用户名: 密码: 验证码:
典型有机磷和拟除虫菊酯对PC12胞毒性的氧化应激机制及对映体选择性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,一些科研工作者对手性农药的环境安全性进行了研究,并发现手性农药在环境归趋、内分泌干扰、生殖毒性以及免疫毒性等方面均具有对映体选择性。然而,到目前为止对单一对映异构体引起的毒性作用的分子机制的研究还比较有限。为了更为准确地评估手性农药的环境风险性,有必要开展典型手性农药的环境风险性评价,并深入研究对映体选择性毒性的分子机制。因此,本文主要以丙溴磷和联苯菊酯为手性有机磷和拟除虫菊酯的代表,以大鼠嗜铬细胞瘤株(PC12)细胞作为体外细胞模型,在细胞和分子水平上研究由氧化应激介导的有机磷和拟除虫菊酯类农药对PC12细胞的毒性机制及对映体差异性。研究主要取得以下结果:
     (1)以典型手性拟除虫菊酯联苯菊酯(BF)为研究对象,考察了cis-BF引起PC12细胞细胞毒性和氧化应激的对映体差异性。实验结果显示,当浓度为10-5mol L-1及以上时,cis-BF对PC12细胞的毒性效应及氧化应激存在显著的对映体选择性差异,对映体1S-cis-BF的作用明显强于对映体1R-cis-BF.1S-cis-BF可以更显著性地抑制PC12细胞活性,诱导细胞外乳酸脱氢酶(LDH);同时1S-cis-BF使PC12细胞内活性氧(ROS)和丙二醛(MDA)水平明显升高,细胞内超氧化物歧化酶(SOD)活性受到显著抑制。可见,cis-BF可以对映体特异性地诱导细胞毒性以及氧化应激,并且1S-cis-BF是其引起细胞毒性和氧化应激的主要贡献者。
     (2)在得到了cis-BF可以对映体选择性地诱导氧化应激的结果的基础上,采用荧光定量PCR (qRT-PCR)法进一步深入研究了cis-BF对氧化应激以及热休克蛋白相关基因表达的影响及对映体选择性。研究结果显示,当浓度大于5×10-6mol-1时,1S-cis-BF可以显著性地诱导HSP90、HSP70、HSP60、Cu-ZnSOD、 MnSOD、CAT以及GST基因表达上调,而1R-cis-BF对相关基因表达的影响明显弱于1S-cis-BF。1S-xis-BF对Cu-ZnSOD、MnSOD、GST和CAT基因表达的诱导可能主要是通过激活p38通路和ERK通路,对HSP90、HSP70和HSP60基因表达的诱导主要是通过激活p38通路。
     (3)以丙溴磷作为手性有机磷农药的代表,在对映体层面上研究丙溴磷由氧化应激介导的PC12细胞的细胞毒性的机制及对映体差异性。MTT、LDH和彗星实验的结果显示,丙澳磷外消旋体及其对映体对细胞活性、LDH释放以及细胞彗尾长度的影响具有剂量和时间依赖性,对映体(-)-丙溴磷的毒性明显高于(+)-丙溴磷和rac-丙溴磷。(-)-丙溴磷可以剂量和时间依赖性刺激ROS和MDA产生,同时诱导Cu-ZnSOD、GST、CAT、HSP70以及HSP90基因表达上调。而(+)-丙溴磷对相关基因表达的影响明显弱于(-)-丙溴磷及rac-丙澳磷。维生素E(6×10-4mol L-1)预处理可以剂量依赖性地降低细胞活性抑制率,使彗尾长度,ROS和MDA水平恢复至正常水平,进一步证实了氧化应激对细胞毒性的介导。除此之外,我们的研究结果显示氧化应激的产生先于细胞毒性和DNA损伤的产生,表明氧化应激是丙溴磷产生细胞毒性和基因毒性的起因而不是结果。
     (4)比较了甲胺磷、乙酰甲胺磷、氯胺磷、马拉硫磷及马拉氧磷5种有机磷农药诱导PC12细胞的细胞毒性、DNA损伤以及氧化应激的能力。MTT的结果显示,这5种有机磷在最高浓度80mg L-1时,对PC12细胞活性均有显著抑制,抑制率从大到小排序为马拉氧磷(32.1%)>甲胺磷(23.3%)>马拉硫磷(22.1%)>氯胺磷(4.0%)>乙酰甲胺磷(3.2%)。彗星实验的结果显示,当浓度为40mg L-时,暴露于有机磷中的细胞的彗尾长度和空白对照的比值从高到低依次为:马拉氧磷(3.02倍)>甲胺磷(2.35倍)>马拉硫磷(1.71倍)>乙酰甲胺磷(1.44倍)>氯胺磷(1.07倍)。在对氧化应激相关检测终点的检测中发现,甲胺磷、乙酰甲胺磷、马拉硫磷和马拉氧磷可以不同程度地诱导ROS和MDA的增加,并抑制SOD、过氧化氢酶(CAT)和谷胱甘肽(GSH)活性。维生素E预处理可以降低细胞活性抑制率,减弱DNA损伤,同时,可以使有机磷诱导的ROS、 MDA水平的上升以及CAT、SOD和GSH等抗氧化物酶活性的抑制得到恢复。
     综上,我们的研究结果表明,手性农药可以对映体选择性地诱导细胞产生氧化应激,并进一步诱导产生对映体选择性的细胞毒性和DNA损伤。本论文的研究为筛选出既具有高靶标生物药效又对生物低毒安全的手性农药对映体单体提供了科学依据,为我国环保型农药的研制开发提供了理论参考。
Previous studies have demonstrated the occurrence of enantioselectivity of chiral pesticides in environmental fate, endocrine disruption, reproductive toxicity and immune toxicity. However, research on the molecular mechanisms of enantioselective toxicity of chiral pesticides has been limited. Therefore, it is important to investigate the environmental risk of the chiral pesticides, and explore the toxic mechanism in-depth. In this study, we used the rat pheochromocytoma PC12cell line as an in vitro model to evaluate the involvement of the oxidative stress pathway in enantioselective toxicity of several common used chiral pesticides, represented by bifenthrin (BF) and profenofos (PFF). Both the underlying mechanisms and enantioselectivity of toxicities were investigated using molecular biology methods. The major results were listed as follows:
     (1) In this part, cis-BF was chosen to evaluate the involvement of the oxidative stress in enantioselective cytotoxicity of cis-BF. Following exposure of cells to cis-BF and its enantiomers, a significant reduction in cell survival and superoxide dismutase (SOD), as well as increased production of lactate dehydrogenase (LDH), intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), was observed in1S-cis-BF, while1R-cis-BF exhibited these effects to a lesser degree. These results demonstrated that enantiomer-specific cis-BF-induced oxidative stress is possibly the mechanism of cis-BF-induced enantioselective cytotoxicity.
