用户名: 密码: 验证码:
分布式发电条件下配电系统保护原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境污染、能源短缺等问题的出现以及集中式大电网发电模式自身缺陷的暴露,基于可再生能源的分布式发电技术得到了快速的发展。大量分布式电源的接入,将导致传统的基于辐射型结构的配电网电流保护无法满足要求,不能够快速、正确地动作。为此,本文针对分布式发电条件下配电网的保护方案进行了研究,以解决分布式电源接入所引起的一系列问题。
     本文首先研究了分布式电源接入配电网以后的故障分析方法,从理论上推导了相应的短路电流表达式,在此基础之上分析了其对保护及重合闸的影响。
     针对一些逆变型分布式电源出力随机变化导致传统电流保护的定值很难整定的问题,结合该情况下配电系统故障时的特点,在已有的自适应电流速断保护基础之上,对含逆变型分布式电源配电系统的自适应电流速断保护进行了研究。分析结果表明,当保护背侧接有逆变型分布式电源时,仍可按照已有的自适应整定表达式的形式来对保护进行整定,但其中某些参数的意义发生了变化。为了能更快地切除故障,对无通道保护在含分布式电源配电网中的应用进行了研究,提出了一种快速电流保护配置方案,该方案能够在不改变配电系统原有断路器安装配置的前提下快速地将故障线路从两端切除。
     提出了一种基于分区纵联与过电流保护相配合的保护方案。该方案根据分布式电源接入点的位置,对被保护馈线进行了分区,在分布式电源的上游区域配置了方向纵联保护,而整条馈线则保留了过电流保护。为了能方便整定工作以及更快地切除故障,根据分布式电源接入位置的不同,馈线的过电流保护分别采用定时限或反时限形式。采用该方案后,不管分布式电源的输出功率如何变化,故障都能被可靠切除。
     针对配电网馈线上一般不装设电压互感器的实际情况,提出了多分支节点故障方向的实用化判据,利用下游分支线路上电流幅值和相位之间的关系来判断有源多分支节点的具体故障分支;提出了基于限时电流速断保护的故障定位新方案,该方案利用限时电流速断的保护范围为本线路全长,且不超出相邻下一条线路这一特征,通过收集相关区域内保护的动作信息来对故障线路进行准确定位。
     上述保护方案能够有效地解决分布式电源接入给配电网保护带来的问题,为分布式发电技术的进一步发展创造了条件。
As the problems of environment pollution, energy shortage and power supply mode of centralized bulk power grid happened, the distributed generation technology based on renewable energy sources is developed quickly. After distributed generators connected, traditional current protection suitable for radial distribution system may not meet the demands, leading to maloperation. To solve the problems caused by the connection of distributed generators, the protection schemes for the distribution system with distributed generation are studied in this dissertation.
     Firstly, the fault analysis method of distribution system with distributed generators is investigated, and the expression of the short circuit current is derived theoretically. After so, the effect on traditional protection and reclosing is analyzed.
     Due to the change of output power of inverter interfaced distributed generators (IIDG), the value setting of the traditional current protection becomes very difficult. Based on the fault characteristic of the distribution system under this circumstance and the traditional adaptive current instantaneous trip protection scheme, the adaptive current instantaneous trip protection scheme for the distribution system with IIDG is studied. The results show that the value of the relay whose dorsal side is connected to IIDG can still be set according to the form of traditional scheme, with some parameters defined newly. In order to clear the fault quickly, the study on application of non-communication protection in distribution system with distributed generators is carried, and a fast current protection configuration scheme is presented. With this scheme, the line can be cutoff quickly from two ends without changing the configuration of circuit breakers.
     A new protection scheme based on the coordination of zoned pilot protection and overcurrent protection is introduced. According to the location of distributed generators, the feeder is divided into different zones. Directional pilot protection is configured at the upstream side of distributed generator, and the overcurrent protection is retained for the whole feeder. In order to be convenient for value setting and clear the fault quickly, definite-time or inverse-time overcurrent protection is adopted for the feeder based on different locations of distributed generators. No matter how the output power of the distributed generator changes, the fault can be cleared reliably with this protection scheme.
