用户名: 密码: 验证码:
内循环三相流化床生物高效降解炼油污水技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
努力研发炼油污水先进的生物降解技术,提高炼油废水净化和循环利用水平是节约水资源、实践绿色理念的需要。
     本文采用气升式内循环气液固三相流化床反应器,结合UBD菌固定化包埋技术,对炼油污水进行连续动态生物降解。中石化上海高桥分公司炼油污水经高效降解后,COD从624 mg/L降至93.6 mg/L,去除率85.0%,石油类含量从48.7mg/L降至2.4mg/L,去除率为95.1%,出水水质达到中华人民共和国污水综合排放一级排放标准(GB8978-1996)。
     首先通过间歇试验考察了UBD菌对污水的适应性,得出此菌不适宜降解含有Cl-的污水,而适合降解炼油污水体系。对于焦化废水,COD去除率在40-60%之间,石油类的去除率达到70%左右。对模拟炼油污水,COD最高去除率可以达到85%以上,石油类去除率可达到83.7%。在菌种浓度500μL/L、连续曝气、20℃的优化条件下,上海石化实际炼油污水COD从1034mg/L降到293mg/L,去除率71.7%;石油类含量从51.6mg/L降到3.3mg/L,去除率93.6%。UBD菌具有快速高效处理炼油污水的能力,相对于其他菌种在摇床培养条件下72~240h的降解时间,该菌48h内就可以达到较好的降解效果。UBD菌对B/C为0.19的难生物降解的炼油污水仍具有较强的降解能力。生物降解过程中体系的pH值呈下降趋势,主要是石油类化合物在酶的作用下生成了低级脂肪酸等小分子酸的缘故。
     选取聚乙烯醇(PVA)作为凝胶剂,海藻酸钠(SA)、活性碳和SiO2作为助凝剂,硼酸溶液和氯化钙溶液作为交联剂,硫酸钠溶液作为固化剂,采用凝胶包埋法固定化UBD菌,成功实现了UBD菌的固定化,用于炼油污水的处理。最佳的凝胶液配比为:PVASA、活性炭、SiO2的质量分数分别为4%、0.5%、1.5%、1%。优化的交联和固化条件为:6wt%的硼酸溶液和2wt%的氯化钙溶液作为交联剂,0.5wt%的硫酸钠溶液作为固化剂,固化时间为24h,无菌水浸润时间为24h。菌种固定化后明显改善了炼油污水的处理效果,COD和石油类物质的去除率比游离菌都有所提高。固定化小球具有良好的机械强度、弹性、渗透性等物理性质,可以重复利用并保持良好的活性。
     自行设计并制造了气升式内循环气液固三相流化床反应器,从流体力学角度,综合考虑气含率、液体循环时间、完全混合时间和体积氧传质系数等四方面因素,内循环气液固三相流化床优化的操作条件为:气速180 L/h,固含率5%。在此条件下三相流化床具备优良的流体力学性能,气含率为8.31%,液体循环时间为8s,液体完全混合时间为35s,体积氧传递系数为20.67min-1。结合固定化包埋技术,考察了三相流化床反应器中固定化UBD菌对炼油污水的处理效果,获得了优化的工艺条件:固体颗粒填充率5%,固定化颗粒粒径为3mm,气速180L/h,水力停留时间15h。气升式内循环气液固三相流化床反应器对水力负荷和COD容积负荷的波动有很强的适应能力,容积负荷达到2.56kgCOD/(m3-d),比传统活性污泥法(0.4~O.9 kgCOD/(m3.d))高3-5倍。
     论文还考察了UBD菌降解石油类物质的动力学,UBD菌降解石油类物质的Haldane底物抑制生物降解动力学方程为(?)其中νmax=0.17h-1,Ks=25.87mg/L,底物抑制常数Ki=672.77 mg/L.说明石油类对于UBD菌已经不是难降解物质,UBD菌能够对炼油污水进行高效的生物降解。
     本文实现了UBD菌的扩大培养,为UBD菌降解炼油污水的工业应用提供了菌种扩大培养技术的基本保证。UBD菌适宜的培养条件为:接种量3%,溶氧空间80%,温度30℃,摇床速度190rmp,培养基为蛋白胨15 g/L、酵母粉5 g/L.NaCl 1O g/L,培养的UBD菌浓度为13.75×107个/L。利用革兰染色和16SrDNA PCR测序,确定UBD菌为Pusillimonas sp., Alcaligenaceae,Burkholderiales,Betaproteobacteria,Proteobacteria, Bacteria.