     (2) Based on the result that cis-BF could enantioselectively induce oxidative stress, the expression patterns of different genes encoding heat shock protein and antioxidant enzymes were investigated by real-time quantitative PCR in PC12cells after exposure to cis-BF and its enantiomers. The results showed that exposure to1S-cis-BF resulted in increased transcription of HSP90、HSP70、HSP60. Cu-Zn-superoxide dismutase (Cu-ZnSOD)、Mn-superoxide dismutase (MnSOD)、 catalase (CAT) and glutathione-s-transferase (GST) at a concentration of5×10-6mol L-1and the above, while exposure to1R-cis-BF and rac-cis-BF exhibited these effects to lesser degrees. In addition, induction of antioxidant enzyme gene expression produced by1S-cis-BF might occur, at least in part through activation of p38MAPK and ERK, while increase of stress protein response produced by1S-cis-BF might occur through p38MAPK signaling pathway.
     (3) The role of oxidative stress in enantiomer-specific, profenofos (PFF)-induced cytotoxicity and genotoxicity was investigated using PC12cells. The results demonstrated that PFF enantioselectively induced inhibition of cell viability and DNA damage in PC12cells. A concentration-and time-dependent significant induction of reactive oxygen species, malondialdehyde and gene expression encoding antioxidant enzyme (Cu-ZnSOD, GST and CAT) and stress protein (HSP70and HSP90), was observed in (-)-PFF, while (+)-PFF and rac-PFF exhibited these effects to lesser degrees. Pre-treatment with vitamin E (6×10mol L-1) caused a significant attenuation in the toxic effect; reversing subsequent PFF-induced elevation of ROS and MDA levels, further strengthening the involvement of oxidative stress in PFF mediated toxicity. In addition, the results also showed that PFF-dependent ROS accumulation, MDA release and oxidative stress gene expression preceded the loss of cell viability and induction of DNA damage, and already significantly changed at concentrations which are not yet cytotoxic or genotoxic. These results indicate that oxidative stress may contribute to PFF induced toxicity and was not a consequence of it.
     (4) The primary objective of this part is to compare the ability of acephate (ACE), methamidophos (MET), chloramidophos (CHL), malathion (MAT) and malaoxon (MAO) to induce cytotoxicity, DNA damage and oxidative stress at5mg L-1~80mg L-1in PC12cells. The results demonstrated that MET、MAT and MAO caused significant inhibition of cell viability and increased DNA damage in PC12cells at40mg L-1. MAO was more toxic than the other organophosphorous (OP) compounds. ACE、 MET、MAT and MAO increased the levels of intracellular ROS and MDA, and decreased the activity of SOD、CAT and GSH at20mg L-1and40mg L-1to different degrees. Pre-treatment with vitamin E (6×10-4mol L-1) caused a significant attenuation in the cytotoxic and genotoxic effect; reversing subsequent OP-induced elevation of peroxidation products and the decline of anti-oxidant enzyme activities. These results indicate that oxidative damage contributes to the OP-induced cytotoxicity and DNA damage.
     Overall, results of our study suggest that enantiomer-specific chiral pesticide-induced oxidative stress is possibly the mechanism of chiral pesticide-induced enantioselective cytotoxicity and genotoxicity.1S-cis-BF and (-)-PFF are the major contributors. This paper provided a scientific basis for screening out the monomer of chiral pesticides which both has high pesticide effect to target organism and has low toxicity to non-target organism, and provided a theoretical reference for researching and developing the environment-friendly pesticides.
引文
Abdollahi, M., Ranjbar, A.. Shadnia, S., Nikfar, S., Rezaie, A. Pesticide and oxidative stress:A review. Med. Sci. Monitor.2004,10:144-147.
    Adelsbach, T. L., Tjeerdema, R. S. Chemistry and fate of fenvalerate and esfenvalerate. Rev. Environ. Contam. Toxicol.2003,176:137-154.
    Amal, A. M., Howaida, A. N., Gihan, M. S., Manal, H, Abdel, A. Role of oxidative stress and apoptosis in acute organophosphorus intoxicated patients.2005, Journal. Medical. Research.26:255-263.
    Atessahin, A., Yilmaz, S., Karahan, U., Purun, Cu. U., Tasdemir, B. The effects of vitamin E and selenium on cypermethrin-induced oxidative stress in rats. Turk. J. Vet. Anim. Sci.2005,29:385-391.
    Bachowski, S., Kolaja, K. L., Xu, Y., Ketcham, C. A., Stevenson, D. E., Walborg, E. F., Klaunig J. E. Role of oxidative stress in mechanism of dieldrin'shepatotoxicity. Ann. Clin. Lab. Sci.1997,27:196-209.
    Banerjee, B. D., Seth, V., Ahmed, R. S. Pesticide-induced oxidative stress:per-spectives and trends. Rev. Environ. Health.2001,16:1-40.
    Bhattacharya, M., Kaviraj, A. Toxicity of the pyrethroid pesticide fenvalerate to freshwater catfish clarias gariepinus:Lethality, biochemical effects and role of dietary ascorbic acid. J. Environ. Sci. Heal. B.2009,44:578-583.
    Cander, B., Dur. A., Yildiz, M. The prognostic value of the Glasgow coma scale, serum acetylcholinesterase and leukocyte levels in acute organophosphorus poisoning. Ann. Saudi. Med.2011,31:163-166.
    Casida, J. E., Quistad, G. B. Golden age of insecticide research:past, present, or future. Annu. Rev. Entomol.1998,43:1-16.
    Chabrier, P. E., Demerle-Pallardy. C., Auguet, M. Nitric oxide synthases:targets for therapeutic strategies in neurological diseases. Cell. Mol. Life. Sci.1999,55: 1029-1035.
    Chen, F., Zhang, Q., Wang, C., Lu, Y, Zhao, M. Enantioselectivity in estrogenicity of the organochlorine insecticide acetofenate in human trophoblast and MCF-7 cells. Reproductive. Toxicol.2012,33:53-59.
    Duysen, E.G., Lockridge, O. Induction of plasma acetylcholinesterase activity in mice challenged with organophosphorus poisons. Toxicol. Appl. Pharm.2011,255: 214-220.
    Elisi, M., Monica, F., Pierluigi, B., Gu, U. F., Maria, J.R. Effects of four carbamate compounds on antioxidants parameters. Ecotoxicol. Environ. Saf.2009,72: 922-930.
