用户名: 密码: 验证码:
纤维沥青碎石封层结构行为及材料设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
截止2011年底,全国公路通车总里程已达到405万公里,但受“重建轻养”观念的影响,虽然公路建设速度快,但公路早期破坏非常普遍,特别是沥青路面表面功能的衰减或丧失,急需进行预防性养护,以恢复路面功能,防治病害的进一步发展。“纤维沥青碎石封层”是一项刚从国外引进的沥青路面预防性养护新技术,具有同类预防性养护技术所不能及的性能及效益优势。但目前对纤维沥青碎石封层的结构行为机理还缺乏深入的认识,相应的评价指标体系尚未建立,材料组成设计方法还未形成。本研究针对以上理论及应用技术问题,系统开展纤维沥青碎石封层结构行为及材料设计研究,在理论方面重点探索纤维沥青碎石封层的路用抗裂及抗动水等作用机理,为纤维沥青碎石封层的结构及材料设计提供理论依据,因此,本研究不仅具有重要的理论价值,而且对于纤维沥青碎石封层新技术的发展具有重要的现实意义。
     论文首先通过有限元分析,运用静力学和动力学两种力学方法,分别计算分析了纤维沥青碎石封层路面在静载和动载作用下的力学响应,综合分析静、动力学计算结果,为纤维沥青碎石封层的力学性能设计提供依据。为了深入探索纤维沥青碎石封层的抗裂行为机理,论文基于复合材料及断裂力学理论,借助于图像分析技术,计算分析纤维沥青碎石封层的断裂韧性以及沥青路面裂缝应力强度因子,探索纤维沥青碎石封层在裂缝尖端应力下的阻裂行为规律;结合纤维沥青碎石封层工作环境,论文先从理论上剖析了这种封层发生水损害的机理,自主研发了动力渗水仪,为深入研究纤维沥青碎石封层抗动水行为提供了技术手段。利用这个新设备,通过不同条件下纤维沥青碎石封层材料材料的动力渗水试验,研究了封层材料在动力水作用下的行为及性能变化规律,最终提出纤维沥青碎石封层材料在动力水作用下的性能控制指标。基于纤维沥青碎石力学分析、结构抗裂及抗渗行为分析,开展了纤维沥青碎石封层结构行为适应性研究,并通过理论分析及有限元计算重点研究纤维沥青碎石封层对自然环境、交通状况以及旧路路况的适应性,提出了纤维沥青碎石封层的适用条件及最佳养护时机的确定方法。
     引入系统论方法研究了纤维沥青碎石封层材料组成设计。依据系统论的方法,将纤维沥青碎石封层分为沥青层材料设计、纤维沥青层设计和纤维沥青碎石封层设计三个层次进行设计。在理论分析及试验研究的基础上,提出了基于路用性能的纤维沥青碎石封层多指标控制体系:即以层间抗剪强度作为粘结性能的控制指标,以集料脱石率作为粘附性能控制指标,以动水压力渗透下的抗渗强度为抗渗性能指标,以构造深度作为抗滑性指标。并提出了基于系统论方法的纤维沥青碎石封层配合比设计方法及流程。
By the end of2011, the highway traffic mileage of our nation has reached4.05millionkilometers. Because we attach importance to highway construction than maintenance, thepremature damage especially asphalt pavement surface feature decay of highway iswidespread. In order to regeneration pavement surface features and prevent the developmentof pavement damage, the pavement need preventive conservation. Fiber reinforced chip sealis a new asphalt pavement preventive maintenance technology,which has more advantages inperformance and efficiency than similar preventive maintenance. But it lacked a clearunderstanding of it’s structural behaviour, appropriate evaluation index system has not beenestablished and material composition design methods has not formed. In this paper, for thekey problems in the theory and application of technology, researches on road behaviormechanism and material design, and focus on exploring crack resistance and resistance tohydrodynamic in theory, have important theoretical and practical significance for thedevelopment and application of this new technology.