Study on the biodegradation technology of petrochemical wastewater, improving the waste water purification and cycle utilization level are necessary for saving water resource and practicing the green concept.
     This paper adopted gas-lift inner-loop gas-liquid-solid three-phase fluidized bed reactor to continually biodegrade petrochemical wastewater with the microorganism UBD immobilized technology. After effectively biodegradation, the Chemical Oxygen Demand (COD) and Total Petroleum Hydrocarbons (TPH) of the petrochemical wastewater from Gaoqiao branch company (Sinopec) decreased from 624 mg/L to 93.6 mg/L and 48.7 mg/L to 2.4 mg/L respectively, the quality of the outlet water met the first grade emission standard of PRC (GB 8978-1996).
     The adaptability of microorganism UBD to wastewater was firstly investigated through batch experiment, the result showed the microorganism was not suitable for dealing with the wastewater including Cl- but the petrochemical wastewater. For coking wastewater, the removal rate of COD was between 40% and 60%, and that of TPH reached around 70%; for simulated petrochemical wastewater, the removal rate of COD could reach more than 85%, that of TPH could reach 83.7%. Under the optimized condition of microorganism concentration of 500μL/L(V/V), aeration and 25℃, the COD of actual petrochemical wastewater decreased from 1034mg/L to 293mg/L, the removal rate was 71.7%; the TPH decreased from 51.6mg/L to 3.3mg/L, the removal rate was 93.6%. This microorganism had fast and highly efficient ability to deal with the petrochemical wastewater and could reach good degradation effect in 48 hours compared with 72-240 hours of other types of microorganism. Microorganism UBD still had strong degradation ability toward the wastewater, which had B/C of 0.19 and was hard to degrade. The degradation of the UBD on the short chain n-paraffins was faster than long chain n-paraffins. pH of the system during the degradation process intended to fall mainly because of the organic acid generated from the petroleum compound by the effect of enzyme.
     Microorganism UBD was successfully immobilized by choosing PVA as gelata, sodium alginate, activated carbon and SiO2 as the coagulant aids, boracic acid and calcium chloride solvent as cross linker and sodium sulfate solvent as the solidification agent and adopting the gel entrapment technology to deal with the petrochemical wastewater. The most optimized mixture ratio was:mass fraction of PVA, SA, activated carbon and SiO2 was 4%,0.5%,1.5% and 1% respectively. The optimized cross linkage and solidification condition was:boracic acid solvent of 6wt% and calcium chloride solvent of 2wt% as the linkage agent and sodium sulfate solvent of 0.5wt% as the solidification agent; the solidification and infiltration time of sterilized water was both 24 hours. The effect of the microorganism on dealing with the wastewater was obviously improved with the immobilized microorganism and the removal rate of COD and TPH were increased compared with free microorganism. The immobilized microorganism pellet had better mechanical robustness, elastane and osmosis, could be utilized repeatedly and maintained good activity.
     The gas-lift inner-loop gas-liquid-solid three-phase fluidized bed reactor was self-designed and constructed. The factors of gas holdup, liquid cycle time, mixing time and volumetric oxygen transfer coefficient were considered from the point of fluid mechanics and the optimized operation conditions for the fluidized bed were:gas velocity of 180 L/h, solid holdup of 5%, under this condition, the fluidized bed had good fluid mechanics performance, which were gas holdup of 8.31%, liquid cycle time of 8s, mixing time of 35s and volumetric oxygen transfer coefficient of 20.67 min-1. The effect of immobilized microorganism UBD on dealing with the petrochemical wastewater in the fluidized bed was investigated and the optimized technological conditions were:solid particle filling rate of 5%, immobilized particle size of 3mm, gas velocity of 180L/h and hydraulic residence time of 15h. The gas-lift inner-loop gas-liquid-solid three-phase fluidized bed reactor had strong adaptability toward the variation of hydraulic and COD volume load, the volume load reached 2.56 kgCOD/(m3·d) which was 3-5 times higher than traditional activated sludge process.
