用户名: 密码: 验证码:
牛溶酶体组织蛋白酶家族及其抑制基因的克隆、表达及遗传效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以西门塔尔X黄牛、日本和牛X复州牛2个杂交品种共200个个体为试验动物。利用DNA测序、序列分析和PCR-RFLP等技术,结合生物信息学方法,克隆和分析牛Cathepsin家族CTSB、CTSD、CTSF、CTSH、CTSL及其抑制基因CSTB,共6个候选基因的遗传变异,探讨试验群体遗传结构、遗传多样性及其与经济性状的关系,从而获取相应的分子遗传学信息,筛选对牛经济性状有重要影响的分子标记,为牛的分子标记辅助选择研究提供科学依据;同时为牛业生产的优质新品种或杂交新品系培育提供早期检测方法,以节约生产成本提高经济效益。主要研究结果如下:
     1.采用反转录PCR(RT-PCR)技术,从试验牛肌肉组织中克隆并鉴定了CSTB、CTSL基因cDNA的编码区(CDS)全长。利用生物信息学分析方法,获得CSTB、CTSL蛋白的氨基酸序列,并对其特征和功能进行预测分析,结果表明牛CSTB、CTSL基因分别编码101和334个氨基酸,CSTB蛋白包含1个CY功能结构域,CTSL蛋白包含两个功能结构域,包括:第29到88个氨基酸区域的inhibitor结构域和第114到333个氨基酸区域的(Pept)结构域。
     2.利用PCR-RFLP方法检测CTSB、CTSF、CTSL基因3个位点的多态性,进行基因型分型,并分析群体遗传结构,计算基因和基因型频率,进行多态信息含量检测和哈代温伯格平衡检测,并建立动物模型与各测定的经济性状进行关联分析。结果发现:(1)CTSB基因与大理石纹评分性状均存在显著相关,与嫩度性状呈极显著相关:其中AA型和AB型个体的大理石纹评分等级明显高于BB型个体(P<0.05);而AB型的剪切力值显著高于AA和BB型,故嫩度明显逊于纯和基因型。(2)CTSF基因不同基因型与实测背膘厚性状存在极显著相关:AA型的背膘厚度明显大于BB型个体和AB型个体(P<0.01)。(3)CTSL不同基因型与净肉率和嫩度性状均存在显著相关:BB型个体的净肉率显著大于AA型和AB型个体(P<0.05);BB型个体的剪切力值显著高于AA型和AB型个体(P<0.05)。
     3.利用DNA测序的方法检测CTSD基因Exon5、6、8的多态性,检测到的4个SNP,并与各测定经济性状进行关联分析。结果表明:在EXON5上的C581T位点的多态与净肉率之间存在显著相关:CG型个体的净肉率显著大于GG型和CC型个体(P<0.05)。
     4.利用DNA测序的方法检测到CTSF、CTSH、CTSL基因共计20个SNP。CTSF基因intron12的A22/G;exon14的3个突变,A111G、C152T、A283G;3’下游区的A72G、C92G。CTSH基因intron1的C290G、C467T;intron11的A526G、A559G;exon12的C34T、C292T;5’上游区的598AG插入。CTSL基因intron2的A103G、C134G;exon2的C92T;intron3的C165G、A230G;intron8的C692T、A702G。利用Haploview软件对此20个突变位点进行群体连锁不平衡和单倍型分析,结果如图3-25:20个SNP中共发现7个SNP位点紧密连锁,其他SNP均不连锁,7个位点的决定系数分别为:CTSF的C152T、A283G为0.53,CTSH的C34T和C292T为0.69,CTSL的A103G和C134G为1.0,并均与C165G呈0.3的决定系数。
     5.对所研究的CTSF、CTSH和CTSL 3个候选基因,在肝脏,心脏,脂肪,小肠,肺,肌肉,卵巢,淋巴8个组织中的表达,进行了荧光定量PCR分析。结果发现CTSF基因在小肠、心脏、肌肉和淋巴组织的表达量显著高于其他组织。CTSH基因除了小肠、肝脏中,其他组织表达量都较高。CTSL基因在肝脏、肌肉和淋巴的表达量均显著地高于其他组织。
In this study, a total of 200 cattles , including 50 cattles of Simmental x yellow cattle and 150 cattles of Waygu x Fuzhou cattle, were used to investigate. The RT-PCR、PCR-RFLP、DNA sequencing and bioinformatics methods were put into use of the analysis of bovine cathepsin family genes(CTSB、CTSD、CTSF、CTSH、CTSL) and its inhibitor cystatin B (CSTB)gene. By using general linear model (GLM) we find the genetic variations of these genes and analysis their association with economic trais( comprised of growth、carcass and meat quality traits). We also investigated population genetic structure and distribution of genotype. These will give more choices of DNA marker related to the economic traits of good cross-breed population on marker-assist-selection (MAS) and will improve beef cattle industry economic profit and reduce of the production cost. The main results were shown below:
     1. By using RT-PCR, DNA sequencing,we cloned complete CDS of CSTB and CTSL gene from skeletal muscle of Simmentalxyellow cattle. By using the Bio-informatics analysis the ORF of CSTB and CTSL cDNA and predict the character and protein domain, the results showed bovine CSTB and CTSL protein were consisted of 101 and 334 Amino acids. The CSTB contained CY domain , CTSL contained an inhibitor domain and a pept domain (which were consisted of 60 and 220 Amino acids).
     2. Identification for 3 SNPs mutations in the amplified fragments of CTSB、CTSF and CTSL genes by PCR-RFLP. Allele and genotype frequencies of 3 SNPs were analyzed of PIC and HW balance examination in the two cross-breed population. The calculation of least square was used to find association between these SNPs and 8 economic traits. The results showed that: (1) The CTSB SNP was significantly associated with marbling score (MS) and very significantly associated with meat tenderness(MT). Animals with AA and AB genotypes had larger MS than the BB genotype (P<0.05), but AB had a bigger WBS value than AA and BB(P<0.01). (2) The CTSF SNP was very significantly associated with back fat (BF). Animals with the genotype AA had larger BF than the AA and AB genotype (P<0.01). (3) The CTSL SNP was significantly associated with meat percent (MP). Animals with the genotype BB had larger MP than AA and AB genotype (P<0.05).