     According to the situation of potential transformer uninstalled on the feeder of distribution system, the practical criterion for the fault direction of the nodes with multi-branch is presented, based on the relationship between the current amplitude and phase in the downstream branch of the node. In addition, a new fault location scheme based on limited time current instantaneous trip protection is introduced, using the operation information of the protection in the relevant zone and the feature of the limited time current instantaneous trip protection.
     The protection schemes above can solve the problems caused by connection of distributed generators effectively, which can create the condition for further devemoment of distributed generation technology.
引文
[1]刘凤君,高效环保的燃料电池发电系统及其应用,北京:机械工业出版社,2005,336~389.
    [2]王梅义,高压电网继电保护运行与设计,北京:中国电力出版社,2007,203~206.
    [3]韩祯祥,反思美加大停电[online],Available: http://www.casad.ac.cn/ 2005-3/ 2005323240443.htm.
    [4]陈向宜,陈允平,李春艳,构建大电网安全防御体系——欧洲大停电事故的分析及思考,电力系统自动化,2007,31(1):4~8.
    [5]李锋,谢开,欧洲互联电网2006年11月4日大范围停电事故分析,中国电力,2007,40(5):90~96.
    [6]吴靖,江昊,分布式发电系统的应用及前景,农村电气化,2003,(7):19~20.
    [7]王守相,王成山,现代配电系统分析,北京:高等教育出版社,2007,6~9.
    [8]陈堂,赵祖康,陈星莺,等,配电系统及其自动化技术,北京:中国电力出版社,2003,10~13.
    [9]李天友,金文龙,徐丙垠,等,配电技术,北京:中国电力出版社,2008,127~131.
    [10]贺家李,宋从矩,电力系统继电保护原理,北京:中国电力出版社,2004.
    [11]陈琳,分布式发电接入电力系统若干问题的研究:[博士学位论文],杭州;浙江大学,2007.
    [12] Rahman S. Fuel cell as a distributed generation technology. Power Engineering Society Summer Meeting, Vancouver, Canada, July, 2001: 551~552.
    [13]衣宝廉,燃料电池现状与未来,电源技术,1998,22(5):216~221.
    [14]毕道治,中国燃料电池的发展,电源技术,2000,24(2):103~107.
    [15]易新,分布式发电广域保护控制系统中孤岛划分算法的研究:[硕士学位论文],南京;东南大学,2006.
    [16]刘森,含分布式电源的配电网保护研究:[硕士学位论文],天津;天津大学,2007.
    [17]龙泽强,风力发电:21世纪的绿色能源,世界科技研究与发展,2001,23(4):32~34.
    [18]陈星莺,刘孟觉,单渊达,超导储能单元在并网型风力发电系统的应用,中国电机工程学报,2001,12(21):63~66.
    [19]郑健超,电力前沿技术的现状和前景,中国电力,1999,32(10):9~12.
    [20]赵士杭,新概念微型燃汽轮机的发展,燃气轮机技术,2001,14(2):8~13.
    [21]摆世彬,微型电网控制技术的研究:[硕士学位论文],天津;天津大学,2007.
    [22]庞建业,分散电源并网对配电系统的影响分析研究:[硕士学位论文],济南;山东大学,2006.
    [23]王希舟,分布式发电与配电网保护协调性研究:[硕士学位论文],杭州;浙江大学,2006.
    [24]熊军,分布式电源对配网的影响及准入容量的确定:[硕士学位论文],杭州;浙江大学,2006.
    [25]袁东明,加快发展分布式电源,优化中国供电模式,中国发展评论,2004,6(3).
    [26] EI-Khattam W, Salama M M A. Distributed generation technologies, definitions and benefits. Electric Power System Research, 2004,71:119~128.
    [27]高峰,孙成权,刘全根,太阳能开发利用的现状及发展趋势,世界科技研究与发展,2001,23(4):35~39.
