recovery of zinc ,copper and lead of oxidized and/or sulfurized ores and materials. EP0434831A1, 1991
    [114]Limpo J L, Amer S, Figueiredo J M, et al. Hydrometallurgical treatment of complex sulphide ores using highly concentrated ammonium chloride solutions. ICHM'92, Proceedings of the Second International Conference on Hydrometallurgy (vol.2). Changsha, China, 1992: 302~309
    [115]Limpo J L, Figueiredo J M, Amer S, et al. The CENIM-LNETI process: a new process for the hydrc metallurgical treatment of complex sulphides in ammonium chloride solutions. Hydrometallurgy, 1993,28(2): 149-161.
    [116]Lirnpo J L, Luis A, Gomez C. Reactions during the oxygen leaching of metallic sulphides in the CENIM-LNETI process. Hydrometallurgy, 1993, 28(2): 163-178.
    [117]Limpo J L, Luis A. Solubility of zinc chloride in ammoniacal ammonium chloride solutions. Hydrometallurgy, 1993,32(2): 247-260
    [118]Figueircdo J M, Novais A Q, Limpo-Gil J, et al. The CENIM-LNETI process for zinc recovery from complex sulphides. International Symposium World Zinc'93, The Australasian Institute of Mining and Metallurgy, Hobart, 1993: 333-339
    [119]Figueiredo J M, Novais A Q, Limpo-Gil J, et al. The CENIM-LNETI process for zinc recovery from complex sulphides. Lead and zinc'95. Sendai, Japan,1995
    [120]Amer S. Figueiredo J M, Luis A. The recovery of zinc from the leach liquors of the CENIM-LNETI process by solvent extraction with di(2-ethylhexyl)phosphoric acid. Hydrometallurgy, 1995,37(3): 323-337
    [121]Novais A Q, Figueiredo J M, Medeiros A R. The zinc and copper solvent extraction operations in the CENIM-LNETI process for treatment of complex sulphide concentrates. IV International Symposium on the Polymetallic Sulphides of the Iberian Pyrite Belt. Lisboa, Portugal. 1998
    [122]Olper Marco, Fracchia Pier Luigi, Maccagni Massimo. Process for recovering zinc and lead from flue dusts from electrical steel works and for recycling said purified metals to the furnace, and installation for implementing said process. EP0551155A1,1993
    [123]Olper M, Wiaux J P. EZINEX, le procede electrolytique de valorisation des poussieres d'acieries electriques, Revue de Metallurgie. Cahiers D'Informations Techniques 95, 1998: 1231-1237 (In French)
    [124]Olper M. EZINEX process. TMS Annual Meeting. TMS. Published by Minerals, Metals & Materials Society (TMS): 1994: 513
    [125]Olper M. EZINEX process: A new and advanced way for electrowinning zinc from a chloride solution. Proceedings of the International Symposium on Zinc. Publish by Australasian Inst of Mining & Metallurgy. 1993: 491