    Fetoui, H., Garoui, E. M., Makni-ayadi, F., Zeghal, N. Oxidative stress induced bylambda-cyhalothrin (LTC) in rat erythrocytes and brain:Attenuation byvitamin C. Environ. Toxicol. Pharmacol.2008,26:225-231.
    Gabbianelli, R., Falcioni, G., Nasuti, C., Cantalamessa, F. Cypermethrin-inducedplasma membrane perturbation on erythrocytes from rats:reduction of fluidity in the hydrophobic core and in glutathione peroxidase activity. Toxicol. 2002,175:91-101.
    Giray, B., Giirbay, A., Hincal, F. Cypermethininduced oxidative stress in ratbrain and liver is prevented by Vitamin C or allopurinol. Toxicol. Lett.2001,118:139-146.
    Halliwell, B. Antioxidants in human health and disease. Ann. Rev. Nutr.1996,16: 33-50.
    Hill, I. R. Aquatic organisms and pyrethroids. Pestic. Sci.1989,27:429-465.
    Hu, F., Li, L., Wang, C., Zhang, Q., Zhang, X. F., Zhao, M. R. Enantioselective induction of oxidative stress by permethrin in rat adrenal pheochromocytoma (PC12) cells. Environ. Toxicol. Chem.2010,29:683-690.
    Iscan. M., Coban. T., Cok, I., Bulbul, D., Eke, B. C., Burgaz, S. The organochlorinepesticide residues and antioxidant enzyme activities in human breasttumors:is there any association? Breast. Cancer. Res.2002,72:173-182.
    Jalili, S. H., Ilkhanipour, M., Heydari. R., Farshid, A. A., Salehi, S. The effects ofVitamin E on endosulfan induced oxidative stress in rat heart. Pakistan. J. Nutr. 2007.6:375-380.
    Jin, Y., Liu, J., Wang, L., Chen, R., Zhou, C., Yang, Y, Liu, W, Fu, Z. Permethrin exposure during puberty has the potential to enantioselectively induce reproductive to toxicity in mice. Environ. Int.2012,42:144-151.
    Kamboj, A., Kiran, R., Sandhir, R. Carbofuran-induced neurochemical andneurobehaviourak altrations in rats:attenuation by N-acetylcysteine. Exp. Brain. Res.2006a,170:567-575.
    Kamboj, A., Kiran, R., Sandhir, R. N-acetylcysteine ameliorates carbofuron-induced alterations in lipid composition and activity of membrane boundenzymes. Mol. Cell. Biochem.2006b,286:107-114.
    Kamboj, S. S., Kumar, V., Kamboj, A., Sandhir R. Mitochondrial oxidative stressand dysfunction in rat brain induced by carbofuron exposure. Cell. Mol. Neurobiol. 2008.28,961-969.
    Kelvin, L. Baltimore lectures on molecular dynamics and the wave theory of light. C. J. Clay and Sons.1904,449.
    Koner, B. C., Banerjee, B. D., Ray, A. Organochlorine pesticide induced oxidativestress and immune suppression in rat. Indian. J. Exp. Biol.1998,36: 395-398.
    Li, L., Hu, F., Wang, C., Wang, X. D. Enantioselective induction of oxidative stress by acetofenate in rat PC12 cells. J. Environ. Sci.2010,22:1980-1986.
    Liu, H., Liu, J., Xu, L. Enantioselective cytotoxicity of isocarbophos is mediated by oxidative stress-induced JNK activation in human hepatocytes. Toxicol.2010, 276:115-121.
    Liu, W., Gan, J., Schlenk, D. Enantioselectivity in environmental safety of current chiral insecticides. Proc. Natl. Acad. Sci. USA.2005,102:701-706.
    Lovell, M. A., Markesbery, W. R. Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimei's disease. Nucleic. Acids. Res.2007,35: 7497-7504.
    Lucia, M., Fabio, C. Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mut. Res.2009,674:73-84.
    Ma, Y, Chen, L. H., Lu, X. T., Chu. H. D., Xu, C., Liu, W. P. Enantioselectivity in aquatic toxicity of synthetic pyrethroid insecticide fenvalerate. Ecotox. Environ. Safe.2009,72:1913-1918.
    Maellaro, E., Casini, F, Del Bello, B., Comporti, M. Lipid peroxidation and antioxidant systems in the liver injury produced by glutathione deleting agents. Biochem. Pharmacol.1990,39:1513-1521.
    Mariani, E., Polidori, M. C., Cherubini, A., Mecocci, P. Oxidative stress in brain aging, neurodegenerative and vascular diseases:an overview. J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci.2005,827:65-75.
    Maxwell, D. M., Brecht, K. M., Koplovitz, I. Acetylcholinesterase inhibition:does it explain the toxicity of organophosphorus compounds? Arch. Toxicol. 2006,80: 756-760.
    Melchiorri, D., Reiter. R., Sewerynek, E., Hara, M., Chen, L., Histico. G. Paraquat toxicity and oxidative damage. Reduction by melatonin. Biochem. Pharmacol. 1996,39:1095-1099.
    Migliore, L., Fontana, I., Colognato, R., Coppede, F., Siciliano, G., Murri, L. Searching for the role and the most suitable biomarkers of oxidative stress in Alzheimer's disease and in other neurodegenerative diseases. Neurobiol. Aging. 2005.26:587-595.
    Muniz, J. F., McCauley, L., Scherer, J., Lasarev. M., Koshy. M.. Kow, Y. W., Nazar-Stewart, V., Kisby, G.E. Biomarkers of oxidative stress and DNA damage in agricultural workers:a pilot study, Toxicol. Appl. Pharmacol.2008,227: 97-107.
    Neuschl, J., Kacmar, P., Poracova, J. Toxicologic evaluation of pyrethroid insecticide supermethrin in rabbits end pheasants. Vet. Med.1995,40:383-386.
    Nunomura, A., Moreira. P. I., Lee, H. G., Zhu, X., Castellani. R. J., Smith, M. A., Perry, G., Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases, CNS Neurol. Disord. Drug. Targets.2007,6:411-423.
    Oberoi, S., Ahmed, R. S., Suke, S. G., Bhattacharya, S. N., Chakraborti, A.. Banerjee. B. D. Comparative effect of topical application of lindane and permethrin on oxidative stress parameters in adult scabies patients. Clin. Biochem.2007.40: 1321-1324.
    Ozmen, M., Sener, S., Mete, A. In vitro and in vivo acetylcholinesterase-inhibiting effect of new classes of organophosphorus compounds. Environ. Toxicol. Chem. 1999,18:241-246.