    [28] Hill R. Grid connected solar PV. IEE Colloquium on Developments in Photovoltaic Electricity Production, London, UK, March, 1997: l~3.
    [29]王志华,MW级变速恒频风力发电机网侧变换器控制技术的研究:[硕士学位论文],北京;中国科学院研究生院,2004.
    [30]梁志鹏,谢正武,中国分布式发电的机遇和挑战,节能与环保,2004,(11):11~13.
    [31]中国热电联产发展前景的分析,http://info.hvacr.hc360.com/2006/09/2008197 2321.shtml. 2006.
    [32]中国热电联产的现状与市场潜力,http://energy.icxo.com/htmlnews/2004/06/2 8/253000.htm. 2004.
    [33] Robert Lasseter, Abbas Akhil, Chris Marnay, etc. The CERTS Microgrid Concept. Energy Systems Integration Program Public Interest Energy Research California Energy Commission, 2002.
    [34] Chris Marnay, Owen C.Bailey. The CERTS Microgrid and the Future of the Microgrid[online]. http://certs.lbl.gov/pdf/55281.pdf. 2004.
    [35]鲁宗相,王彩霞,闵勇,等,微电网研究综述,电力系统自动化,2007,31(19):100~107.
    [36]盛鹍,孔力,齐智平,等,新型电网-微电网(micro-grid)研究综述,继电器,2007,35(12):75~81.
    [37]沈国镠,微型电网和小型燃气轮机发电机,电器工业,2004,(6):39~41.
    [38] Shashi B. Pstra, Joydeep Mitra, Satish J.Ranade. Microgrid Architechure: A Reliability Constrained Approach. Power Engineering Society General Meeting, 2005. IEEE: 2372~2377.
    [39] A. Arulampalam, M.Barnes, A.Engler, and et al. Control of power electronic interfaces in distributed generation MicroGrids. International Journal of Electronics, 2004, 91: 503-523.
    [40] R. Lasseter, A. Abbas, C. Marnay, and et al. Integration of distributed energy resources: The CERTS MicroGrid Concept. California Energy Commission, 2003.
    [41] SATOSHI Morozumi. Overview of Microgrid research and development activities in Japan. 2006.10.
    [42] Lasseter R H, Piagi P. Control and Design of Microgrid. Power Systems Engineering Research Center: 2006.
    [43] Piagi P, Lasseter R H. Autonomous control of microgrids. IEEE Power Engineering Society General Meeting. 2006.
    [44]丁磊,多微网配电系统的分层孤岛运行及保护控制:[博士学位论文],济南;山东大学,2007.
    [45]郑漳华,艾竿,微电网的研究现状及在我国的应用前景,电网技术,2008,32(16):27~31.
    [46]王成山,高菲,李鹏,可再生能源与分布式发电接入技术欧盟研究项目述评,南方电网技术,2008,2(6):1~6.
    [47]盛锟,微电网稳定分析:[博士学位论文],北京;中国科学院,2007.
    [48] MicroGrids Project Consortium. MICROGRIDS Introduction [online], Available: http://microgrids.power.ece.ntua.gr/micro/index.php?page=index.
    [49] MicroGrids Project Consortium. MORE MICROGRIDS Introduction. [online]. Available: http://www.eu-deep.com.
    [50]王志群,朱守真,周双喜,等,分布式发电对配电网电压分布的影响,电力系统自动化,2004,28 (16):56~60.
    [51] Salman S K. The impact of embedded generation on voltage regulation and losses of distribution networks. IEE Colloquium on the Impact of Embedded Generation on Distribution Networks, October, 1996, 2: l~5.
    [52] Celli G., Pilo F. Optimal Distributed Generation Allocation in MV Distribution Networks. In Proceedings of 2001 IEEE Power Engineering Society Meeting. Sydney, Australia, 2001: 81~86.
    [53] McDermottT E, Dugan R C. Distributed generation impact on reliability and power quality indices. Rural Electric Power Conference, Colorada, May, 2002.
    [54]韦钢,吴伟力,胡丹云,等,分布式电源及其并网时对电网的影响,高电压技术,2007,33(1):36~40.