     3. 4 SNPs were detected in the exon5、exon6 and exon8 of CTSD gene by DNA sequencing. The calculation of least square was used to employ to association between these SNPs and 8 economic traits. The results showed that: The C581T of exon5 polymorphism was significantly associated with MP. Animals with the genotype CG had larger MP than the CC and GG genotype (P<0.05).
     4. Parts of fragments of CTSF CTSH CTSL genes were amplified and the 20 SNPs were detected by DNA sequencing: CTSF intron12 A22/G;exon14 A111G、C152T、A283G;3’UTR A72G、C92G;CTSH intron1 C290G、C467T;intron11 A526G、A559G;exon12 C34T、C292T;5’UTR 598AG;CTSL intron2 A103G、C134G;exon2 C92T;intron3 C165G、A230G;intron8的C692T、A702G。The linkage disequilibrium analysis of 20 SNPs were analyzed by using Haploview soft ware. The results showed that: 7 SNPs of them were uncompleted linked and other 13 SNP were not linked. The r~2 of CTSF C152T and A283G is 0.53; The r~2 of CTSH C34T and C292T is 0.69; The r~2 of CTSL A103G and C134 G is 1.0 ,and their r~2 with C165G is 0.3.
     5. Three candidate genes (CTSF,CTSH and CTSL) were detected by RT-PCR and Real-time Q-PCR, in 8 tissue of Simmental x yellow cattle, which include: liver,heart,fat,small intestines,lung,muscle,ovary and lymph tissue. The results showed that: The expression of CTSF in the small intestines,heart,muscle and lymph tissues are higher than other tissues. The expression of CTSH in the small intestines and liver tissues are lower than other tissues. The expression of CTSL in the liver,muscle and lymph tissues are higher than other tissues.
引文
[1]曹兵海,李俊雅.我国肉牛良种工程建设的必要性和紧迫性[J].中国牛业科学. 2011(1): 1-2.
    [2]陈代文,张克英,胡祖禹.猪肉品质特征的形成原理[J].四川农业大学学报. 2002(1): 60-66.
    [3]陈琳,唐玮,徐幸莲,周光宏.溶酶体中的组织蛋白酶及其在肌肉成熟中的作用[J].江西农业学报. 2008(2): 72-75.
    [4]陈琳,唐玮,徐幸莲,周光宏.溶酶体中的组织蛋白酶及其在肌肉成熟中的作用[J].江西农业学报. 2008(2): 72-75.
    [5]程丰,赵云焕,易本驰,陈斌.猪CAST基因PCR-RFLPs与肉质相关性的分析[J].河南农业科学. 2006(2): 103-106.
    [6]储明星.影响猪肉质的主效基因RN的研究进展[J].畜牧与兽医. 2005(1): 53-55.
    [7]党瑞华.五个肉牛群体屠宰性状的DNA分子标记研究[D].西北农林科技大学, 2005.
    [8]党瑞华,魏伍川,陈宏,蓝贤勇,胡沈荣,苏利红. IGFBP3基因多态性与鲁西牛和晋南牛部分屠宰性状的相关性[J].中国农学通报. 2005(3): 19-22.
    [9]邓桂馨.肉牛CAST基因和HFABPL基因多态性及其与肉品质性状关系的研究[D].中国农业科学院, 2003.
    [10]杜立新.分子育种的重要意义及研究概况[J].动物科学与动物医学. 2005(9): 12-13.
    [11]甘乾福.牛肌肉生长和脂肪代谢相关转录因子的克隆、表达及遗传效应分析[D].西北农林科技大学, 2009.
    [12]高志杰,潘颖斌,何万娟,谭敏静.猪钙蛋白酶Ⅱ基因PCR-RFLP分析及其对肉质性状的影响[J].养猪. 2007(6).
    [13]郭宏.牛12个基因的分离、定位、表达特征、SNPs检测及其与部分性状的关联分析[D].华中农业大学, 2006.
    [14]黄明,罗欣.内源蛋白酶在肉嫩化中的作用(综述)[J].肉类研究. 1999(2): 9-11.
    [15]黄晓峰,王春梅,戴晓汶,潘伯荣,俞郦斌,方丽,钱斌,赵一岭.组织蛋白酶D和嗜铬颗粒素A在人原发性肝细胞癌的表达意义[J].华人消化杂志. 1998(6).
    [16]姬爱国.牛8个基因的克隆、表达特征、原核表达、SNPs检测及其与部分性状的关联分析[D].西北农林科技大学, 2008.
    [17]李春保.牛肉肌内结缔组织变化对其嫩度影响的研究[D].南京农业大学, 2006.
    [18]李福岭,李宪柱,何俊海,吴振华,张志勇.日本和牛的育种、肥育及肉质等级评定[J].黄牛杂志. 2000(5): 66-68.
    [19]李恒德.Ⅰ:牛5个基因的分离、克隆、SNP检测及其与生产性状的关联分析Ⅱ:猪肉质性状QTL检测[D].中国农业科学院, 2008.
    [20]李姣.中国西门塔尔牛5个基因SNPs及表达量与经济性状关联分析[D].中国农业科学院, 2010.
    [21]李君灵,许尚忠,李武峰.杂种牛CAPN4基因第六intron的遗传变异与牛肉嫩度的关联分析[J].山西农业大学学报(自然科学版). 2006(3): 247-249.
    [22]李燎,梅淑凤,耿进怡.不同品种肉牛与黄牛杂交屠宰试验效果分析[J].畜牧兽医科技信息. 2007(2): 29-30.
    [23]李宁,吴常信.鸡性连锁矮小型基因的研究进展[J].中国家禽. 1993(4): 30-31.
    [24]李宁戴茹娟吴常信.性连锁矮小鸡生长激素受体基因位点多态性分析[J].畜牧兽医学报. 1996(4).