    [126]Olper M, Maccagni M. Electrolytic zinc production from crude zinc oxides with the Ezincx Process. 2000 TMS Fall Extraction & Processing, Pittsburgh, 2000
    [127] 邓良勋,吴保庆.络合物电解制锌.有色金属(冶炼部分),1996,(3):16~18
    [128] 邓良勋,吴保庆.络合物电解制锌.ZL93104303.4,1997
    [129] 侬健桃.我国铟产业现状及发展.有色冶炼,2002,(4):12-15
    [130] 邹家炎.铟的提取、应用和新产品开发.广东有色金属学报,2002,12(S):16-20
    [131] 周智华,莫红兵,徐国荣,等.稀散金属铟富集与回收技术的研究进展.有色金属,57(1):71-76
    [132] 张银堂,陈志飞,宁顺明.In_2O_3还原挥发的热力学计算.中国有色金属学报,2002,12(3):592-595
    [133] 宁顺明,陈志飞.D2EHPA从低酸浸出液中萃取铟防乳化的研究.有色金属(冶炼部分),1998,(4):37-38
    [134] 宁顺明,陈志飞.从黄钾铁矾渣中回收锌铟.中国有色金属学报,1997,7(3):56-58
    [135] 陈志飞,姚先理,宁顺明,等.铁矾渣焙烧浸出萃取提铟的工艺.CN98112542.5,1998
    [136] 沈奕林,覃庶宏.高铟高铁锌精矿的铟、铁、银、锡等金属回收新工艺.CN99106190.X,1999
    [137] 陈志飞,马荣骏,沈湘黔,等.从高铟铁溶液中回收铟的工艺.CN87102083.1,1987
    [138] 马荣骏.热酸浸出针铁矿除铁湿法炼锌中萃取法回收铟.湿法冶金,1997,(2):58-61
    [139] 邓学广,李清湘,吴坤霖.硬锌真空蒸馏脱锌和富集锗、铟.有色金属(冶炼部分),2000,(2):31-34
    [140] 李淑兰,刘永成,翟大成,等.硬锌真空蒸馏富集锗、铟的研究.昆明理工大学学报,1994,19(4):38-45
    [141] 戴永年,罗文洲,杨斌,等.真空蒸馏提锌和富集稀贵金属法.CN97101388.8,1997
    [142] 吴成春.在密闭鼓风炉熔炼过程中锗铟的富集及综合回收.广东有色金属学报,2002,12(S1):39-44
    [143] 黄霞光.湿法炼锌渣中铟铋锡的分离回收.有色金属,2001,53(4):51-53
    [144] 郑顺德,陈世民,林兴铭,等.从锌渣浸渣中综合回收铟锗铅银的试验研究.有色冶炼,2001,(2:34-37
    [145] 丁世军,贾乙东.铝铁锌渣提取金属铟新工艺研究.有色矿冶,2004,20(4):41-44
    [146] 文岳中,刘又年,舒万艮,等.固体酸化焙烧—水浸提铟的研究.稀有金属,1999,23(3):227-229
    [147] Lei Cunxi.Separation and concentration of indium from leaching solution containing indium,antimony and iron ions.Rare Metals,2000,19(1):76-80
    [148] 曾冬铭,舒万艮,刘又年,等.低酸浸出—溶剂萃取法从含铟渣中回收铟有色金属.2002,54(3):41-44
    [149] 鲁君乐,唐谟堂,晏德生,等.从含铟低的复杂锑铅精矿中富集铟.湖南有色金属,1994,10(5):298-301
    [150] 刘朗明.从铅浮渣反射炉烟尘中提取铟的新工艺研究.稀有金属,2003,27(1):112-115
    [151] 周明.铅渣鼓风炉烟灰中回收铟的实践.有色金属(冶炼部分),2004,(3):30-31
    [152] 王少雄.从Pb-Sb烟灰中回收铟实践.湖南有色金属,2000,16(5):20-23
    [153] 蒋新宇,周春山.提高某厂铅烟灰铟浸出率的研究.稀有金属与硬质合金,2001,(3): 17-19
    [154] 范元俊.从铅烟尘中提取铟的萃取试验与实践.湖南有色金属,2000,16(S1):1-4
    [154] 曹应科.从铜冶炼砷烟灰中回收铟.湖南有色金属,2005,21(1):5-8
    [155] 阮胜寿,路永锁.浅议从炼铜电收尘烟灰中综合回收有价金属.有色冶炼,2003,(6):41-44
    [156] 周智华,曾冬铭,游红阳,等.精铟中铊的氯化脱除.稀有金属,2002,26(3):191
    [157] 石玲斌.粗铟提纯的研究.昆明理工大学学报,2002,27(6):41
    [158] 韩翌,李琛,黄凯,等.甘油碘化钾-电解联合法粗铟提纯研究.矿冶工程,2003,23(6):59-61
    [159] 李铁柱.关于影响电解铟产品因素的研究.有色矿冶,18(3):21-22
    [160] 周智华,曾冬铭,舒万艮,等.钢电解精炼中电解液酸度对锡含赶的影响.中国有色金属学,2003,13(2):522-525
    [161] 周智华,曾冬铭,舒万艮,等.铟电解精炼中锡离子的行为及含锡量的控制.稀有金属,2002,25(6):478
    [162] 周智华,曾冬铭,莫红兵.铟电解精炼中异常行为研究.稀有金属,2002,26(6):452
    [163] 王立臣译,夏文沂校.用阶式双性电极与点阴极的电解槽电解精炼铟.国外稀有金属.1964.5:8
    [164] 2003, (1): 39
    [165] 1994, 60(7-8): 503
    [166] 1990, (3): 555
    [167] 魏昶,罗天骄.真空法从粗铟中脱除镉锌铋铊铅的研究.稀有金属,2003,27(6):852-856
    [168] 吴成春.粗铟真空蒸馏除镉的研究及生产实践.广东有色金属学报,2005,15(1):12-14
    [169] 2003, (1): 36.