    [55]张婷,蔡晔敏,分布式发电在配电网中的研究综述,中国教育技术装备,2008,(24):123~124.
    [56]王建,李兴源,邱晓燕,含有分布式发电装置的电力系统研究综述,电力系统自动化,2005,29(24):90~97.
    [57]崔金兰,刘天琪,分布式发电技术及其并网问题研究综述,现代电力,2007,24(3):53~57.
    [58]王赛一,分布式电源及对配电网系统的影响,上海电力,2006(5):515~518.
    [59]李蓓,李兴源,分布式发电及其对配电网的影响,国际电力,2005,9(3):45~49.
    [60]唐亮,分布式电源的分类及对配电网的影响:[硕士学位论文],合肥;合肥工业大学,2007.
    [61] Vu Van Thong, Johan Driesen, Ronnie Belmans. Overview and Comparisons of Existing DG Interconnection Standards and Technical Guidelines. International Conference on Clean Electrical Power, 2007: 51~54.
    [62]陈卫民,陈国呈,崔开涌,等,分布式并网发电系统在孤岛时的运行控制,电力系统自动化,2008,32(9):88~91.
    [63] IEEE Std 1547-2003. IEEE standard for interconnecting distributed resources with electric power systems.
    [64] HUANG Shyh-Jier, PAI Fu-Sheng. A new approach to islanding detection of dispersed generators with self-commutated static power converters. IEEE Trans on Power Delivery, 2000, 15(2): 500~507.
    [65]周卫,张尧,夏成军,等,分布式发电对配电网继电保护的影响,电力系统保护与控制,2010,38(3):1~5.
    [66]张超,计建仁,夏翔,分布式发电对配电网馈线保护的影响,继电器,2006,34(13):9~12.
    [67]黄伟,雷金勇,夏翔,等,分布式电源对配电网相间短路保护的影响,电力系统自动化,2008,32(1):93~97.
    [68] Mesut Baran, Ismail El-Markabi. Adaptive over current protection for distribution feeders with distributed generators. IEEE PES Power Systems Conference and Exposition, New York, America, 2004: 715~719.
    [69] GIRGIS A, BRAHMA S. Effect of distributed generation on protective device coordination in distribution system. Proceedings of 2001 Large Engineering Systems Conference on Power Engineering, Halifax, Canada, July 26-28, 2002: 115~119.
    [70] Amirhossein Hajimiragha. Generation Control in Small Isolated Power Systems. Royal Institute of Technology Department of Electrical Engineering, Stockholm,2005.
    [71] Robert H.Lasseter, Paolo Piagi, Control and Design of Microgrid Components. Final Project Report, 2006.1.
    [72]杨子龙,并网/独立双模式逆变电源控制技术研究:[硕士学位论文],秦皇岛;燕山大学,2006.
    [73]吴浩伟,基于电压控制模式的PV系统并网技术:[硕士学位论文],武汉;华中科技大学,2006.
    [74] BARAN M, El-Markaby I. Fault analysis on distribution feeders with distributed generators. IEEE Transactions on Power Systems, 2005, 20(4): 1757~1764.
    [75] El-Markaby I. Control and protection of distribution networks with distributed generators. America: North Carolina State University, 2004.
    [76]谢昊,卢继平,重合闸在分布式发电条件下的应用分析,重庆大学学报,2007,30(2):30~33.
    [77] Viawan F.A, Karlsson D, Sannino A, et al. Protection scheme for meshed distribution systems with high penetration of distributed generation. Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources, Mar 14-17, 2006: 99~104.
    [78] Viawan F A, Karlsson D. Various Protection Schemes for Closed Loop Feeders with Synchronous Machine Based Distributed Generation and Their Impacts on Reliability. IEEE Lausanne Powertech,Swizerland,2007: 1170~1175.
    [79] So C W, Li K K. Protection relay coordination on ring-fed distribution network with distributed generations. IEEE Region 10 Technical Conference on Computers, Communications, Control and Power Engineering, 2002: 1885~1888.