    [25]李武峰.肉牛H-FABP基因和CAPN4基因分子多态性与肉品质性状的相关分析[D].山西农业大学, 2002.
    [26]李武峰,许尚忠,曹红鹤,李宏滨. 3个杂交牛种H-FABP基因第二intron的遗传变异与肉品质性状的相关分析[J].畜牧兽医学报. 2004(3): 252-255.
    [27]李艳青,孔保华,王涛.鲢鱼组织蛋白酶活性影响因素的研究[J].食品科技. 2004(9): 40-42.
    [28]刘健.溶酶体半胱氨酸蛋白酶生理功能的研究[D].中国科学技术大学, 2006.
    [29]刘晓牧,吴乃科,王爱国,傅金恋.肉牛分子育种的研究进展[J].中国牛业科学. 2007(5): 66-71.
    [30]刘振华.猪肉肉质特性生物化学研究进展[J].国外畜牧科技. 1996(6): 36-39.
    [31]梅盈洁,李加琪,陈瑶生,李晓筠,朱良瑞,凌飞,王翀,张豪.猪CTSD全长cDNA的克隆和表达分析[J].畜牧兽医学报. 2007(5): 432-436.
    [32]孟和,张永春,陈卫红,满初日嘎,解彦炯,钱松晋,丁国臣,潘玉春.蒙古牛肌肉生长抑制素基因编码序列检测分析[J].上海交通大学学报(农业科学版). 2004(4): 339-342.
    [33]穆雪,韩剑众.骨骼肌中组织蛋白酶[J].肉类研究. 2010(5): 13-17.
    [34]朴瑛,刘丽梅,陈协群,梁蓉,黄高昇,乔岩,王爱勤,王哲. Bcl-xL可能介导组织蛋白酶D相关的K562细胞凋亡[J].中国实验血液学杂志. 2005(3): 379-382.
    [35]史明艳,昝林森,李保兰,刘霞,张自富.牛Myostatin基因单核苷酸多态性分析[J].中国农学通报. 2005(6): 24-25.
    [36]孙建梅,张士璀,王勇军.酸性磷酸酶在文昌鱼体内的分布[J].海洋水产研究. 2006(4): 17-20.
    [37]孙维斌,陈宏,雷雪芹,雷初朝,张英汉,李瑞彪,昝林森,胡沈荣. IGFBP3基因多态性与秦川牛部分屠宰性状的相关性[J].遗传. 2003(5).
    [38]汤晓艳,周光宏,徐幸莲,杨曙明,钱永忠,叶志华.肉嫩度决定因子及牛肉嫩化技术研究进展[J].中国农业科学. 2007(12): 2835-2841.
    [39]王爱国.动物育种新技术的发展与应用[J].世界农业. 2000(1): 38-40.
    [40]王琼,刘益平,蒋小松,杨朝武,杜华瑞,邱莫寒,朱庆. MyoG基因多态性与优质肉鸡屠宰性状和肉质性状的相关性分析[J].遗传. 2007(9): 1089-1096.
    [41]王珊,陈宏,蔡欣.牛MyoG基因启动子的克隆与序列分析[J].西北农林科技大学学报(自然科学版). 2006(8): 12-16.
    [42]王尚荣,罗柏文,彭合雄.西门塔尔牛与本地黄牛的杂交效果[J].当代畜牧. 2005(7).
    [43]吴慧光.肉牛Calpain 1基因的SNPs筛查及其与肉质相关性分析[D].河北农业大学, 2006.
    [44]武艳群,吴旧生,赵晓枫,郭晓令,徐宁迎.猪CAST基因多态性与肌纤维组织学特性及屠宰性状的相关性分析[J].遗传. 2007(1).
    [45]夏亚穆,姜鑫,王伟.组织蛋白酶D生物合成及其功能的研究进展[J].氨基酸和生物资源. 2009(2): 33-36.
    [46]徐秀容. DGAT1和DGAT2基因多态性与牛部分经济性状相关性的研究[D].西北农林科技大学, 2004.
    [47]徐秀容,高雪,许尚忠,张英汉,任红艳.牛DGAT1基因的K232A取代等位基因分布频率及对部分胴体性状的影响[J].中国农业大学学报. 2006(4): 11-15.
    [48]许尚忠,李俊雅.我国肉牛遗传改良现状分析及发展策略探讨[J].现代畜牧兽医. 2009(10): 11-14.
    [49]杨远萍.家蚕组织蛋白酶基因家族结构分析及功能初探[D].西南大学, 2006.
    [50]叶满红.鸡脂肪酸结合蛋白基因的克隆及其与肌内脂肪含量关系的研究[D].中国农业科学院, 2003.
    [51]昝林森,史明艳,王勇强.秦川牛、南阳牛双肌基因的PCR-SSCP检测[J].中国农学通报. 2003(5): 7-9.
    [52]张路培.牛肌肉生成抑制素基因遗传变异及基因免疫的初步研究[D].中国农业科学院, 2009.
    [53]张路培,任红艳,甘乾福,李俊雅,李恒德,许尚忠,高雪,陈金宝.牛TG基因启动子区遗传变异与肉质和胴体性状的相关性研究[J].畜牧兽医学报. 2009(3).
    [54]张英汉.关于中国本地黄牛品种与牛肉产业的若干问题[Z].中国山东滨州: 2010.
    [55]张争锋,陈宏,李秋玲,雷初朝,薛恺,王新庄,王轶敏,牛晖.南阳牛IGF2基因第2exon多态性及其与生长发育相关性研究[J].畜牧兽医学报. 2007(1): 8-13.
    [56]张争锋,陈宏,李秋玲,雷初朝,张春雷,王新庄,王居强,王轶敏.南阳牛DGAT2基因PCR-RFLP多态性及其与生长性状相关性研究[J].遗传. 2007(8).
    [57]赵高锋,陈宏,雷初朝,张春雷,张丽,蓝贤勇,房兴堂,康湘涛.秦川牛GHR基因SNPs及其与生长性状关系的研究[J].遗传. 2007(3): 319-323.