     By finite element analysis, using of statics and dynamics, respectively calculating themechanical response of fiber reinforced chip seal road under static and dynamic loads, andprovide a basis for fiber reinforced chip seal design. For exploring the mechanism of fiberreinforced chip seal crack behavior, based on composite materials and fracture mechanicstheory, by image analysis techniques,to calculate and analyze the fracture toughness of fiberreinforced chip seal and the stress intensity factor of asphalt road surface crack,and exploreresistance behavior law in the crack tip stress. Combination of work environment, the waterdamage mechanism is firstly analyzed theoretically. Dynamic permeable test instrument andmoving water pressure flushing tester are invented for depth study of fiber reinforced chipseal anti-hydrodynamic behavior. Taking advantage of these new equipments, throughdynamic permeable test under different material conditions, variation of Seal coat materialsbehavior and performance are discussed, and fiber reinforced chip seal performance controlindicators under moving water effect is propose. Applicable conditions and the bestmaintenance timing method based on fiber reinforced chip seal are determined,by analyzing impact of the fiber reinforced chip seal work environment to performance, and focus on theadaptability to the natural environment, traffic conditions, as well as the old road trafficthrough theoretical analysis and finite element calculation.
     System theory is led into research on fiber reinforced chip seal material compositiondesign. According to system theory, fiber reinforced chip seal design methods can be dividedinto three levels, asphalt layer material design, fiber asphalt layer design and fiber reinforcedchip seal design. Through theoretical analysis and experimental study, fiber reinforced chipseal multi-index control system are proposed, considering Interlayer shear strength as controlindex of bonding properties, considering the strength under hydrodynamic pressure asimpermeability indicators, considering the material removal rate as adhesion properties index,considering structure depth as slip resistance index and fiber reinforced chip seal designmethod and process based on system theory are proposed. Relying on entity engineering, testroad was paved through the application of fiber reinforced chip seal design, and a depth studyon construction process control technology was carried out.
引文
[1]李盛霖.加快发展现代交通,助推社会管理创新[J].求是.2011(19).
    [2]胡小弟,孙立军.沥青路面车辆超载定义分析[J].同济大学学报:自然科学版.2007(12).
    [3]高建平,柳本民,郭忠印.货车交通对高速公路安全性的影响[J].同济大学学报:自然科学版.2005(6).
    [4]郭爱国.高速公路沥青路面早期破坏原因分析[J].岩石力学与工程学报.2004(z1).
    [5]陈其学.高速公路路面预防性养护决策[J].公路交通技术.2007(1):63~65.
    [6]张宗辉.公路建设养护新技术—纤维封层[J].石油沥青,2008.06.
    [7]帕尔哈提,莫明,黄燕.浅谈公路预防性养护的必要性[J].中国西部科技.2008(14).
    [8] Lysenko J, Scott G.“Are Your Roads Getting Enough Fiber”, Proceedings PI-98, Focusing onPerformance Conference, Australian Asphalt Pavement Association (AAPA), Sidney, Australia (1998).
    [9] Lee, J. and Y. R. Kim.2008. Understanding the Effects of Aggregate and Emulsion Application Rateson the Performance of Asphalt Surface Treatments. Transportation Research Record: Journal of theTransportation Research Board, No.2044
    [10]虎增福等.乳化沥青及稀浆封层技术[M].北京:人民交通出版社,2001
    [11]申爱琴等.沥青路面层间处置新材料及施工关键技术研究[R].2009.2.
    [12] Fran ois Chaignon. Fiber Reinforced Chip Seals[R]. COLAS INC,2007.
    [13]赵晓亮.纤维沥青碎石封层配合比设计研究[D].长安大学,2010.
    [14]张金荣.长寿命沥青路面层间处治技术研究[D].长安大学,2008.
    [15]臧芝树.橡胶沥青碎石封层路用性能研究[D].长安大学,2011.
    [16]陆飞.纤维沥青碎石应力吸收层配合比设计及作用机理研究[D].长安大学,2011.
    [17]王玉顺、朱敏清.高速公路沥青路面预防性养护技术与应用[M].北京:中国建材工业出版社,2008.
    [18]陈素丽,许福文.同步碎石封层技术研究及在公路养护中的应用[J].公路,2005(6):25~31.
    [19]陈晓娟.纤维沥青碎石封层适应性及阻裂效应研究[D].长安大学,2010.