    Rai, D., Sharma, B. Carbofuran-induced oxidative stress in mammalian brain. Mol. Biotechnol,2007,37:66-71.
    Rai, D.K., Rai, P.K., Rizvi, S.I., Watal, G., Sharma. B. Experimental and toxicologic pathl.2009,61:531-535.
    Rosadele, C., Gabriella. A.The role of oxidative stress in the in vitro inductionof micronuclei by pesticides in mouse lung fibroblasts. Mutagenesis,2003,18: 127-132.
    Sahoo, A., Samanta, L., Chainy, G. Mediation of oxidative stress in HCH-induced neurotoxicity in rat. Arch. Environ. Contam. Toxicol.2000,39:7-12.
    Schulz, J. B., Lindenau, J., Seyfried, J., Dichgans, J. Glutathione, oxidative stress and neurodegeneration. Eur. J. Biochem.2000,267:4904-4911.
    Selen, O., Misra, H. Pesticides induced oxidative stress in thymocytes. Mol. Cell. Biochem.2006,290:137-144.
    Skulachev, V. P. Mitochondrial physiology and pathology:concepts of programmed death of organelles, cells and organisms. Mol. Aspects. Med.1999,20:139-184.
    Spencer, J., Malley, M. Pyrethroid Illnesses in California,1996-2002. Rev. Environ. Contam. Toxicol.2006,186:57-72.
    Verma, R. S., Mehta, A., Srivastava, N. In vivo chlorpyrifos induced oxidative stress: Attenuation by antioxidant vitamins. Pestic. Biochem. Phys,2007,88:191-196.
    Wang, L. M., Liu, W. P, Yang, C. X., Pan, Z. Y. Gan, J. Y, Xu, C., Zhao, M. R., Schlenk. D. Enantioselectivity in estrogenic potential and uptake of bifenthrin. Environ. Sci. Technol.2007,41:6124-6128.
    Wang, P., Jiang, S. Enantiomeric Resolution of Chiral Pesticides by High-Performance Liquid Chromatography. J. Agric. Food Chem.2006,54:1577-1583.
    Xu, C, Tu, W. Q., Lou. C., Hong. Y. Y. Zhao, M. R. Enantioselective separation and zebrafish embryo toxicity of insecticide beta-cypermethrin. J. Environ. Sci.2010, 22:738-743.
    Yousef, M. I., Awad, T. I., Mohamed, E. H. Deltamethrin-induced oxidativedamage and biochemical alterations in rat and its attenuation by Vitamine. Toxicol.2007, 227:240-247.
    Zama, D., Meraihi, Z., Tebibel, S., Benayssa, W., Benayache, F., Benayache, S., Vlietinck, A. J. Chlorpyrifos-induced oxidative stress and tissue damage in the liver, kidney, brain and fetus in pregnant rats:The protective role of the butanolic extract of Paronychia argentea L. Indian.J. Pharmacol.2007,39:145-150.
    Zhang, G., Parker, A., House, A. Sedimentary records of DDT and HCH in the Pearl River Delta, South China. Environ. Sci. Technol.2002,36:3671-3677.
    Zhao, M., Chen. F., Wang, C., Zhang, Q., Gan, J., Liu, W. Integrative assessment of enantioselectivity in endocrine disruption and immunotoxicity of synthetic pyrethroids. Environ. Pollut.2010,158:1968-1973.
    Zhao, M., Zhang, Y., Wang, C., Fu, Z., Liu, W., Gan, J. Induction of macrophageapoptosis by an organochlorine insecticide acetofenate. Chem. Res. Toxicol.2009,22:504-510.
    Zwart, P. Poisoning caused by the pyrethroid compound deltamethrin in grounds amadines. Tijdschrift voor.diergeneeskunde.1988,113:1009-1010.
    冯精兰,翟梦晓,刘相甫,申君慧,孙剑辉.有机氯农药在中国环境介质中的分布.人民黄河.2002,33:91-94.
    郭立,张清敏.氨基甲酸酯类农药残留分析方法的研究进展.天津农学院学报.2011,8:15-16.
    梁骏华.二氯二苯三氯乙烷(DDT)对神经系统氧化—抗氧化系统的影响及抗氧化剂tBHQ的干预作用.华中科技大学同济医学院硕士学位论文.2006.
    凌关庭.抗氧化食品与健康.北京:化学工业出版社,2004,1-5.
    刘惠君,詹秀明,刘维屏.Rac-异丙甲草胺及其S-对映体对土壤微生物量碳、氮
    的影响.土壤学报,2006,43:875-878.
    刘松岩,李大鹏,庄平,王明学.水生动物氧化应激生物标志物的研究进展.水利渔业.2006,26:16-19.
    王泽镕,宋超,陈家长.氨基甲酸酯类农药的环境激素效应研究进展.安徽农业 科学.2011,39:10942一10543.
    吴海涛.牡蛎水提液抗氧化特性研究.辽宁大连:大连轻工业学院,2005.
    许春向,邹学贤.现代卫生化学.北京:人民卫生出版社.2000,822-825.
    袁勤生.超氧化物歧化酶.上海:华东理工大学出版社,2009,229.
    张聪,刘慧刚,章晓凤.联苯菊酯对靶标生物及非靶标生物毒性的对映体差异.浙江工业大学学报.2009,37:366-371.
    赵克然,杨毅军,曹道俊.氧自由基与临床.北京:中国医药出版社.2000,8-19.
    Bhunya, S. P., Pati, P. C. Effect of deltamethrin, a synthetic pyrethroid. on the induction of chromosome aberrations, micronuclei and sperm abnormalities in mice. Mutage.1990,5:229-232.
    Cini, M., Fariello, R. G., Bianchetti, A., Moretti, A. Studies on lipid peroxidation in the rat brain. Neurochem. Res.1994,19:283-288.
    Cinzia, N., Franco, C., Giancarlo, F., Rosita, G. Different effects of Type Ⅰ and Type Ⅱ pyrethroids on erythrocyte plasma membrane properties and enzymatic activity in rats. Toxicol.2003,191:233-244.
    David. E. R., Jeffrey, R. F. A reassessment of the neurotoxicity of pyrethroid insecticides. Pharmacol. Therapeut.2006,111:174-193.
    Djordjevic, V.B. Free radicals in cell biology. Int. Rev. Cytol.2004,237:57-89.
    Fatma, M., Ei-Demerdash. Lambda-cyhalothrin-induced changes in oxidative stress biomarkers in rabbit erythrocytes and alleviation effect of some antioxidants. Toxicol. in Vitro.2007,21:392-397.