     The kinetics for the degradation of microorganism UBD on the petroleum compounds was also investigated, the kinetic equation for Haldane substrate inhabiting biodegradation during the degradation of microorganism UBD on the TPH was: in which vmax=0.17b-1, Ks=25.87mg/L and the substrate inhibition constant Ki=672.77 mg/L. which indicated the petroleum compounds were not hard to be degraded for UBD microorganism.
     The enlarge culture for UBD microorganism was accomplished in this paper, therefore the supply of this microorganism to the petrochemical wastewater industry was guaranteed. The most suitable culture conditions for the microorganism UBD were:inoculum concentration of 3%, dissolved oxygen space of 80%, temperature of 30℃, speed of shaking incubator of 190rmp, the incubation media was peptone of 15 g/L, yeast powder of 5 g/L, NaCl of 10 g/L and the microorganism concentration of 13.75×107个/L. The UBD microorganism was Pusillimonas sp., Alcaligenaceae, Burkholderiales, Betaproteobacteria, Proteobacteria, Bacteria by using gram straining and 16SrDNAPCR sequencing.
引文
[1]马斌,张锋.炼厂污水水质的变化及处理技术变革[J].广州化工,2010,38(3):139-140,187
    [2]Vieira P, Vieira R, Faria S. Cardoso Biodegradation of diesel oil and gasoline contaminated effluent employing intermittent aeration[J]. Journal of Hazardous Materials. 2009,168(2-3):1366-1372
    [3]袁波,王丽萍,华素兰等.含油废水处理技术[J].江苏环境科技.2006,19(1):128-130
    [4]范荣桂,郝方.炼油废水的处理方法及工艺特征[J].中国科技论文在线.2010,4(5):410-414
    [5]Lazar I, Dobrota S, Voicu A. Petrisor Microbial degradation of waste hydrocarbons in oily sludge from some Romanian oil fields[J]. Journal of Petroleum Science and Engineering. 1999,22(1):151-160
    [6]Hamed T, Bayraktar E. The biodegradation of benzene, toluene and phenol in a two-phase system[J]. Biochemical Engineering Journal.2004,19(2):137-146
    [7]上海市科学技术交流站主编.废水生化处理[M].上海:上海人民出版社.1975:25-53
    [8]赵传芳编著.有机废水的生物化学处理[M].四川:四川科学技术出版社.1986:33-172
    [9]岳峻,万书超,万红友.含油废水处理技术进展[J].污染防治技术.2009,22(1):52-55
    [10]Rubio J, Souza M L, Smith R W. Overview of flotation as a wastewater treatment technique[J].Minerals Engineering.2002,15(3):139-155
    [11]张忠祥,钱易主编.废水生物处理新技术[M].北京:清华大学出版社.2004:33-39
    [12]李亚新编著.活性污泥法理论与技术[M].北京:中国建筑工业出版社.2007:9-13
    [13]Ragheb A, Rouba Y. Biodegradation of petroleum industry oily-sludge using Jordanian oil refinery contaminated soil[J]. International Biodeterioration & Biodegradation.2009, 63(8):1054-1060