    [20]申爱琴等.沥青纤维碎石封层技术在公路养护工程中的应用研究[R].长安大学.2010.06.
    [21]徐江强,童建龙,赵学君.沥青公路路面预防性养护问题[J].中华建设,2011(12).
    [22]韩庆哲,预防性养护在黄石高速公路中的应用[J].交通标准化.2012(1).
    [23]安建国.预防性养护在山东S1济聊高速公路的实践[J].筑路机械与施工机械化.2011(11).
    [24]颜可珍,林峰,章金钊.沥青路面预防性养护方法多属性灰色模糊决策[J].湖南大学学报:自然科学版.2011(5).
    [25]朱玉刚,沥青路面的养护措施探讨[J].交通标准化,2011(23).
    [26]王朝辉,王丽君,白华军等.基于时段的沥青路面预防性养护时机与对策一体优化研究[J].中国公路学报.2010(5).
    [27]史保华,许巍,齐勇等.机场沥青道面管理与预防性维护对策[J].交通运输工程学报.2008(2).
    [28]姚玉玲,李学红,张毕超.沥青路面预防性养护时机综合评价指标体系[J].交通运输工程学报.2007(5).
    [29]孙立军,姚祖康.沥青路面使用性能评价和养护对策确定的Fuzzy方法[J].同济大学学报:自然科学版.1990(2).
    [30]张超,王春清,杨书祥等.喷涂型沥青路面预防性养护材料性能评价指标及方法[J].交通运输工程学报.2009(5).
    [31] LIAO Weidong, CHEN Zheng, WU Shaopeng. Rutting Resistance of Asphalt Overlay withMultilayer Wheel Tracking Test [J].武汉理工大学学报:材料科学英文版.2006(3).
    [32]张绍阳,马玉兰,王选仓.基于关联分析的路面病害成因确定方法[J].中国公路学报.2008(2).
    [33] Midgley L and al. Practioner’s Guide to Design of Sprayed Seals–Revision2000Method[S],Austroads Publication No. AP-T17/02, Austroads Incorporated, Sydney, Australia (2002).
    [34] Jean-Martin Croteau, P. Eng, Fran ois Chaignon, Martin Thompson. A Four-Year PerformanceReview of North American and International Fibre-Reinforced Membrane Systems[R].WorksAlberta Ltd. Edmonton, Alberta,2007.
    [35] Gillespie RI.“The Evaluation and Study of a Fibre-Reinforced Membrane to Inhibit ReflectiveCracking”[C].4th International RILEM Conference on Reflective Cracking in Pavements. Ottawa,Ontario, Canada (2000).
    [36]北京埃盟泰机械设备有限公司.纤维封层设备施工手册[M].2007.06.
    [37] Transportation Research Board.“Chip Seal Best Practices”[M]. National Cooperative HighwayResearch Program Synthesis342, Washington D.C.(2005).
    [38] ASTM E274-2006. Standard Test Method for Skid Resistance of Paved Surfaces Using a Full-ScaleTire [S].
    [39] ASTM E965-96(2006). Standard Test Method for Measuring Pavement Macrotexture Depth Using aVolumetric Technique [S].2006.
    [40] Notes for the Specification of Bituminous Reseals[S]. TNZ P17, Transit New Zealand, Wellington,New Zealand.2002.
    [41] JTG F40-2004.公路沥青路面施工技术规范[S].
    [42]盐谷正俊,纤维及其复合材料力学性能和断裂过程中结构变化的研究[J],合成纤维,2010(8).
    [43] Feng Liang,Kumbhani Mayru,Kim Yong K. Fracture Behavior of Flock Fiber Reinforced LaminarComposite [J]. Journal of Materials Science and Engineering B,2011(1.)
    [44]李亮,贾普荣,王文贵.复合材料铺层拼接层间断裂韧性的试验研究[J],应用力学学报,2009(2).
    [45]董雁瑾,杨海升.玻璃纤维增强复合材料的I型层间断裂韧性[J].材料研究学报,1999,13(4).
    [46]邱新新,常红.复合材料单向板断裂韧性的光弹性实验研究[J].太原科技大学学报,2011(5).