    [58]周国利,朱奇,郭善利,吴玉厚.鲁西黄牛H-FABP基因的多态性及其与肉质性状关系的分析[J].西北农业学报. 2005(3).
    [59] Abe T, Saburi J, Hasebe H, Nakagawa T, Kawamura T, Saito K, Nade T, Misumi S, Okumura T, Kuchida K, Hayashi T, Nakane S, Mitsuhasi T, Nirasawa K, Sugimoto Y, Kobayashi E. Bovine quantitative trait loci analysis for growth, carcass, and meat quality traits in an F2 population from a cross between Japanese Black and Limousin[J]. J Anim Sci. 2008, 86(11): 2821-2832.
    [60] Abrahamson M, Alvarez-Fernandez M, Nathanson C M. Cystatins[J]. Biochem Soc Symp. 2003(70): 179-199.
    [61] Anderson T J, Parrish F C. Postmortem Degradation of Titin and Nebulin of Beef Steaks Varying in Tenderness[J]. Journal of Food Science. 1989, 54(3): 748-749.
    [62] Andersson H M P E. Electrical stimulation of pigs—efect on pH fall,meatqualiw and Cathepsin B+L activity[J]. Meat Science. 1999, 52: 179-187.
    [63] Amills M, Vidal O, Varona L, Tomas A, Gil M, Sanchez A, Noguera J L. Polymorphism of the pig 2,4-dienoyl CoA reductase 1 gene (DECR1) and its association with carcass and meat quality traits[J]. J Anim Sci. 2005, 83(3): 493-498.
    [64] Anastasi A, Brown M A, Kembhavi A A, Nicklin M J, Sayers C A, Sunter D C, Barrett A J. Cystatin, a protein inhibitor of cysteine proteinases. Improved purification from egg white, characterization, and detection in chicken serum[J]. Biochem J. 1983, 211(1): 129-138.
    [65] Balbin M, Hall A, Grubb A, Mason R W, Lopez-Otin C, Abrahamson M. Structural and functional characterization of two allelic variants of human cystatin D sharing a characteristic inhibition spectrum against mammalian cysteine proteinases[J]. J Biol Chem. 1994, 269(37): 23156-23162.
    [66] Balboula A Z, Yamanaka K, Sakatani M, Hegab A O, Zaabel S M, Takahashi M. Cathepsin B activity is related to the quality of bovine cumulus oocyte complexes and its inhibition can improve their developmental competence[J]. Mol Reprod Dev. 2010, 77(5): 439-448.
    [67] Barros N M, Puzer L, Tersariol I L, Oliva M L, Sampaio C A, Carmona A K, Motta G. Plasma prekallikrein/kallikrein processing by lysosomal cysteine proteases[J]. Biol Chem. 2004, 385(11): 1087-1091.
    [68] Bechet D, Tassa A, Taillandier D, Combaret L, AtTaix D. Lysosomal proteolysis in skeletal muscle[J]. Int J Biochem Cell Biol. 2005, 37(10): 2098-2114.
    [69] Bidanel J P, Milan D, Iannuccelli N, Amigues Y, Boscher M Y, Bourgeois F, Caritez J C, Gruand J, Le Roy P, Lagant H, Quintanilla R, Renard C, Gellin J, Ollivier L, Chevalet C. Detection of quantitative trait loci for growth and fatness in pigs[J]. Genet Sel Evol. 2001, 33(3): 289-309.
    [70] Bosi P, Casini L, Finamore A, Cremokolini C, Merialdi G, Trevisi P, Nobili F, Mengheri E. Spray-dried plasma improves growth performance and reduces inflammatory status of weaned pigs challenged with enterotoxigenic Escherichia coli K88[J]. J Anim Sci. 2004, 82(6): 1764-1772.
    [71] Brix K, Dunkhorst A, Mayer K, Jordans S. Cysteine cathepsins: cellular roadmap to different functions[J]. Biochimie. 2008, 90(2): 194-207.
    [72] Buske B, Sternstein I, Brockmann G. QTL and candidate genes for fecundity in sows[J]. Anim Reprod Sci. 2006, 95(3-4): 167-183.
    [73] Calkins C C, Sameni M, Koblinski J, Sloane B F, Moin K. Differential localization of cysteine protease inhibitors and a target cysteine protease, cathepsin B, by immuno-confocal microscopy[J]. J Histochem Cytochem. 1998, 46(6): 745-751.
    [74] Calkins C C, Sameni M, Koblinski J, Sloane B F, Moin K. Differential localization of cysteine protease inhibitors and a target cysteine protease, cathepsin B, by immuno-confocal microscopy[J]. J Histochem Cytochem. 1998, 46(6): 745-751.
    [75] Cavailles V, Augereau P, Rochefort H. Cathepsin D gene is controlled by a mixed promoter, and estrogens stimulate only TATA-dependent transcription in breast cancer cells[J]. Proc Natl Acad Sci U S A. 1993, 90(1): 203-207.
    [76] Chakravarti A. Population genetics--making sense out of sequence[J]. Nat Genet. 1999, 21(1 Suppl): 56-60.
    [77] aChan S J, San S B, Mccormick M B, Steiner D F. Nucleotide and predicted amino Acid sequences of cloned human and mouse preprocathepsin B cDNAs[J]. Proc Natl Acad Sci U S A. 1986, 83(20): 7721-7725.
    [78]b Chan S J,San S B, Steiner D F. Differences in cathepsin B mRNA levels in rat tissues suggest specialized functions[J]. FEBS Lett. 1986, 201(2): 251-256.
    [79] Costa L N, Tassone F, Davoli R, Fontanesi L, Dall'Olio S, Colombo M, Buttazzoni L, Russo V. Glycolytic potential in semimembranosus muscle of italian large white pigs[J]. Journal of Muscle Foods.2009, 20(4): 392-400.
    [80] Dufour E, Dive V, Toma F. Delineation of chicken cathepsin L secondary structure; relationship between pH dependence activity and helix content[J]. Biochim Biophys Acta. 1988, 955(1): 58-64.