    Flaskos, J., Harris, W., Sachana, M., Munoz, D., Tack, J., Hargreaves, A. J. The effects of diazinon and cypermethrin on the differentiation of neuronal and glial cell lines. Toxicol. Appl. Pharm.2007,219:172-180.
    Fozia, B., Mahmooduzzafar, T. O., Siddiqi, M. I. The antioxidative response system in Glycine max (L.) Merr.exposed to Deltamethrin,a synthetic pyrethroid insecticide. Environ. Poll.2007,147:94-100.
    Hamadi, F., Ei, M. G., Najiba, Z. Lambda-cyhalothrin-induced biochemical and histopathological changes in the liver of rats:Ameliorative effect of ascorbic acid. Exp Toxicol. Pathol.2009,61:189-196.
    Hougard, J.M., Zaim, S.D., Guillet. P. Bifenthrins:a useful pyrethroid insecticide for treatment of mosquito nets. J. Med. Entomol.2002,39:526-533.
    Irma, K., Tarja, T., Hanna, T. The toxicity of pyrethroid compounds in neural cell cultures studied with total ATP, mitochondrial enzyme activity and microscopic photographing. Environ. Toxicol. Pharm.2004,15:95-102.
    Jenner, P., Dexter, D. T., Sian, J., Schapira, A. H., Marsden, C. D. Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease.The royal kings and queens Parkinson's disease research group. Ann. Neurol.1992.32:82-87.
    Jin, Y. X., Chen, R. J., Wang, W. Y., Zhou, L., Liu, W. P., Fu, Z. W. Enantioselective induction of estrogen-responsive gene expression by permethrin enantiomers in embryo-larval zebrafish. Chemosphere.2009,74:1238-1244.
    Kale, M., Rathore, N., John, S., Bhatnagar, D. Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat erythrocytes:a possible involvement of reactive oxygen species. Toxicol. Lett.1999,105: 197-205.
    Laskowski, D. A. Physical and chemical properities of pyrethroids. Rev. Environ. Contam. Toxicol.2002,79:1-14.
    Liu, H. G., Xu, L.H., Zhao, M. R., Liu, W. P., Zhang, C., Zhou, S.S. Enantiomer-specific bifenthrin-induced apoptosis mediated by MAPK signalling pathway in Hep G2 cells. Toxicol.2009,261:119-125.
    Liu, H. G., Zhao, M. R., Zhang, C., Ma, Y., Liu, W. P. Enantioselective cytotoxicity of the insecticide bifenthrin on a human amnion epithelial (FL)cell line. Toxicol. 2008,253:89-96.
    Liu, W. P., Gan, J. Y., Lee. S. J., Werner, I. Isomer selectivity in aquatic toxicity and biodegradation of bifenthrin and permethrin. Environ. Toxicol. Chem.2005,24: 1861-1866.
    Luo, T, Xia, Z. A small dose of hydrogen peroxide enhances tumor necrosis factor-alpha toxicity in inducing human vascular endothelial cell apoptosis reversal with propofol. Anesth. Analg.2006,103:110-116.
    Owen, A. D.. Schapira, A. H.. Jenner, P., Marsden. C. D. Oxidative stress and Parkinson's disease. Ann. N. Y. Acad. Sci.1996.786:217-233.
    Patel, S.. Pandey, A. K.. Bajpayee, M., Parmar, D., Dhawan, A. Cypermethrin-induced DNA damage in organs and tissues of the mouse:evidence from the comet assay. Mutat. Res.2006,607:176-183.
    Perandones, C. E., Illera, V. A., Peckham. D., Stunz, L. L., Ashman, R.F. Regulation of apoptosis in vitro in mature murine spleen T cells. J. Physiol.1993,265: 636-643.
    Qiao, D., Seidler, F. J., Slotkin, T. A. Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos. Toxicol. Appl. Pharmacol.2005,206:17-26.
    Reiter, R J., Acuna-Castroviejo, D., Tan, D. X., Burkhardt, S. Free radical-mediated molecular damage.Mechanisms for the protective actions of melatonin in the central nervous system. Ann. N. Y. Acad. Sci.2001,939:200-215.
    Shafer, T. J., Meyer, D. A., Crofton, K. M. Developmental neurotoxicity of pyrethroid insecticides:Critical review and future research needs. Environ Health. Persp. 2005,113:123-136.
    Sun, H., Xu, X., Xu, L. C., Song, L., Hong, X., Chen. J. F. Antiandrogenic activity of pyrethroid pesticides and their metabolite in reporter gene assay. Chemosphere. 2007,66:474-479.
    Villarini, M., Moretti, M., Damiani, E., Greci, L., Santroni, A. M., Fedeli, D., Falcioni, G., Detection of DNA damage in stressed trout nucleated erythrocytes using the comet assay:protection by nitroxide radicals. Free. Radic. Biol. Med.1998,24: 1310-1315.
    Wang, L. M., Liu, W. P., Yang, C. X., Pan, Z. Y., Gan, J. Y., Xu, C., Zhao, M. R, Schlenk, D. Enantioselectivity in estrogenic potential and uptake of bifenthrin. Environ. Sci. Technol.2007,41:6124-6128.
    Wolf, G. H., Norbert H. S., Karl-Heinz, K., Gabriele, L., Helga, I. Induction of mitotic cell division disturbances and mitotic arrest by pyrethroids in V79 cell cultures. Toxicol. Lett.1999,107:81-27.
    Xu, C., Wang, J. J., Liu, W. P., Sheng, D. Y.; Tu, Y, Ma, Y. Separation and aquatic toxicity of enantiomers of the pyrethroid insecticide lambda-cyhalothrin. Environ. Toxicol. Chem.2008.27:174-81.
    Yadav, R. S., Srivastava, H. C., Adak, T. House-scale evaluation of bifenthrin indoor residual spraying for malaria vector control in India, J. Med. Entomol.2003,40: 58-63.
    Yoon, T. P., Jacobsen, E. N. Privileged chiral catalysts, Science.2003,299: 1691-1693.
    Zafrilla, P., Mulero, J. M., Xandri, J., Santo, E., Caravaca. G., Morillas, J. M. Oxidative stress in Alzheimer patients in different stages of the disease. Curr. Med. Chem.2006,13:1075-1083.
    Zhang, Y., Dawson, V. L., Dawson, T. M. Oxidative stress and genetics in the pathogenesis of Parkinson's disease. Neurobiol. Dis.2000,7:240-250.
    Zhao, M. R, Liu, W. P. Enantioselectivtty in the immunotoxicity of the insecticide acetofenate in an vitro mode. Environ. Toxicol. Chem.2009,28:578-585.