    [47]王利民,陈浩然,任传波等.含界面裂纹复合材料的断裂分析[J].大连理工大学学报,1996,17(4).
    [48]杨卫疆,戴千策.玻璃纤维和聚丙烯单丝样条界面断口形态的分析[J].纤维复合材料,1998,1(2).
    [49]戴光,王艳茹等.纤维增强型复合材料断裂仿真分析[J].化工机械,2011(1).
    [50]林绣贤,CBR设计法的由来与发展[J].中外公路,1981(5).
    [51]2005. ASSHTO Designation:M320-05[S].
    [52]姚祖康.对我国沥青路面现行设计指标的评述[J],公路.2003.2.
    [53]孙立军.沥青路而结构行为理论[M]北京:人民交通出版社1997.
    [54]王林山,SUPERPAVE沥青混合料配合比设计研究[J].交通标准化,2011(23).
    [55]沙庆林.高等级公路半刚性基层沥青路面[M].北京:人民交通出版社1998.
    [56]申爱琴等.长寿命沥青路面层间处治技术研究[R].2010.6.
    [57] Lawson, W. D., M. Leaverton and S. Senadheera.2007. Maintenance Solutions for Bleeding andFlushed Pavements Surfaced with a Seal Coat or Surface Treatment [C]. Texas Department ofTransportation Research and Technology Implementation Office, Report0-5230-1.
    [58] Wood, T. J. Seal Coat Research Project[R]. Minnesota Department of Transportation,1999.
    [59] APRG/AAPA Pavement Work Tip No.19, Sprayed Sealing–Selecting Aggregate Size [M].2000.
    [60]申爱琴等.纤维沥青碎石封层适应性及阻裂效应研究研究[R].长安大学.2010.
    [61] Cooper KE, Held SL.The Evaluation of Fibre Reinforcement Techniques to Inhibit ReflectionCracking in Overlays [C], Department of Civil Engineering, Nottingham University, Nottingham,UK(1987).
    [62] Road Surface Dressing Association. Code of Practice for Surface Dressing [S], Colchester, UnitedKingdom (2004).
    [63] APT09-01-2001. Austroads Provisional Sprayed Seal Design Method [S]. Austroads. Sydney.Australia.
    [64] TRH3-2007. Surfacing Seals for Rural and Urban Roads-Design and Construction of Surfacing Seals
    [S]. Pretoria, South Africa., Version1.5.
    [65] Shuler, S. High-Traffic Chip-Seal Construction: The Tulsa Test Road[C]. Journal of18theTransportation Research Board, No.1300. National Research Council, Washington19D.C.
    [66]张朝晖.ANSYS11.0结构分析工程应用实例解析[M].北京:机械工业出版社.2008.
    [67]沈金安.国外沥青路面设计方法总汇[M].北京:人民交通出版社.2004.
    [68]路永婕,杨绍普,李韶华.载重子午轮胎与路面相互作用的分析[J].公路交通科技.2009.26(12):12-16.
    [69]刘锋,李丽娟,杨学贵.轮胎与地面接触问题的非线性有限元分析[J].应用力学学报.2001.18(4):141-146.
    [70]俞淇.子午线轮胎结构设计与制造技术[M].北京:化学工业出版社.2006.
    [71]丁剑平,贾德民,黄小清.三维非线性有限元法在子午胎分析中的应用[J].华南理工大学学报.2005.
    [72]杜善义,王彪.复合材料细观力学[M].科学出版社.1998
    [73]张研,张子明.材料细观力学[M].科学出版社.2008.
    [74]李裕春,时党勇,赵远.ANSYS10.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社.2006.
    [75]龚曙光,黄云清有限元分析与ANSYS APDL编程及高级应用[M].北京:机械工业出版社.2009.
    [76] LSTC, ls-dyna_970_manual-k [EB/OL]. http://www.lstc.com,2009.
    [77]白金泽. LS-DYNA3D理论基础与实例分析[M].科学出版社,2005.
    [78]黄晓明,代琦,平克磊.轮胎胎面与柔性路面摩擦接触的数值分析[J].公路交通科技,2008.25(1):16-20.