    [170] Menamara Michael F, Slaltery James A, Witt Augest F. Process for ultrapurification of indium. US4828608, 1989
    [171] Belskii A A, Elyutin A V, Zubkov, et al. Process for producing high-purity indium. US4287030, 1981
    [172] Kacotknha H A,周平初译,夏文沂校.用结晶法提纯铟时的杂质行为.国外稀有金属,1964.7:30
    [173] 著,李玉增译.利用氯化铟的区域熔炼方法清除铟中的锡和铅杂质.国外稀有金属,1964,9:14
    [174] 黄永杰,李世堃,兰中文.磁性材料.北京:电子工业出版社,1994.1~5
    [175] J L Snock. New developments in ferromagnetic materials. New York: Elsevier, 1947
    [176] Y Hoshino. Ferrites. Process ICF3, 1980
    [177] T Hiraga. Ferrites. Process ICF1, 1979: 179
    [178] 林其壬.铁氧体工艺原理.上海:上海科技出版社,1987
    [179] 温彩云.软磁铁氧体粉料“均匀性”的改善.江苏陶瓷,2000,(04):21~22
    [180] 姚礼华.氧化物法制Mn-Zn铁氧体颗粒料.磁性材料及器件,1999,(02):39~43
    [181] 陆明岳.高磁导率MnZn的氧本TL13材料的研制.磁性材料及器件,1999,30(2):34~38
    [182] 易晓俊.氧化物法生产高磁导率铁氧体磁芯.有线通信技术,1995,(1).42~44,48
    [183] 何水校.软磁铁氧体材料的应用与市场.磁性材料及器件,1998,29(1):44~47
    [184] 杨新科.锰锌软磁铁氧体粉制备研究进展.宝鸡文理学院学报(自然科学版),2001,(02):126~128
    [185] 李矗,赵九蓬,韩杰才,等.铁氧体粉料制备工艺的新进展.粉末冶金技术,2000,18(01):51~55
    [186] 张保平,张金龙,唐谟堂,等.共沉法制备锰锌软磁铁氧体前躯体的热力学分析.江西有色金属,2005,19(2):35~37
    [187] 欧阳民.兰坪锌氧化矿冶金新工艺研究[D],长沙,中南工业大学冶金系,1994
    [188] 甘婉林.利用铅烟化炉氧化锌生产活性氧化锌的研究.株冶科技,1997,25(1):12~17
    [189] 李天文,王春娥,王向荣.过硫酸铵在铁锰杂质脱除中的应用.无机盐工业,1998,(3):26~28
    [190] 刘承宪,李前懋,陈绍林.高铁碳酸锰矿石的铁锰分离研究.金属矿山,1990,19(12):41~46
    [191] 刘永和,易佑华.贫锰矿制取软磁铁氧体用碳酸锰的工艺研究.化学世界,1992,33(11):490~493
    [192] 李朋恺,刘萱念.贫锰矿制备高纯微晶碳酸锰的研究.无机盐工业,1994,(6):4~7
    [193] 唐冬秀,李晓湘,王丽球.贫锰矿生产高纯碳酸锰的研究.中国矿业,1998,7(4):16~18
    [194] 唐华雄,钟竹前,梅光贵.湿法制取活性氧化锌与化学二氧化锰新工艺研究(上).中国锰业,1993,11(6):26~30
    [195] 唐华雄,钟竹前,梅光贵.湿法制取活性氧化锌与化学二氧化锰新工艺研究(下),中国锰业,1994,12(1):38~41
    [196] 张传福,佘旭,梅光贵,等.湿法制取活性氧化锌与重质碳酸锰新工艺.中南工业大学学报(自然科学版),1999,(04):382~385
    [197] 李军旗.几种因素对硫化锌精矿、软锰矿同时浸出的影响,贵州工业大学学报(自然科学版),2000,(03):10~14
    [198] 唐谟堂,黄小忠,欧阳民,等.一种制取磁性材料的方法.ZL95110609.0
    [199] Xiaozhong Huang, Motang Tang. The study on a new technology for Mn-Zn ferrite being directly made from ores, ICNMP-CONF95 proceedings, Shanghai, China, 1995
    [200] 黄小忠,唐谟堂.由软锰矿、闪锌矿、铁屑直接制取锰锌铁氧体软磁材料新工艺研究.中国锰业,1996,14(1):42~44
    [201] 唐谟堂,黄小忠,杨声海,等.直接法制取低功耗软磁铁氧体扩大试验研究.第十一全国磁学和磁性材料会议论文集,中国长沙,2002,11:381~384
    [202] 唐谟堂,李仕庆,杨声海,等.一种无铁渣湿法炼锌方法.CN03118199.6,2003
    [203] 李洪桂.湿法冶金学.长沙:中南大学出版社,2002:69~95
    [204] 莫鼎成.冶金动力学.长沙:中南工业大学出版社,1987:208
    [205] 朱炳辰.化学反应工程.北京:化学工业出版社,1998,228~230
    [206] 李绍芬.化学反应工程.北京:化学工业出版社,2000,319~321
    [207] 傅崇说.有色冶金原理.北京:冶金工业出版社,1993,193~197
    [208] 杨显万.冶金溶液热力学数据计算手册.北京:冶金工业出版社,1979
    [209] Allen J Bard, Roger Parsons, Joseph Jordan. Standard potentials in aqueous solution. New york and Bessel, 1985: 787~802
    [210] 慕思国,彭长宏,唐谟堂.三元体系MeSO_4-(NH_4)_2SO_4-H_2O 298K相平衡研究.过程工程学报,2005年.
    [211] 张保平,张金龙,唐谟堂,等.Mg(Ⅱ-Ca(Ⅱ)-NH_3-CO_3~(2-)SO_4~(2-)-H_2O体系钙镁溶解热力学分析.湿法冶金,2005,24(1):26~32
    [212] 中南大学、重庆超思信息材料股份有限公司.低功耗共沉粉湿法制备工艺10kg/次扩大试验报告,2001年9月
    [213] 中南大学,重庆超思信息材料股份有限公司.直接法制取锰锌软磁铁氧体粉料工业性试验报告,2003年3月
    [214] 唐谟堂.欧阳民.硫铵法制取等级氧化锌.中国有色金属学报,1998,8(1):118~121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700