    Zhao, M. R., Wang, C. Liu, K. K., Sun, L. W., Li, L., Liu, W. P. Enantioselectivity in chronic toxicology and accumulation of the synthetic pyrethroid insecticide bifenthrin in Daphnia magna. Environ. Toxicol. Chem.2009,28:1475-1479.
    Zhao, M. R., Zhang, Y., Liu, W. P., Xu, C., Wang, L. M., Gan, J.Y. Estrogenic activity of lambda-cyhalothrin in the MCF-7 human breast carcinoma cell line. Environ. Toxicol. Chem.2008,27:1194-1200.
    Zhen, Q. J., Hara, P. M. Reactive oxygen species in in vitro pesticide-induced neuronal cell (SH-SY5Y) cytotoxicity:Role of NFkB and caspase-3. Free. Radic. Biol. Med.2007,42:288-298.
    Beyersmann, D., Hechtenberg, S. Cadmium, gene regulation and cel-lular signalling in mammalian cells, Toxicol. Appl. Pharmacol.1997,144:247-261.
    Ellis, R. J., van der Vies, S. M. Molecular chaperones. Annu. Rev. Biochem.1991,60: 321-347.
    Feder, M. E., Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response:evolutionary and ecological physiology. Annu. Rev. Physiol. 1999,61:243-82.
    Fridovich, I. Superoxide dismutases. Adv. Enzymol.1986,58:61-97.
    Gautier, J. P., Holzhaeuser, D., Markovic, J., Germaud, E., Schilter, B., Ad Turesky, R.J. Oxidative damage and stress response from ochratoxin A exposure in rats. Free. Radic. Biol. Med.2001,30:1089-1098.
    Geist, J., Werner, I., Eder, K. J., Leutenegger. C. M. Comparisons of tissue-specific transcription of stress response genes with whole animal endpoints of adverse effect in striped bass (Morone saxatilis) following treatment with copper and esfenvalerate. Aquat. Toxicol.2007,85:28-39.
    Gupta, S. C., Siddique, H. R., Mathur, N., Vishwakarma, A. L., Mishra, R. K., Saxena, D. K, Chowdhuri, D. K. Induction of hsp70, alterations in oxidative stress markers and apoptosis against dichlorvos exposure in transgenic Drosophila melanogaster:Modulation by reactive oxygen species. Biochim. Biophys. Acta. 2007,1770:1382-1394.
    Jin, Y., Wang, L., Ruan. M., Liu, J., Yang, Y., Zhou, C, Xu, B., Fu, Z. Cypermethrin exposure during puberty induces oxidative stress and endocrine disruption in male mice. Chemosphere.2011,84:124-130.
    Kano, Y, Horie, N., Doi, S., Aramaki, F., Maeda, H., Hiragami, F., Kawamura, K., Motoda, H., Koike, Y., Akiyama, J., Eguchi, S., Hashimoto, K. Artepillin C derived from propolis induces neurite outgrowth in PC12m3 cells via ERK and p38 MAPK pathways. Neurochem. Res.2008,33:1795-1803.
    Kregel, K. C. Heat shock proteins:modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol.2002,92:2177-2186.
    Liu, H. G., Zhao, M. R., Zhang, C., Ma, Y., Liu, W. P. Enantioselective cytotoxicity of the insecticide bifenthrin on a human amnion epithelial (FL) cell line. Toxicol. 2008,253:89-96.
    Lu, X. T., Hu, F., Ma, Y, Wang, C., Zhang, Y., Zhao, M R. The role of oxidative stress in enantiomer-specific, bifenthrin-induced cytotoxicity in PC 12 cells. Envirol. Toxicol.2011,26:271-278.
    Niederer, K. E., Morrow, D. K., Gettings, J. L, Irick, M., Krawiecki, A., Brewster. J. L. Cypermethrin blocks a mitochondria-dependent apoptotic signal initiated by deficient-linked glycosylation within the endoplasmic reticulum. Cell. Signal. 2005,17:177-86.
    Park, J. Y, Kim, E. J., Kwon, K. J., Jung, Y. S., Moon. C. H., Lee. S. H., Baik. E. J. Neuroprotection by fructose-1,6-bisphosphate involves ROS alterations via p38 MAPK/ERK. Brain. Res.2004,1026:295-301.
    Roch, P. Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture.1999,172:125-145.
    Sharma, S. K., Christen, P., Goloubinoff, P. Disaggregating chaperones:an unfolding story. Curr. Protein Pept. Sci.2009,10:432-446.
    Sheader, D. L., Williams. T. D., Lyons. B. P., Chipman, J. K. Oxidative stress response of European flounder(Platichthys flesus) to cadmium determined by a custom cDNA microarray. Mar. Environ. Res.2006,62:33-44.
    Singh, M. P., Reddy, M. M., Mathur, N., Saxena. D. K., Chowdhuri, D. K. Induction of hsp70, hsp60, hsp83 and hsp26 and oxidative stress markers in benzene, toluene and xylene exposed Drosophila melanogaster:Role of ROS generation. Toxicol. Appl. Pharm.2009,235:226-243.
    Su, B., Karin, M. Mitogen-activated protein kinase cascades and regulation of gene expression. Curr. Opin. Immunol.1996,8:402-411.
    Verlecar, X. N., Jena, K. B., Chainy, G. B. N. Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature. Chem. Biol. Interact.2007, 167:219-226.
    Wanilada, R., Rungnapa, L., Pikul, J., Sirawut, K., Nitsara, K. Expression and distribution of three heat shock protein genes under heat shock stress and under exposure to Vibrio harveyi in Penaeus monodon. Dev. Comp. Immunol,2010,34: 1082-1089.
    Woo, S., Yum, S., Kim, D. W., Park, H. S. Transcripts level responses in a marine medaka (Oryzias javanicus) exposed to organophosphorus pesticide. Comp. Biochem. Phys. C. Toxicol. Pharmacol.2009,149:427-432.
    Wu, L., Chu, K. Characterization of heat shock protein 90 in the shrimp Metape-naeus ensis:evidence for its role in the regulation of vitellogenin synthesis. Mol. Reprod. Dev.2008,75:952-959.
    Xu, W., Mimnaugh, E. G., Kim, J. S., Trepel, J. B., Neckers, L. M. Hsp90, not Grp94, regulates the intracellular trafficking and stability of nascent ErbB2. Cell. Stress. Chaperones.2002,7:91-96.
    Yoshimi, T., Odagiri, K., Hiroshige, Y., Yokobori, S., Takahashi, Y, Sugaya, Y, Miura, T. Induction profile of HSP70-cognate genes by environmental pollutants in Chironomidae. Environ. Toxicol. Pharmacol.2009,28:294-301.