    [79] J.M.霍奇金森.先进纤维增强复合材料性能测试[M].北京:化学工业出版社,2005.56-67.
    [80]胡福增.材料表面与界面[M].上海:华东理工大学出版社,2008.1-235.
    [81]杜善义.王彪.复合材料细观力学[M].北京:科学技术出版社,1998.
    [82]曾庆敦.复合材料的细观破坏机制与强度[M].北京:科学出版社,2002.
    [83]杨庆生.复合材料细观结构力学与设计[M].北京:中国铁道出版社,2000.
    [84]顾震隆.短纤维复合材料力学[M].北京:国防工业出版社,1987,20-109.
    [85] Ho. S.M.S., L. Znazotto, D. MacLeod. Impact of dieffernt types of modification on low—temperaturetensile strength and Tcritical of asphalt binders [J]. Transportation Research Record.2002(1810):1.
    [86]易志坚,杨庆国,李祖伟等.基于断裂力学原理的纤维阻砼裂机理分析[J].重庆交通学院学报.2004(6).
    [87]武聪聪.纤维增强材料界面断裂力学问题研究[D].哈尔滨工程大学.2008.
    [88] Cox HL.A General introduction to fracture mechanics [J]. Mechanical Engineering PublicationLimited. London.1999.
    [89]李洪升,周承芳.工程断裂力学[M].大连:大连理工出版社.1990.
    [90] Nikita F, Morozov. The Simulation in the Fracture Mechanics[J].宁波大学学报(理工版).2000.
    [91]范天佑.断裂理论基础[M].北京:科学出版社.2002.
    [92]飞思科技产品研发中心. MATLAB6.5辅助图像处理[M].北京:电子工业出版社.2003.
    [93] Kenneth Gastleman.数字图像处理[M].北京:电子电子工业出版社.1998.
    [94]杨新华,王习武等.用图像处理技术实现沥青混合料有限元建模[J].中南公路工程.2005年9月.
    [95]李崇俊,马伯信,金志浩.二维C/C复合材料的断裂韧性研究[J].固体火箭技术.2003.
    [96]王端宜,刘敬辉,刘宇.沥青混合料粘弹塑性断裂参数的研究[J].华南理工大学学报(自然科学版).2009(37).
    [97]刘宇,张肖宁,王端宜.沥青混合料裂纹扩展阶段的疲劳寿命预测[J].华南理工大学学报(自然科学版).2008(36).
    [98]杨大田,朱洪州.沥青混合料的三种实验力学特性比较[J].大连交通大学学报,2010(31).
    [99] ASTM E399-05. Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC ofMetallic Materials [S].2005.
    [100]尹双增.断裂、损伤理论及应用[M].北京:清华大学出版社.1992.
    [101]郑传超,王秉纲.道路结构力学计算[M].北京:人民交通出版社.
    [102] JTJ073.2-2001.公路沥青路面养护技术规范[S].
    [103]张志强,余概宁,钱国平,广东省重载沥青路面的水损害及防治对策[J].中外公路,2004-8.
    [104]姜旺恒,张肖宁,李智.基于动水压力模拟试验的沥青混合料谁损坏力学机理[J].中国公路学报.2011(4).
    [105]沙庆林.高速公路沥青路面的水破坏及其防治措施[J].国外公路.2000.20(4).
    [106]肖庆一.沥青与矿料粘附性的测定方法[J].长安大学学报(自然科学版)2007.v12(1).
    [107]孙立军等.沥青路面结构行为理论[M].北京:人民交通出版社,2005
    [108] J. C. Petersen, H. Plancher, E. K. Ensley, R. L. Venable. Chemistry of Asphalt-AggregateInteraction: Relationship with Pavement Moisture-Damage Prediction Text[R]. TransportationResearch Record, No.843,1982.
    [109]蔡云梅.沥青路面水损害一孔隙水压力影响因素的研究[D].乌鲁木齐:新疆大学,2010
    [110]龙天渝,蔡增基.主编.流体力学[M].中国建筑工业出版社.2004年5月第一版.
    [111] RL. Terrel, J W. Shute. Summary Report on water Sensitivity [R]. SHRP Report: SHRP-A/IR-89-3,November1989.