    [80] El-Khattam, Sidhu T S. Restoration of Directional Overcurrent Relay Coordination in Distributed Generation Systems Utilizing Fault Current Limiter. IEEE Transactions on Power Delivery, 2008, 23(2): 576~585.
    [81] Econnect. Assessment of islanded operation of distribution networks and measures for protection. DTI/Pub URN 01/1119. Econnect: 2001.
    [82]孙鸣,余娟,基于配电网保护与控制现状的DG孤岛运行方式,电力系统自动化,2009,33(14):99~102.
    [83] Baghaee H R, Mirsalim M, Sanjari M J, et al. Fault current limiting in distribution systems with distributed generation units by a new dual functional series compensator. IEEE 2nd International Power and Energy Conference, Malaysia, 2008: 537~542.
    [84] Baghaee H R, Mirsalim M, Sanjari M J, et al. Fault current reduction in distribution systems with distributed generation units by a new dual functional series compensator. 13th International Power Electronics and Motion Control Conference, Poland, 2008: 750~757.
    [85] Campoccia A, Cocchiara G, Ippolito M G, et al. Fault Decoupling Device a NewDevice to Reduce the Impact of DG on Electrical Distribution systems. IEEE Power Tech Conference Proceedings, 2003.
    [86] Bert Renders. Protection of power distribution networks with high penetration level of DG. Fifth FTW PhD Symposium, Faculty of Engineering, Ghent University, December 2004: 1~2.
    [87] Jager J, Keil T, Shang L, et al. New protection co-ordination methods in the presence of distributed generation. 8th IEE International Conference on Developmants in Power System Protection, 2004: 319~322.
    [88] Cheung H, Hamlyn A, Cungang Yang, et al. Network-based Adaptive Protection Strategy for Feeders with Distributed Generations. IEEE Electrical Power Conference,Canada, 2007: 514~519.
    [89] Cheung H, Hamlyn A, Lin Wang, et al. DSP-based Adaptive Protection for Feeders with Distributed Generations. Large Engineering Systems Conference on Power Engineering, 2007: 49~53.
    [90] Cheung H, Hamlyn A, Lin Wang, et al. Network-integrated adaptive protection for feeders with distributed generations. IEEE Power and Energy Society General Meeting, 2008: 1~8.
    [91] Chilvers I M, Jenkins N, Crossley P A. The use of 11 kV distance protection to increase generation connected to the distribution network. 8th IEE International Conference on Developments in Power System Protection, 2004: 551~554.
    [92] Chilvers I M, Jenkins N, Crossley P A. Distance relaying of 11 kV circuits to increase the installed capacity of distributed generation. IEE Proceedings on Generation, Transmission, Distribution, 2005: 40~46.
    [93]丛伟,潘贞存,王成山,等,含高渗透率DG的配电系统区域纵联保护方案,电力系统自动化,2009,33(10):81~85.
    [94] Yu Chunguang, Pan Zhencun, Cong Wei, et al. The Study on Fault Directional Relay in Protection System for Distribution System under High DG Penetration Level. Asia-Pacific Power and Energy Engineering Conference, 2009: 1~4.
    [95] S Zhang, B H Zhang, A Klimek, et al. Realization of the Directional Element Based on Positive Sequence Current’s Fault Component and its Application in Distributed Power System. The International Conference on Electrical Engineering 2009.
    [96] Yuan C, Zeng X J, Xia Y F. Improved Algorithm for Fault Location in Distribution Network with Distributed Generations. International Conference on Intelligent Computation Technology and Automation, Changsha, China, 2008: 893~896.
    [97] Du J, Lu Y P, Zhu G F, et al. An asymmetrical fault location method based on communication system in distribution network with DGs. IEEE/PES PowerSystems Conference and Exposition, 2009: 1268~1273.
    [98] Lu Y P, Du J, Xia L, et al. An asymmetrical fault line selection based on I2 scalar product research in distribution system with DGs. IEEE Power and Energy Society General Meeting, 2008: 1~6.