    [14]李永,杨子凤.浅谈生物技术在油田废水处理中的应用[J].科技资讯治.2009,(29):141
    [15]中国化工防治污染技术协会组织编写.化工废水处理技术[M].北京:化学工业出版社.2000:21-23
    [16]陈梅芹,朱炜.BAF工艺用于炼油废水的深度处理[J].茂名学院报.2007,17(1):28-30
    [17]Magalhaes S, Ferreira R, Castro P. Investigations into the application of a combination of bioventing and biotrickling filter technologies for soil decontamination processes[J]. Journal of Hazardous Materials.2009,170(2-3):711-715
    [18]关红安,罗建中,卢军.石油化工污水深度处理与回用的研究进展[J].广东化工.2010,37(5):15-16,24
    [19]王春敏,步启军.焦化废水处理技术及其发展趋势[J].内蒙古石油化工.2006,32(5):87-88
    [20]靳银燕,陈玉琴.含油废水生物处理方法研究进展[J].干旱环境监测.2010,24(2):112-116,123
    [21]丁真真.难降解有机物废水的处理方法研究现状[J].甘肃科技.2006,22(2):113-115
    [22]王会强,冯晓强,张学勇.石油化工废水生物处理研究进展[J].化肥设计.2010,48(1):59-62
    [23]高峰,秦冰,桑军.强臭氧氧化处理炼油废水的生化处理出水[J].工业用水与废水.2009,40(1):46-48
    [24]冷冬梅.石油化工废水处理技术应用研究进展[J].化学工程与装备.2009,(12):129-134
    [25]Alemzadeh I, Vossoughi M. Biodegradation of toluene by an attached biofilm in a rotating biological contactor[J]. Process Biochemistry.2001,36:707-711
    [26]梁生康,王修林,汪卫东等.高效石油降解菌的筛选及其在油田废水深度处理中的应用[J].化工环保.2004,24(1):41-46
    [27]秦华明,尹华,张娜等.生物强化技术处理含油脂废水的研究[J].水处理技术.2007,33(3): 33-35
    [28]宋秋,孙清,徐丽娜等.双菌混合降解生物质气化焦油废水的试验研究[J].能源与环境.2007,(3):78-79
    [29]郝晓地著.可持续污水~废物处理技术[M].北京:中国建筑工业出版社.2006:3-10
    [30]马占青编著.水污染控制与废水生物处理[M].北京:中国水利水电出版社.2003:102-107
    [31]范国昌.微生物混合效应的研究与应用[J].生物学杂志.1996,(4):28-29
    [32]彭武厚.工程菌群与环境保护[J].工业微生物.1999,29(2):52
    [33]冯树.混合菌一类值得重视的微生物资源[J].世界科技研究与发展.2001,22(3):44
    [34]李英军.EM高效微生物技术在我国的应用研究进展[J].环境与开发.2001,16(3):12-13
    [35]喻晖,王栋,郭建博.工程菌群在水处理中的研究和应用[J].辽宁化工.2005,34(8):350-352
    [36]苏兼平,陶雪琴,卢桂宁等.现代生物技术在难降解有机废水处理中的应用[J].广东化工.2004,(4):6-8
    [37]孙剑辉,李萍.高效菌处理难降解有机工业废水研究进展[J].化工环保.2004,24(5):328-330
    [38]杨基先,马放,张立秋等.利用工程菌处理含油废水的可行性研究[J].东北师大学报自然科学版.2001,33(2):89-92
    [39]沈镇平.扬子石化国家“863”计划《处理石化废水》[J].化工时刊科技进展.2005,19(5):28
    [40]张胜华主编.水处理微生物学[M].北京:化学工业出版社.2005:33-44
    [41]须藤隆一著,俞辉群,全浩编译.水环境净化及废水处理微生物学[M].北京:中国建筑工业出版社.1988:10-13、71-73
    [42]李丽,张利平,张元亮.石油烃类化合物降解菌的研究概况[J].微生物学通报.2001,28(5):89-92
    [43]Franmann P D, Haddad C M, and Hawkes R B, et al. Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching bacteria and archaea:Application of the Ratkowsky Equation[J]. Minerals Engineering.2005,18(13-14):1304-1314
    [44]李清彪.白腐真菌菌丝形成的物化条件及其对铅的吸附[J].环境科学.1999,20(1):33-38