    Yu, B. P. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 1994.74:139-162.
    Abdel-Halim. K. Y., Salama, A. K., El-khateeb, E. N., Bakry. N. M. Organophosphorus pollutants (OPP) in aquatic environment at Damietta Governorate, Egypt: Implications for monitoring and biomarker responses. Chemosphere.2006,63: 1491-1498.
    Arrigo, A. P. Small stress proteins:chaperones that act as regulators of intracellular redox state and programmed cell death. Biol. Chem.1998,379:19-26.
    Betul, K. C. Sibel, O., Buket. A. Effects of trichlorfon on malondialdehyde and antioxidant system in human erythrocytes. Toxicol. In Vitro.2007,21:1538-1544.
    Currie, R., Tanguay, R. Analysis of RNA for transcripts for catalase and SP71 in rat hearts after in vivo hyperthermia. Biochem. Cell. Biol.1991.69:375-382.
    Fukuto, T. R. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health. Perspect.1990,87:245-254.
    Garrison A W. Probing the enantioselectivity of chiral pesticides. Environ. Sci. Technol.2006,40:16-23.
    Gautier, J. P., Holzhaeuser, D., Markovic, J., Germaud, E., Schilter. B., Ad Turesky, R. J. Oxidative damage and stress response from ochratoxin A exposure in rats. Free. Radic. Biol. Med.2001,30:1089-1098.
    Gennaro, G., Zhara, A., Marina, G., Annabella, V., Terrance, J. K.,Lucio, G. C. Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency. Toxicol. Appli. Pharmacol.2007,219:181-189.
    Halliwell, B. Oxidants and human disease:some new concepts. FASEB J.1987,1: 358-364.
    Khaled, A., Petri, R., Jorma, J., Olavi, P. In vitro metabolism and interaction of profenofos by human, mouse and rat lever preparations. Pesti. Biochem. physiol. 2007,87:238-247.
    Kregel, K. C. Heat shock proteins:modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol.2002,92:2177-2186.
    Li, X, Li, S., Liu, S., Zhu, G.. Lethal effect and in vivo genotoxicity of profenofos to Chinese native Amphibian(Rana spinosa) Tadpoles. Arch. Environ. Contam. Toxicol.2010.59:478-483.
    Liu, H. G., Zhao, M. R., Zhang, C., Ma, Y., Liu, W. P. Enantioselective cytotoxicity of the insecticide bifenthrin on a human amnion epithelial (FL) cell line. Toxicol. 2008.253:89-96.
    Mehlen, P., Kretz-Remy. C., Preville, X., Arrigo, A. Human Hsp 27, drosophila Hsp 27 and human alpha B crystalline expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNF alpha-induced cell death. EMBO. J.1996,15:2695-2706.
    Pandey, A. K., Nagpure, N. S., Trivedi. S. P., Kumar, R., Kushwaha. B. Profenofos induced DNA damage in freshwater fish, Channa punctatus (Bloch) using alkaline single cell gel electrophoresis. Mutation. Research.2011,726:209-214.
    Roch, P. Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture.1999,172:125-145.
    Scholz, N. L., Hopkins, W. A. Ecotoxicology of anticholinesterase pesticides:data gaps and research challenges. Environ. Toxicol. Chem.2006,25:1185-1186.
    Sheader, D. L., Williams, T. D., Lyons, B. P., Chipman, J. K. Oxidative stress response of European flounder (Platichthys flesus) to cadmium determined by a custom cDNA microarray. Mar. Environ. Res.2006,62:33-44.
    Wang, L. M., Zhou, S. S., Lin, K. D., Zhao, M. R., Liu, W. P, Gan, J. Enantioselective estrogenicity of o, p'-dichlorodiphenyltrichloroethane in the MCF-7 human breast carcinoma cell line. Environ. Toxicol. Chem.2009,28:1-8.
    Wang, Y., Tai, K., Yen, J. Separation, bioactivity, and dissipation of enantiomers of the organophosphorus insecticide fenamiphos. Ecotoxicol. Environ. Safety.2004,57: 346-353.
    Ye, J., Zhao, M. R., Liu, J., Liu W. P. Enantio selectivity in environmental risk assessment of modern chiral pesticides. Environ. Pollut.2010,158:2371-2383.
    Zhao, M. R., Chen, F., Wang, C., Zhang, Q., Gan, J., Liu, W. P. Integrative assessment of enantio selectivity in endocrine disruption and immunotoxicity of synthetic pyrethroids. Environ. Pollut.2010,158:1968-1973.
    Zhao, M. R., Zhang, Y., Wang, C., Fu, Z. W., Liu, W. P., Gan, J. Induction of macrophage apoptosis by an organochlorine insecticide acetofenate. Chem.Res.Toxicol.2009.22:504-510
    张一宾,孙晶.国内外有机磷农药的概况及对我国有机磷农药发展的看法.农药.1999,38:1-3.
    缪建强.中国高毒有机磷的使用和替代状况浅析.农药市场信息.2006,18:18-19.
    Abdollahi, M, Ranjbar, A., Shadnia, S., Nikfar, S., Rezaie, A. Pesticides and oxidative stress:a review. Med. Sci. Monit.2004,10:141-147.
    Abou-Donia. M.B. Organophosphorous-ester-induced chronic neurotoxicity. Arch. Environ. Health.2003,58.484-497.
    Ahmed. R. S., Seth, V., Pasha, S. T. Banerjee, B. D. Influence of dietary ginger (Zingiber officinales Rosc) on oxidative stress induced by malathion in rats. Food. Chem. Toxicol.2000,38:443-450.
    Banerjee, B.D., Seth, V., Ahmed, R.S. Pesticide-induced oxidative stress:perspectives and trends. Rev. Environ. Health.2001.16:1-40.
    Blasiak, J., Jaloszynski. P., Trzeciak. A., Szyfter. K. In vitro studies on the genotoxicity of the organophosphorus insecticide malathion and its two analogues. Mutat. Res. 1999.445:275-283.
    Blasiak. J., Kowalik, J. Effect of paraoxon-methyl and parathion-methyl on DNA in human lymphocytes and protective action of vitamin C. Pestic. Sci.1999,55: 1182-1186.
    Chee, B. Y., Chiew, L. C. Acephate, methamidophos and monocrotophos residues in a laboratory-scale oil refining process. Eur. J. Lipid. Sci. Technol.2009,111: 593-598.
    Das, P. P., Shaik, A.P., Jamil, K. Genotoxicity induced by pesticide mixtures:in vitro studies on human peripheral blood lymphocytes. Toxicol. Ind. Health.2007.23: 449-458.