    [99]林霞,陆于平,王联合,分布式发电条件下的多电源故障区域定位新方法,电工技术学报,2008,23(11):139~145.
    [100]吴宁,许扬,陆于平,分布式发电条件下配电网故障区段定位新算法,电力系统自动化,2009,33(14):77~82.
    [101]林霞,陆于平,王联合,分布式发电条件下的新型电流保护方案,电力系统自动化,2008,32(20):50~56.
    [102] Pradhan A K, Routray A, Gudipalli S M. Fault Direction Estimation in Radial Distribution System Using Phase Change in Sequence Current. IEEE Transactions on Power Delivery, 2007, 22: 2065~2071.
    [103] Zhu G F, Lu Y P. A fault location algorithm for urban distribution network with DG. 3rd International Conference on Electric Utility Deregulation, Restructuring and Power Technologies, Nanjing, China, 2008: 2615~2619.
    [104] Zhu G F, Lu Y P. Development of fault location algorithm for distribution networks with DG. IEEE International Conference on Sustainable Energy Technologies, Singapore, Nov, 2008: 164~168.
    [105] BRAHMA S. Development of an adaptive protection scheme for power distribution systems with high penetration of distributed generation. America: Clemson University, 2003.
    [106]张艳霞,代凤仙,含分布式电源配电网的馈线保护新方案,电力系统自动化,2009,33(12):71~74.
    [107] Hadzi-Kostova B, Styczynski Z. Network Protection in Distribution Systems with Dispersed Generation. IEEE/PES Transmission and Distribution Conference and Exposition, Dallas, May,2006: 321~326.
    [108]丛伟,广域保护系统结构及故障判别算法研究:[博士学位论文],济南;山东大学,2005.
    [109]汤俊,电网广域电流差动保护算法研究:[硕士学位论文],成都;西南交通大学,2007.
    [110]尹星光,基于人工神经网络自适应距离保护的研究:[硕士学位论文],南宁;广西大学,2002.
    [111]邓烽,基于神经网络的自适应继电保护的研究:[硕士学位论文],南京;南京理工大学,2002.
    [112] Xu Y, Zhang Q J, Lu Y P. New distributed protection algorithm based on ANN and adaptive fault area search. 7th International Conference on Machine Learning and Cybernetics, Kunming, China, Jul, 2008: 3878~3884.
    [113] Michael Wooldridge,多Agent系统引论,北京:电子工业出版社,2003.
    [114]陈艳霞,配电网保护与控制新技术研究:[博士学位论文],武汉;华中科技大学,2004.
    [115]王慧芳,何奔腾,时洪禹,多Agent技术在继电保护中的应用,电力自动化设备,2007,27(3):102~106.
    [116]陈艳霞,尹项根,张哲,等,基于多Agent技术的继电保护系统,电力系统自动化,2002,26(12):48~53.
    [117] Zeng Xiangjun, Li K K, Chan W L, et al. Multi-agents based protection for distributed generation systems. Proceedings of the 2004 IEEE International Conference, Hong Kong, April 5-8, 2004: 393~397.
    [118] Wan Hui, Li K K, Wong K P. An multi-agent approach to protection relay coordination with distributed generators in industrial power distribution system. The 40th Industry Applications Conference, Hong Kong, 2005: 830~836.
    [119]林霞,陆于平,王联合,等,含分布式电源的配电网智能电流保护策略电网技术,2009,33(6):82~89.
    [120] Pereran, Rajapakse A D. Agent-based protection scheme for distribution networks with distributed generators. Power Engineering Society General Meeting, Montreal, Canada, June 18-22, 2006: 3793~3798.
    [121] Yiming Mao. Protection system design for power distribution systems in the presence of distributed generation. America: Drexel University, 2005.
    [122] WAN Hui. Protection coordination in power system with distributed generations. Hong Kong: Hong Kong Polytechnic University, 2006.
    [123] Wan H, Wong K P, Chung C Y. Multi-agent application in protection coordination of power system with distributed generations. General Meeting of the IEEE-Power-and-Energy-Society, Pittsburgh, Jul 20-24, 2008: 473~478.