    [45]Ward D M, Atlas R M, and Boehm P D, et al. Microbial Biodegradation and the Chemical Evolution of Amoco Cadiz Oil Pollutants[J]. Ambio.1980, (9):277-283
    [46]吴婉娥,葛红光,张克峰编著.废水生物处理技术[M].北京:化学工业出版社.2003:27-29
    [47]安淼,周琪,李晖.混合菌降解氯苯酚类化合物[J].工业水处理.2003,23(8):23-25
    [48]张业录,李群,赵华等.白腐菌漂白废水脱色动力学研究[J].天津轻工业学院学报.2001,(3):5-8
    [49]张庆轩,杨普江,杨国华等.废水中氰化物加压水解反应动力学及工艺条件的优化[J].工业水处理.2003,23(3):33-36
    [50]范轶,王麒,陈军等.活性污泥法石化工业废水处理动力学研究[J].化学工程.2001,29(5):44-47
    [51]张渤,韩洁.石油烃类污染物在地下水中自然衰减特性[J].重庆环境科学.2002,24(5):35-37
    [52]刘春,黄霞,王慧.基因工程菌对阿特拉津的生物转化及其影响因素[J].微生物学通报.2007,34(1):10-14
    [53]顾夏声编著.废水生物处理数学模式[M].北京:清华大学出版社.1993:42-77
    [54]熊万永,林君锋,李玉林.应用于废水处理的光合细菌优化培养和生长动力学研究[J].中国沼气.2004,22(1):22-24
    [55]石磊,程树培,王斌等.基因工程菌Fhhh处理对苯二甲酸的试验[J].青岛大学学报.2003,18(3):46-49
    [56]赵昕,汪严明,叶正芳等.复合工程菌B350处理采油废水的反应动力学特征[J].中国给水排水.2006,22(17):70-73
    [57]国家环境保护总局《水和废水监测分析方法》编委会编.水和废水监测分析方法(第四版).北京:中国环境科学出版社.2002:89-91、102-104、180-183、210-211、227-231、236-238、489-496
    [58]沈叔平,汪小梅.废水中动植物油脂的紫外分光光度测定法[J].中国环境监测.1994,10(3):4-7
    [59]周林红,吴燕.紫外分光光度法测定炼油废水中的石油类含量[J].石化技术与应用.2004,22(6):456-458
    [60]奚旦立,孙裕生,刘秀英编.环境监测[M].北京:高等教育出版社.2002:87-88
    [61]张俊秀主编,张青,龚盛昭编著.环境监测[M].北京:中国轻工业出版社.2003:141-142
    [62]何燧源主编.环境污染物分析监测[M].北京:化学工业出版社.2001:124-134
    [63]田贞乐,朱丽华,吴映辉.气相色谱与紫外分光光度法评价石油烃类污染物的微生物降解过程[J].分析化学研究简报.2006,34(3):343-346
    [64]慎义勇,傅家谟,盛国英等.油制气废水中毒害有机物分析及一般特征[J].环境科学.2001,22(1):109-113
    [65]杨海鹰.气相色谱技术在石油和石化分析中的应用进展[J].石油化工.2005,34(12):1123-1128
    [66]李凌波,闫松,单广波等.炼油厂达标废水中溶解性有机物的表征[J].环境科学学报.2004,24(2):265-270
    [67]武杰,曹磊,李英民等.快速气相色谱法分析石油饱和烃[J].色谱.2004,22(5):479-481
    [681黄宁选,马宏瑞,王晓蓉等.环境中石油烃污染物组分的气相色谱分析[J].陕西科技大学学报.2003,21(6):25-29
    [69]鱼贞玉,吕慧梅GC/MS法测定工业污水中有机物[J].炼油与化工.2003,14(3):37-38
    [70]叶新荣,史君贤,陈忠元.海洋石油降解细菌对石油烃降解效果的气相色谱法分析[J].分析测试学报.2007,26(6):847-850
    [71]李香兰.固定化光合细菌处理焦化废水中难降解有机物成分的鉴定[J].光谱实验室. 2003,20(3):427-428
    [72]Shokrollahzadeh S, Azizmohseni F, and Golmohammad F. Biodegradation potential and bacterial diversity of a petrochemical wastewater treatment plant in Iran[J]. Bioresource Technology.2008,99:6127-6133
    [73]Jussara P Del'Arco, Francisca P de Franca. Biodegradation of crude oil in sandy sediment[J]. International Biodeterioration and Biodegradation.1999,44:87-92
    [74]刘洋,陈双基,刘建国.生物强化技术在废水处理中的应用[J].环境污染治理技术与设备.2002,3(5):36-40
    [75]沈齐英.含油废水处理概况[J].北京石油化工学院学报.2006,14(3):34-38
    [76]景佳佳,郑旭煦.微生物技术在污水处理中的应用[J].重庆工商大学学报(自然科学版).2005,22(2):117-121