    [81] Dunn A D, Crutchfield H E, Dunn J T. Thyroglobulin processing by thyroidal proteases. Major sites of cleavage by cathepsins B, D, and L[J]. J Biol Chem. 1991, 266(30): 20198-20204.
    [82] Eikelenboom P, Zhan S S, Kamphorst W, van der Valk P, Rozemuller J M. Cellular and substrate adhesion molecules (integrins) and their ligands in cerebral amyloid plaques in Alzheimer's disease[J]. Virchows Arch. 1994, 424(4): 421-427.
    [83]Eikelenboom P, Zhan S S, van Gool W A, Allsop D. Inflammatory mechanisms in Alzheimer's disease[J]. Trends Pharmacol Sci. 1994, 15(12): 447-450.
    [84] Elsik C G, Tellam R L, Worley K C, Gibbs R A, Muzny D M, Weinstock G M, Adelson D L, Eichler E E, Elnitski L, Guigo R, Hamernik D L, Kappes S M, Lewin H A, Lynn D J, Nicholas F W, Reymond A, Rijnkels M, Skow L C, Zdobnov E M, Schook L, Womack J, Alioto T, Antonarakis S E, Astashyn A, Chapple C E, Chen H C, Chrast J, Camara F, Ermolaeva O, Henrichsen C N, Hlavina W, Kapustin Y, Kiryutin B, Kitts P, Kokocinski F, Landrum M, Maglott D, Pruitt K, Sapojnikov V, Searle S M, Solovyev V, Souvorov A, Ucla C, Wyss C, Anzola J M, Gerlach D, Elhaik E, Graur D, Reese J T, Edgar R C, Mcewan J C, Payne G M, Raison J M, Junier T, Kriventseva E V, Eyras E, Plass M, Donthu R, Larkin D M, Reecy J, Yang M Q, Chen L, Cheng Z, Chitko-Mckown C G, Liu G E, Matukumalli L K, Song J, Zhu B, Bradley D G, Brinkman F S, Lau L P, Whiteside M D, Walker A, Wheeler T T, Casey T, German J B, Lemay D G, Maqbool N J, Molenaar A J, Seo S, Stothard P, Baldwin C L, Baxter R, Brinkmeyer-Langford C L, Brown W C, Childers C P, Connelley T, Ellis S A, Fritz K, Glass E J, Herzig C T, Iivanainen A, Lahmers K K, Bennett A K, Dickens C M, Gilbert J G, Hagen D E, Salih H, Aerts J, Caetano A R, Dalrymple B, Garcia J F, Gill C A, Hiendleder S G, Memili E, Spurlock D, Williams J L, Alexander L, Brownstein M J, Guan L, Holt R A, Jones S J, Marra M A, Moore R, Moore S S, Roberts A, Taniguchi M, Waterman R C, Chacko J, Chandrabose M M, Cree A, Dao M D, Dinh H H, Gabisi R A, Hines S, Hume J, Jhangiani S N, Joshi V, Kovar C L, Lewis L R, Liu Y S, Lopez J, Morgan M B, Nguyen N B, Okwuonu G O, Ruiz S J, Santibanez J, Wright R A, Buhay C, Ding Y, Dugan-Rocha S, Herdandez J, Holder M, Sabo A, Egan A, Goodell J, Wilczek-Boney K, Fowler G R, Hitchens M E, Lozado R J, Moen C, Steffen D, Warren J T, Zhang J, Chiu R, Schein J E, Durbin K J, Havlak P, Jiang H, Liu Y, Qin X, Ren Y, Shen Y, Song H, Bell S N, Davis C, Johnson A J, Lee S, Nazareth L V, Patel B M, Pu L L, Vattathil S, Williams R J, Curry S, Hamilton C, Sodergren E, Wheeler D A, Barris W, Bennett G L, Eggen A, Green R D, Harhay G P, Hobbs M, Jann O, Keele J W, Kent M P, Lien S, Mckay S D, Mcwilliam S, Ratnakumar A, Schnabel R D, Smith T, Snelling W M, Sonstegard T S, Stone R T, Sugimoto Y, Takasuga A, Taylor J F, Van Tassell C P, Macneil M D, Abatepaulo A R, Abbey C A, Ahola V, Almeida I G, Amadio A F, Anatriello E, Bahadue S M, Biase F H, Boldt C R, Carroll J A, Carvalho W A, Cervelatti E P, Chacko E, Chapin J E, Cheng Y, Choi J, Colley A J, de Campos T A, De Donato M, Santos I K, de Oliveira C J, Deobald H, Devinoy E, Donohue K E, Dovc P, Eberlein A, Fitzsimmons C J, Franzin A M, Garcia G R, Genini S, Gladney C J, Grant J R, Greaser M L, Green J A, Hadsell D L, Hakimov H A, Halgren R, Harrow J L, Hart E A, Hastings N, Hernandez M, Hu Z L, Ingham A, Iso-Touru T, Jamis C, Jensen K, Kapetis D, Kerr T, Khalil S S, Khatib H, Kolbehdari D, Kumar C G, Kumar D, Leach R, Lee J C, Li C, Logan K M, Malinverni R, Marques E, Martin W F, Martins N F, Maruyama S R, Mazza R, Mclean K L, Medrano J F, Moreno B T, More D D, Muntean C T, Nandakumar H P, Nogueira M F, Olsaker I, Pant S D, Panzitta F, Pastor R C, Poli M A, Poslusny N, Rachagani S, Ranganathan S, Razpet A, Riggs P K, Rincon G, Rodriguez-Osorio N, Rodriguez-Zas S L, Romero N E, Rosenwald A, Sando L, Schmutz S M, Shen L, Sherman L, Southey B R, Lutzow Y S, Sweedler J V, Tammen I, Telugu B P, Urbanski J M, Utsunomiya Y T, Verschoor C P, Waardenberg A J, Wang Z, Ward R, Weikard R, Welsh T J, White S N, Wilming L G, Wunderlich K R, Yang J, Zhao F Q. The genome sequence of taurine cattle: a window to ruminant biology and evolution[J]. Science. 2009, 324(5926): 522-528.