    [124] Hopkinson K M, Birman K P, Giovanini R, et al. EPOCHS: integrated commercial off-the-shelf software for agent-based electric power and communication simulation. Proceedings of the 2003 Winter Simulation Conference, 2003: 1158~1166.
    [125]苗友忠,配电系统馈线整体化暂态保护与分布智能故障定位的研究:[博士学位论文],天津;天津大学,2004.
    [126]谭书平,超高压输电线路单端暂态电流保护原理的研究:[硕士学位论文],北京;华北电力大学,2006.
    [127]郭振威,CMFB在输电线路单端暂态电流保护中应用的实现方法研究:[硕士学位论文],成都;西南交通大学,2006.
    [128] Figueroa M A, Orduna E. Ultra-high-speed protection for medium voltage distribution networks with distributed generation. IEEE/PES Transmission and Distribution Conference and Exposition, Bogota, Colombia, Aug 13-15, 2008:519~526.
    [129] Kong W, Chen Z, Bo Z Q, et al. Transient polarity comparison based protection for system with power electronic interfaced distributed generation units. 42nd International Universities Power Engineering Conference, Brighton, England, Sep 4-6, 2007: 842~846.
    [130] H Y Li, P A Crossley, N Jenkins. Transient Directional protection for Distribution Feeders with Embedded Generations. 14th PSCC, Sevilla, June 24-28, 2002: 1~5.
    [131] Li Yongli, Li Shengwei, Liu Sen. Effects of inverter-based distributed generation on distribution feeder protection. The 8th International Power Engineering Conference, Singapore, 2007: 1386~1390.
    [132]葛耀中,新型继电保护和故障测距的原理与技术,西安:西安交通大学出版社,2007.
    [133]陈理,分布式发电装置控制系统的设计和研究:[硕士学位论文],杭州;浙江大学,2006.
    [134]索南加乐,张健康,刘辉,等,故障分量提取及故障选相的新方法,电力系统自动化,2003,27(16):58~61.
    [135]索南加乐,张健康,宋国兵,等,不同故障类型下具有相同灵敏度的配电网自适应电流保护,西安交通大学学报,2005,39(2):182~186.
    [136] Salman S K, Tan S F. Investigation into protection of active distribution network with high penetration of embedded generation using radial and ring operation mode. Universities Power Engineering Conference, Newcastle, UK, 2006: 841~845.
    [137]施慎行,董新洲,刘建政,等,配电线路无通道保护研究,电力系统自动化,2001,25(6):31~34.
    [138]刘建凯,董新洲,薄志谦,有分支配电线路无通道保护研究,电力系统自动化,2003,27(1):37~41.
    [139]陈飞,董新洲,薄志谦,快速有选择性的辐射状配电网无通道保护,电力系统自动化,2003,27(22):45~49.
    [140]张梅,董新洲,薄志谦,等,实用化的配电线路无通道保护方案,电力系统自动化,2005,29(12):68~72.
    [141]雷金勇,黄伟,夏翔,等,考虑相间短路影响的分布式电源准入容量计算,电力系统自动化,2008,32(3):82~86.
    [142]崔家佩,孟庆炎,陈永芳,等,电力系统继电保护与安全自动装置整定计算,北京:中国电力出版社,2003.
    [143]沙志成,关于广域保护下通信系统的研究:[硕士学位论文],济南;山东大学,2005.
    [144]吴尚洁,基于对等式通信的网络式配电网保护系统的研究:[硕士学位论文],北京;中国电力科学研究院,2003.
    [145]苏永智,配电线路快速保护原理与相关通信技术的研究:[博士学位论文],济南;山东大学,2007.
    [146]苗世洪,谌小莉,刘沛,等,基于无线传感器网络的配电线路故障定位方案,电力系统自动化,2008,32(20):61~66.
    [147]谢昊,夏冬平,卢继平,距离保护在具有分布式电源的配电网系统中的应用,电气应用,2006,25(12):56~60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700