    [77]Min X. B, Chai L. Y, and Zhang C. F. Control of metal toxicity, effluent COD and regeneration of gel beads by immobilized sulfate-reducing bacteria[J]. Chemosphere. 2008,72:1086-1091
    [78]谭周亮,杨俊仕,李旭东.微生物菌剂强化处理炼油废水的中试研究[J].水处理技术.2007,33(2):67-70
    [79]王建芳,赵庆良,林佶侃等.生物强化技术及其在废水生物处理中的应用[J].环境工程学报.2007,1(9):40-45
    [80]Saravanane R. Bioaugmentation and treatment of cephalexin drug-based pharmaceutical effluent in an upflow anaerobic fluidized bed system[J]. Bioresource Technology.2001,76: 279-281
    [81]曾丽璇,罗国维.优势菌处理印染废水工艺及脱色机理研究[J].环境科学进展.1999,7(2):92-96
    [82]Yu Z T. Bioaugrmentation with resin-acid degrading bacteria enhances resin acid removal in sequencing batch reactor treating pulp mill effluents[J]. Water Research.2001,35(4): 883-890
    [83]奚旦立,孙裕生,刘秀英编.环境监测(修订版)[M].北京:高等教育出版社.1995:406-407
    [84]滕农,徐虹,欧阳平凯.油脂废水生物治理法[J].南京化工大学学报.1999,21(3):58-61
    [85]卢显妍,尹华,彭辉等.石油降解菌的筛选及其降解能力的研究[J].环境污染治理技术与设备.2003,4(12):12-16
    [86]丁明宇,黄健,李永祺.海洋微生物降解石油的研究[J].环境科学学报.2001,1(1):84-88
    [87]苏荣国,牟伯中,王修林等.微生物对石油烃类的降解激励及影响因素[J].化工环保.2001,21(4):205-208
    [88]贾燕,尹华,彭辉等.石油降解菌株的筛选、初步鉴定及其特性[J].暨南大学学报(自然科学版).2007,28(3):296-301
    [89]Ijah U J J. Studies on relative capabilities of bacterial and yeast isolates from tropical soil in degrading crude oil[J]. Waste Management.1998,18:293-299
    [90]王亮,王磊,李风亭等.机油高效降解菌群筛选及降解效果初探[J].环境污染与防治.2007,29(6):406-414
    [91]程鹏,慎义勇,盛国英等.添加乙醇碳源对驯化菌种降解油制气废水的影响[J].环境污染与防治.2005,27(8):597-600
    [92]刘庆新,易绍金,张敏等.石油烃类降解菌生长因素研究[J].石油天然气学报.2006,28(1): 42-44
    [93]李清心,康从宝,王浩等.利用石油微生物处理石油污水的初步实验[J].工业水处理.2003,23(12):13-16
    [94]慎义勇,盛国英,傅家谟.驯化菌株降解油制气废水能力的比较[J].应用与环境生物学报.2007,13(4):551-555
    [95]郝纯,李旭东.几种生物学指标与生物强化系统降解效率的关系[J].环境科学.2006,27(9):1853-1857
    [96]陆金仁.采油污水COD化学组成剖析及归趋模型[D].中国海洋大学.2003:14
    [97]Tellez G T, Nirmalakhandan N, Gardea-Torresdey J L. Evaluation of biokinetic coeffi-cients in degradation of oilfield produced water under varying salt concentrations [J]. Water Research.1995,29(7):1711-1718
    [98]耿安朝,张洪林编著.废水生物处理发展与实践[M].沈阳:东北大学出版社.1997:215
    [99]秦华明,梁世中.假单胞菌降解含油脂废水的研究[J].中国油脂.2003,(11):75-77
    [100]谢丹平,尹华,彭辉.石油降解菌株的分离及其降解特性研究[J].上海环境科学.2003,22(12):951-954
    [101]徐保成,李道棠,钮宏旗.油脂废水快速生物降解菌的研究[J].环境科学与技术.2006,29(10):46-48
    [102]高廷耀,顾国维主编.水污染控制工程下册(第二版)[M].北京:高等教育出版社.2000:3
    [103]盛贻林,王方园.有机污染物生物降解的机制研究进展[J].生物学杂志.2002,19(5):9-11