    [85] Fontanesi L, Davoli R, Nanni C L, Scotti E, Russo V. Study of candidate genes for glycolytic potential of porcine skeletal muscle: identification and analysis of mutations, linkage and physical mapping and association with meat quality traits in pigs[J]. Cytogenet Genome Res. 2003, 102(1-4): 145-151.
    [86] Fontanesi L, Davoli R, Yerle M, Zijlstra C, Bosma A A, Russo V. Regional localization of the porcine cathepsin H (CTSH) and cathepsin L (CTSL) genes[J]. Anim Genet. 2001, 32(5): 321-323.
    [87] Fontanesi L, Speroni C, Buttazzoni L, Scotti E, Costa L N, Davoli R, Russo V. Associationbetween cathepsin L (CTSL) and cathepsin S (CTSS) polymorphisms and meat production and carcass traits in Italian Large White pigs[J]. Meat Sci. 2010, 85(2): 331-338.
    [88] Fontanesi L, Speroni C, Buttazzoni L, Scotti E, Dall'Olio S, Nanni C L, Davoli R, Russo V. The insulin-like growth factor 2 (IGF2) gene intron3-g.3072G>A polymorphism is not the only Sus scrofa chromosome 2p mutation affecting meat production and carcass traits in pigs: evidence from the effects of a cathepsin D (CTSD) gene polymorphism[J]. J Anim Sci. 2010, 88(7): 2235-2245.
    [89] Fossum K, Whitaker J R. Ficin and papain inhibitor from chicken egg white[J]. Arch Biochem Biophys. 1968, 125(1): 367-375.
    [90] Friement C C E I S. Isolation of a cathepsin B-encoding cDNA from murine osteogenic cells[J]. Gene. 1991, 103: 259-261
    [91] Fujii J, Otsu K, Zorzato F, de Leon S, Khanna V K, Weiler J E, O'Brien P J, Maclennan D H. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia[J]. Science. 1991, 253(5018): 448-451.
    [92] Gan Q F, Zhang L P, Li J Y, Hou G Y, Li H D, Gao X, Ren H Y, Chen J B, Xu S Z. Association analysis of thyroglobulin gene variants with carcass and meat quality traits in beef cattle[J]. J Appl Genet. 2008, 49(3): 251-255.
    [93] Geary T W, Mcfadin E L, Macneil M D, Grings E E, Short R E, Funston R N, Keisler D H. Leptin as a predictor of carcass composition in beef cattle[J]. J Anim Sci. 2003, 81(1): 1-8.
    [94] Gill J L, Bishop S C, Mccorquodale C, Williams J L, Wiener P. Association of selected SNP with carcass and taste panel assessed meat quality traits in a commercial population of Aberdeen Angus-sired beef cattle[J]. Genet Sel Evol. 2009, 41: 36.
    [95] Goll K H, Rumpf G. [PLASMACYTOMA OF THE MIDDLE EAR][J]. Dtsch Gesundheitsw. 1964, 19: 1542-1544
    [96] Gong Q, Chan S J, Bajkowski A S, Steiner D F, Frankfater A. Characterization of the cathepsin B gene and multiple mRNAs in human tissues: evidence for alternative splicing of cathepsin B pre-mRNA[J]. DNA Cell Biol. 1993, 12(4): 299-309.
    [97] Hook V, Yasothornsrikul S, Greenbaum D, Medzihradszky K F, Troutner K, Toneff T, Bundey R, Logrinova A, Reinheckel T, Peters C, Bogyo M. Cathepsin L and Arg/Lys aminopeptidase: a distinct prohormone processing pathway for the biosynthesis of peptide neurotransmitters and hormones[J]. Biol Chem. 2004, 385(6): 473-480.
    [98] Huang F L, Tappel A L. Action of cathepsins C and D in protein hydrolysis[J]. Biochim Biophys Acta. 1971, 236(3): 739-748.
    [99] Huff-Lonergan E, Mitsuhashi T, Beekman D D, Parrish F J, Olson D G, Robson R M. Proteolysis of specific muscle structural proteins by mu-calpain at low pH and temperature is similar to degradation in postmortem bovine muscle[J]. J Anim Sci. 1996, 74(5): 993-1008.
    [100] aHughes S J, Glover T W, Zhu X X, Kuick R, Thoraval D, Orringer M B, Beer D G, Hanash S. A novel amplicon at 8p22-23 results in overexpression of cathepsin B in esophageal adenocarcinoma[J]. Proc Natl Acad Sci U S A. 1998, 95(21): 12410-12415.
    [101]bHughes K T, Davies M, Thomas G J. Evidence that kidney lysosomal proteinases degrade the collagen of glomerular basement membrane[J]. Ren Physiol. 1980, 3(1-6): 116-119.
    [102] Hwang S R, Garza C, Mosier C, Toneff T, Wunderlich E, Goldsmith P, Hook V. Cathepsin L expression is directed to secretory vesicles for enkephalin neuropeptide biosynthesis and secretion[J]. J Biol Chem. 2007, 282(13): 9556-9563.
    [103] Ishidoh K, Kominami E, Suzuki K, Katunuma N. Gene structure and 5'-upstream sequence of rat cathepsin L[J]. FEBS Lett. 1989, 259(1): 71-74.
    [104] Jeon J T, Carlborg O, Tornsten A, Giuffra E, Amarger V, Chardon P, Andersson-Eklund L, Andersson K, Hansson I, Lundstrom K, Andersson L. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus[J]. Nat Genet. 1999, 21(2): 157-158.
    [105] Johnson M H, Calkins C R, Huffman R D, Johnson D D, Hargrove D D. Differences in cathepsin B + L and calcium-dependent protease activities among breed type and their relationship to beef tenderness[J]. J Anim Sci. 1990, 68(8): 2371-2379.
    [106] Kempson G E, Tuke M A, Dingle J T, Barrett A J, Horsfield P H. The effects of proteolytic enzymes on the mechanical properties of adult human articular cartilage[J]. Biochim Biophys Acta. 1976, 428(3): 741-760.