    [112]黄琼念,杨胜坚,周盛丰.动水压力对同步碎石封层病害影响的试验研究[J].道路工程,2008.12-15.
    [113]丛波日,张晓春,李春勇.动载下沥青路面超孔隙水压力分析[J].交通科技.2007.(5):51-53
    [114] Hoven J M. Measurement and analysis of pore water pressure in thawing pavement structuressubjected to dynamic loading[D]. Minneapolis: University of Minnesota,1997:7-1-7-8.
    [115] Robert L. Lytton. Mechanics And Measurement of Moisture Damage[R], Moisture DamageSymposium Western Research Institute Laramie, Wyoming, July17-19,2002.
    [116] GBT19979.1-2005,土工合成材料防渗性能第一部分:耐静水压的测定[M].
    [117]申爱琴,郭寅川等,沥青纤维碎石封层技术在公路养护工程中的应用研究[R].长安大学.2011.
    [118]杨美荣.沥青路面水损害原因及其防治措施研究[D].西安:西安建筑科技大学.2006.
    [119]罗志刚,周志刚,郑健龙.沥青路面水损害问题研究现状[J].长沙交通学院学报.2003.
    [120] R. G. Hicks. Moisture Damage in Asphalt Concrete[R].NCHRP Synthesis of High-way PracticeNO.175, October1991.
    [121] AI/ASPHALT ES-12. Asphalt Surface Treatments—Construction Techniques [S].1982.
    [122] JTG E20-2011.公路工程沥青及沥青混合料试验规程[S].
    [123]孙立军等.沥青路面结构行为理论[M].人民交通出版社.2005.11.
    [124]申爱琴,唐培培,郭寅川等.重交通高等级公路沥青面层合理厚度及层间处置技术研究[R].长安大学.2008.
    [125]康海贵,郑元勋等.实测沥青路面温度场分布规律的回归分析[J].中国公路学报.2007(6).
    [126]中国气象科学数据共享服务网. http://cdc.cma.gov.cn/[DB/OL].1971-2010.
    [127]许世发.沥青路面温度分布规律研究[J].北京公路.2001(5).
    [128]秦健,孙立军.沥青路面温度场的分布规律[J].公路交通科技.2006(8).
    [129]秦健,孙立军.国内外沥青路面温度预估方法综述[J].中外公路.2005(6).
    [130] Helena. Maintenance Chip Seal Manual [S]. Montana Department of Transportation,2000.
    [131] Janisch, D.W., F.S. Gaillard, Minnesota Seal Coat Handbook [M], MN/RC-1999-07, MinnesotaDepartment of Transportation, Office of Minnesota Road Research, Maplewood,1998.
    [132]钱学森.论系统工程[M].长沙:湖南科技出版社.1996.
    [133]魏宏森,曾国屏.系统论:系统科学哲学[M],清华大学出版社.1995.
    [134]王连成.工程系统论[M].中国宇航出版社.2002.
    [135]刘军收,范晓燕.沥青纤维碎石封层在路面预防性养护中的应用[J].公路.2010(7).
    [136]肖晶晶.微表处改性乳化沥青及混合料性能研究[D].长安大学.2007.
    [137]黄颂昌等.乳化沥青与改性乳化沥青[M].人民交通出版社.2010.
    [138]杨江林.改性沥青及其乳化技术[M].人民交通出版社.2004.
    [139]封基良.纤维沥青混合料增强机理及其性能研究[D].东南大学.2005.
    [140]詹怀宇,纤维化学与物理[M].科学出版社.2010.
    [141]黄星路,朱大胜,顾伯勤.短纤维增强橡胶基密封复合材料横向拉伸强度的预测[J].中国科技论文在线.2011.6(9).
    [142] Holtrop W.. Sprayed sealing practice in Australia [J].1st International Sprayed Sealing Conference.ARRB Group. Adelaide. South Australia.2008.
    [143] Australian Asphalt Pavement Association (AAPA). NATIONAL SPRAYED SEALINGSPECIFICATION [S]. Victoria. AUSTRALIA.2004.
    [144] JTG D50-2006.公路沥青路面设计规范[S].2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700