    [104]夏平,李学亚,刘斌.石油污染的生物修复[J].污染防治技术.2006,19(3):37-40
    [105]宋志文,夏文香,曹军.海洋石油污染物的微生物降解与生物修复[J].生态学杂志.2004,23(3):99-102
    [106]Plohl K, Leskovsek H, and Bricelj M. Biological degradation of motor oil in Water[J]. Acta Chimica Slovakia.2002,49:279-289
    [107]Ward O, Singh A, and Van Hamme J. Accelerated biodegradation of petroleum hydrocarbon waste[J]. Journal of Industrial Microbiology and Biotechnology.2003,30: 260-270
    [108]Aldrett S, Bonner J S, and Mills M A. Microbial degradation of crude oil in marine environments tested in a flask experimen[J]. Water Research.1997,31:2840-2848
    [109]程洁红,杨尔炀,赵庆祥.降解工程菌处理染色废水的研究[J].上海化工.2001,(8):4-6
    [110]马占青,黄平沙,温淑瑶.有效微生物有机废水的动力学研究[J].工业用水与废水.2004,35(5):6-8
    [111]覃晶晶,江小林.污水处理中Monod方程的简化及其线性化方程[J].市政技术.2006,24(2):75-80
    [112]Mullis K, Faloona F, and Scharf S, et al. Specific enzymatic amplification of CAN in vitro:the polymerase chain reaction[J]. Cold Spring Habor Symp Quant Biol.1986,51: 263-273
    [113]Satoshi Y, Shigeaki H. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putid strains[J]. Applied and Environmental Microbiology.1995,61(3): 1104-1109
    [114]张世秀,张新中,谢珍玉等.PCR技术在水产养殖动物细菌性病原检测中的应用[J].现代渔业信息.2006,21(7):12-17
    [115]李霜,沈珈琦,范伟平.应用PCR技术快速筛选和鉴定Nitrosomonas属细菌[J].土壤学报.2005,42(6):1050-1052
    [116]熊海燕,王为国,王存文等.介绍测量菌液浓度的一种方法[J].四川食品与发酵.2003,(4):45-46
    [117]严益民.一种测定菌体浓度的新方法[J].化工科技.2001,9(1):51-54
    [118]陈金春,陈国强主编.微生物学实验指导[M].北京:清华大学出版社.2005:60-62
    [119]徐威主编.微生物学实验[M].北京:中国医药科技出版社.2004:29-3
    [120]王建龙,施汉昌.聚乙烯醇包埋固定化微生物的研究及进展[J].工业微生物.1998,28(2):35-39
    [121]Russell A B, Thomas C R, Lilly M D. The influence of vessel height and top-section size on the hydrodynamic characteristics of airlift fermentors [J]. Biotechnology and Bioengineering.1994:43:69-76
    [122]Weiland P. Influence of draft tube diameter on operation behaviour of airlift loop reactors[J]. German Chemical Engineering.1984,7:374-385
    [123]彭峰,李天友,叶世超.三相流化床流体力学特性研究[J].四川化工.2007,10(5):44-46
    [124]Fuird B, Lynn J. Scale effects on hydrodynamic and mass transfer characteristics of external loop airlift reactors[J]. Journal of Chemical Technology and Biotechnology. 1997,69(3)
    [125]汤立新.超声波气升式内循环反应器流体力学性能研究[J].Journal of Nanjing University of Technology.2003,25(1):41-45
    [126]疏明君,李友明,谢澄.内循环三相流化床流体动力学性质的初步研究[J].环境工程.2002,20(3):12-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700