    [107] Kim C W H Y H. Use of microsatellite marker to detect quantitative trait loci in Yorkshire pigs[J]. Rerod Dev. 2006, 52: 229-237.
    [108] aKirschke H, Langner J, Wiederanders B, Ansorge S, Bohley P. Cathepsin L. A new proteinase from rat-liver lysosomes[J]. Eur J Biochem. 1977, 74(2): 293-301.
    [109]bKirschke H, Langner J, Wiederanders B, Ansorge S, Bohley P, Broghammer U. [Intracellular protein breakdown. VII. Cathepsin L and H; two new proteinases from rat liver lysosomes][J]. Acta Biol Med Ger. 1976, 35(3-4): 285-299.
    [110]cKirschke H, Langner J, Wiederanders B, Ansorge S, Bohley P, Hanson H. Cathepsin H: an endoaminopeptidase from rat liver lysosomes[J]. Acta Biol Med Ger. 1977, 36(2): 185-199. [111 Kofezak T P E P K. Changes of myofibrillar and centrifugal drip proteins and shear force of psoas major and minor and semitendinosus muscles from calves,heifers and cows during post-mortem aging. [J]. Meat Science. 2003, 64: 69-75.
    [112] Lee S S C Y. Linkage and QTL mapping for Sus scrofa chromosome 2[J]. J Anim Breed Genet. 2003, 120: 11-19. [109] Lenarcic B, Krizaj I, Zunec P, Turk V. Differences in specificity for the interactions of stefins A, B and D with cysteine proteinases[J]. FEBS Lett. 1996, 395(2-3): 113-118.
    [113] Lenney J F, Tolan J R, Sugai W J, Lee A G. Thermostable endogenous inhibitors of cathepsins B and H[J]. Eur J Biochem. 1979, 101(1): 153-161.
    [114] Legerken G Von M S W M. Suitability of structural and functional traits of skeletal muscle for the genetic improvement of meat quality in pigs.[J]. Arch Tierzucht. 1994, 37: 133-143.
    [115] Lewis P K R L. Interaction Between Ante-mortem Stress, Sampling Time, and pH Found in CerTain Pork Muscle Characteristics[J]. Journal of Food Science. 1981, 46(5): 1315-1319.
    [116] Lusby M L R J F P. Effect of postmortem storage on degradation of the myofibrilar protein titin in bovine longissimus muscle.[J]. Journal of food science. 1983, 48: 1787-1790.
    [117] Makinodan Y, Kyaw N N, Ikeda S. Intracellular distribution of fish muscle alkaline proteinase[J]. Comp Biochem Physiol B. 1982, 73(4): 785-789.
    [118] Mestre Prates J A C F J S. Contribution of major structural changes in myofibrils to rabbit meat tenderization during aging. [J]. Meat Science. 2002, 61: 103-113
    [119] Mohamed M M, Sloane B F. Cysteine cathepsins: multifunctional enzymes in cancer[J]. Nat Rev Cancer. 2006, 6(10): 764-775.
    [120] Mordier S B, Bechet D M, Roux M P, Obled A, Ferrara M J. The structure of the bovine cathepsin B gene. Genetic variability in the 3' untranslated region[J]. Eur J Biochem. 1995, 229(1): 35-44.
    [121] Nalaila S M S P. Whole genome fine mapping of quantitative trait loci for ultrasound and carcass merit traits in beef cattle. [J]. Can. J. Anim. Sci. 2011, 91: 61-73.
    [122] Nezer C, Moreau L, Brouwers B, Coppieters W, Detilleux J, Hanset R, Karim L, Kvasz A, Leroy P, Georges M. An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs[J]. Nat Genet. 1999, 21(2): 155-156.
    [123] Okitani A, Matsukura U, Kato H, Fujimaki M. Purification and some properties of a myofibrillar protein-degrading protease, cathepsin L, from rabbit skeletal muscle[J]. J Biochem. 1980, 87(4): 1133-1143.
    [124] Ouali M A S G. Endogenous inhibitors also seems to play a major role in the regulation of the enzymes implicated in postmortem muscle tenderisation[J]. Trends in Food Science & Technology. 2002, 13(12): 400-421.
    [125] Payton A, Holland F, Diggle P, Rabbitt P, Horan M, Davidson Y, Gibbons L, Worthington J, Ollier W E, Pendleton N. Cathepsin D exon 2 polymorphism associated with general intelligence in a healthy older population[J]. Mol Psychiatry. 2003, 8(1): 14-18.
    [126] Quraishi O, Nagler D K, Fox T, Sivaraman J, Cygler M, Mort J S, Storer A C. The occluding loop in cathepsin B defines the pH dependence of inhibition by its propeptide[J]. Biochemistry. 1999, 38(16): 5017-5023.
    [127] Ramsbottom J M S E J K. Comparative tenderness of representative beef muscle.[J]. Food Research. 1945, 10: 497. [125] Redecker B, Heckendorf B, Grosch H W, Mersmann G, Hasilik A. Molecular organization of the human cathepsin D gene[J]. DNA Cell Biol. 1991, 10(6): 423-431.
    [128] aRohrer G A, Keele J W. Identification of quantitative trait loci affecting carcass composition in swine: II. Muscling and wholesale product yield traits[J]. J Anim Sci. 1998, 76(9): 2255-2262.bRohrer G A, Keele J W. Identification of quantitative trait loci affecting carcass composition in swine: I. Fat deposition traits[J]. J Anim Sci. 1998, 76(9): 2247-2254.
    [129] Rothschild M, Jacobson C, Vaske D, Tuggle C, Wang L, Short T, Eckardt G, Sasaki S, Vincent A, Mclaren D, Southwood O, van der Steen H, Mileham A, Plastow G. The estrogen receptor locus isassociated with a major gene influencing litter size in pigs[J]. Proc Natl Acad Sci U S A. 1996, 93(1): 201-205.
    [130] Russo V, Fontanesi L, Davoli R, Galli S. Linkage mapping of the porcine cathepsin F (CTSF) gene close to the QTL regions for meat and fat deposition traits on pig chromosome 2[J]. Anim Genet. 2004, 35(2): 155-157.
    [131] Russo V, Fontanesi L, Davoli R, Nanni C L, Cagnazzo M, Buttazzoni L, Virgili R, Yerle M. Investigation of candidate genes for meat quality in dry-cured ham production: the porcine cathepsin B (CTSB) and cystatin B (CSTB) genes[J]. Anim Genet. 2002, 33(2): 123-131.
    [132] Russo V, Fontanesi L, Scotti E, Beretti F, Davoli R, Nanni C L, Virgili R, Buttazzoni L. Single nucleotide polymorphisms in several porcine cathepsin genes are associated with growth, carcass, and production traits in Italian Large White pigs[J]. J Anim Sci. 2008, 86(12): 3300-3314.
    [133] Sandri M. New findings of lysosomal proteolysis in skeletal muscle[J]. Curr Opin Clin Nutr Metab Care. 2011, 14(3): 223-229.
    [134] aSchwartz W, Bird J W. Degradation of myofibrillar proteins by cathepsins B and D[J]. Biochem J. 1977, 167(3): 811-820.
    [135]b Schwartz W N,Bird J W, Spanier A M. Degradation of myofibrillar proteins by cathepsins B and D[J]. Acta Biol Med Ger. 1977, 36(11-12): 1587-1604.
    [136] Sevlever D, Jiang P, Yen S H. Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species[J]. Biochemistry. 2008, 47(36): 9678-9687.
    [137] Siebert G. [Determination of glycolytic metabolites in isolated cell nuclei][J]. Experientia. 1958, 14(12): 449.
    [138] Sneyers M, Renaville R, Falaki M, Massart S, Devolder A, Boonen F, Marchand E, Prandi A, Burny A, Portetelle D. TaqI restriction fragment length polymorphisms for growth hormone in bovine breeds and their association with quantitative traits[J]. Growth Regul. 1994, 4(3): 108-112.
    [139] Stauber W T, Ong S H. Fluorescence demonstration of a cathepsin H-like protease in cardiac, skeletal and vascular smooth muscles[J]. Histochem J. 1982, 14(4): 585-591.
    [140] Stone R T, Grosse W M, Casas E, Smith T P, Keele J W, Bennett G L. Use of bovine EST data and human genomic sequences to map 100 gene-specific bovine markers[J]. Mamm Genome. 2002, 13(4): 211-215.
    [141] Tam S W, Cote-Paulino L R, Peak D A, Sheahan K, Murnane M J. Human cathepsin B-encoding cDNAs: sequence variations in the 3'-untranslated region[J]. Gene. 1994, 139(2): 171-176.
    [142] Taylor M A, Almond R E, Etherington D J. The immunohistochemical location of cathepsin L in rabbit skeletal muscle. Evidence for a fibre type dependent distribution[J]. Histochemistry. 1987, 86(4): 379-383.
    [143] Taylor R G, Geesink G H, Thompson V F, Koohmaraie M, Goll D E. Is Z-disk degradation responsible for postmortem tenderization?[J]. J Anim Sci. 1995, 73(5): 1351-1367.
    [144] Taylor R G, Geesink G H, Thompson V F, Koohmaraie M, Goll D E. Is Z-disk degradation responsible for postmortem tenderization?[J]. J Anim Sci. 1995, 73(5): 1351-1367.
    [145] Turk V, Bode W. The cystatins: protein inhibitors of cysteine proteinases[J]. FEBS Lett. 1991, 285(2): 213-219.
    [146] Turk V, Turk B, Turk D. Lysosomal cysteine proteases: facts and opportunities[J]. EMBO J. 2001, 20(17): 4629-4633.
    [147] aUeno T, Takahashi K. A cathepsin L-specific inhibitor preferentially inhibits degradation of autophagosomal LC3 and GABARAP in HeLa and Huh-7 cells[J]. Autophagy. 2009, 5(6): 878-879.
    [148]bUeno T,Takahashi K,Tanida I, Minematsu-Ikeguchi N, Murata M, Kominami E. Characterization of CAA0225, a novel inhibitor specific for cathepsin L, as a probe for autophagic proteolysis[J]. Biol Pharm Bull. 2009, 32(3): 475-479.
    [149]c Ueno R. A,Aoki T, Yokono M, cathepsin B-like enzyme from mackerel white muscle is a precursor of cathepsin B[J]. Comp Biochem Physiol B Biochem Mol Biol. 2002, 133(3): 307-316.
    [150] Van Laere A S, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald A L, Haley C S, Buys N, Tally M, Andersson G, Georges M, Andersson L. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig[J]. Nature. 2003, 425(6960): 832-836.
    [151] Virgili R, Parolari G, Schivazappa C, Bordini C S, Borri M. Sensory and Texture Quality of Dry-Cured Ham as Affected by Endogenous Cathepsin B Activity and Muscle Composition[J]. Journal of Food Science. 1995, 60(6): 1183-1186
    [152] Yamashita M, Konagaya S. High activities of cathepsins B, D, H, and L in the white muscle of chum salmon in spawning migration[J]. Comp Biochem Physiol B. 1990, 95(1): 149-152.
    [153] Yamashita M, Konagaya S. Purification and characterization of cathepsin L from the white muscle of chum salmon, Oncorhynchus keta[J]. Comp Biochem Physiol B. 1990, 96(2): 247-252.
    [154] Zavasnik-Bergant T, Turk B. Cysteine cathepsins in the immune response[J]. Tissue Antigens. 2006, 67(5): 349-355.
    [155] Zimin A V, Delcher A L, Florea L, Kelley D R, Schatz M C, Puiu D, Hanrahan F, Pertea G, Van Tassell C P, Sonstegard T S, Marcais G, Roberts M, Subramanian P, Yorke J A, Salzberg S L. A whole-genome assembly of the domestic cow, Bos taurus[J]. Genome Biol. 2009, 10(4): R42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700