    Dina, S., Thomas, W., Ashok, K.S. Acute effects of acephate and methamidophos on acetylcholinesterase activity,endocrine system and amino acid concentrations in rats. Comp. Biochem. Physiol. C.2000,126:79-89.
    Dowla. H.A., Panemangalore. M.E., Byers. Comparative inhibition of enzymes of human erythrocytes and plasma in vitro by agricultural chemicals. Arch. Environ. Contam. Toxicol.1996,31:107-114.
    Eduardo, H. B., Delgado, E. L., Streck, J. L., Quevedo, F. D. Mitochondrial respiratory dysfunction and oxidative stress after chronic malathion exposure. Neurochem. Res.2006,31:1021-1025.
    Fairbairn, D. W., Olive, P. L., O'Neill, K. L. The comet assay:a comprehensive review. Mutat. Res.1995,339:37-59.
    Gennaro, G., Zhara, A., Marina, G.., Annabella, V., Terrance, J. K., Lucio, G. C. Organophosphorus insecticides chlorpyrifos and diazinon and oxidative stress in neuronal cells in a genetic model of glutathione deficiency. Toxicol. Appl. Pharm. 2007,219:181-189.
    Gubert, P., Avila, D. S., Bridi, J. C., Saurin, S., Lugokenski, T. H., Villarinho, J. G., Fachinetto, R., Pereira, M. E.; Ferreira, J.; Rocha, J. B.; Soares, F. A. A. Low concentrations of methamidophos do not alter AChE activity but modulate neurotransmitters uptake in hippocampus and striatum in vitro. Life. Sci.2011,88: 89-95.
    Hong, N. T., Adriaens. D., Janssen, C. R. Morphological abnormalities in African catfish (Clarias gariepinus) larvae exposed to malathion. Chemosphere.1997,35: 1475-1486.
    Janusz, B., Dorota, S. Genotoxicity of Malaoxon:Induction of oxidized and methylated bases and protective effect of a-Tocopherol. Pestic. Biochem. Physiol.2001,71: 88-96.
    Janusz, B., Joanna, K. Protective action of sodium ascorbate against the DNA-damaging effect of malaoxon. Pestic. Biochem. Physiol.1999,65:110-118.
    Jucelia, J., Fortunato, G., Feier, A. M., Vitali, F. C., Petronilho, F. Dal, J. Q. Malathion-induced oxidative stress in rat brain gegions. Neurochem. Res.2006,31:671-678.
    Kang. H. G., Jeong, S. H., Cho. J. H., Kim, D. G., Park. J. M.. Cho. M. H. Chlropyrifos-methyl shows anti-androgenic activity without estrogenic activity in rats. Toxicol.2004,199:219-230.
    Kao, T. S., Fukuto, T. R. Metabolism of O,S-dimethyl propionyl-and hexanoylphosphoramidothioate in the house fly and white mouse. Pestic. Biochem. Physiol.1977,7:83-95.
    Kovacic, P. Mechanism of organophosphates (nerve gases and pesticides) and antidotes: electron transfer and oxidative stress. Curr. Med. Chem.2003,10:2705-2709.
    Li, H. Y., Zhang, S. C. In vitro cytotoxicity of the organophosphorus pesticide parathion to FG-9307 cells. Toxicol. In Vitro.2001,15:643-647.
    Li. L., Zhou, S. S., Zhao, M. R., Zhang, A. P., Liu, W. P. Separation and aquatic toxicity of enanotiomers of herbicidal 1-(substituted phenoxyacetoxy) alkylphosphonates. Chirality.2008.20:130-138.
    Liu, H. G., Zhao, M. R., Zhang, C., Ma, Y., Liu, W. P. Enantioselective cytotoxicity of the insecticide bifenthrin on a human amnion epithelial (FL) cell line. Toxicol. 2008.253:89-96.
    Liu, W. P., Gan, J. Y., Shneak, D., July, W. A. Enantio selectivity in environmental safety of current chiral insecticides. Proc. Nat.l Acad. Sci. USA (PNAS).2005.102: 701-706.
    Mahmoud, M., Gary. B. Q., John, E. C. Acephate insecticide toxicity:Safety conferred by inhibition of the bioactivating carboxyamidase by the metabolite methamidophos. Chem. Res. Toxicol.1997,10:64-69.
    Masoud, L., Vijayasarathy, C., Fernandez, C. M., Petroianu, G., Saleh, A. M. Effect of malathion on apoptosis of murine L929 fibroblasts:a possible mechanism for toxicity in low dose exposure. Toxicol.2003,185:89-102.
    Miral. D., Pawel, J., Mustafa. B., Henry. R. Free radical-induced damage to DNA: mechanisms and measurement. Free.Radic.Biol. Med.2002,32:1102-1115.
    Nevin, U., Elif, O., Yusuf, S., Nesli, S., Hulya, D., Demet, U. Effects of diazinon on acetylcholinesterase activity and lipid peroxidation in the brain of Oreochromis niloticus. Environ. Toxicol. Pharm.2006,21:241-245.
    Okamura, A., Kamijima. M., shibata, E., Ohtani, K., Takagi, K., Ueyama, J., Watanabe. Y., Omura. M., Wang, H., Ichihara, G., Kondo, T., Nakajima, T. A comprehensive evalution of the testicular toxicity of dichlorvos in Wistar rats. Toxicol.2005,213: 129-137.
    Panemangalore. M., Bebe, F. N. Dermal exposure to pesticides modifies antioxidant enzymes in tissues of rats. J. Environ. Sci. Health. Part. B.2000,35:399-416.
    Perocco, P., Ciello, C. D., Colacci, A., Pozzetti, L., Paolini, M., Cantelli-Forti, G., Grilli, S. Cytotoxic activity and transformation of BALB/c 3T3 cells in vitro by the insecticide acephate. Cancer. Lett.1996,106:147-153.
    Rahman, M. F., Mahboob, M., Danadevi, K., Banu, B. S., Grover, P. Assessment of genotoxic effects of chloropyripho and acephate by the comet assay in mice leucocytes. Muta. Res.2002,516:139-147.
    Raja, R., Bessem, M., Saloua, E. F., Najoua, G. Biochemical evaluation of hepatic damage in subchronic exposure to malathion in rats:Effect on superoxide dismutase and catalase activities using native PAGE. C. R. Biologies.2008,331:655-662.
    Selen, O., Hara, P., Misra. Pesticides induced oxidative stress in thymocytes. Mol. Cell. Biochem.2006,290:137-144.
    Singh, N. P., McCoy, M. T., Tice, R. R., Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell. Res.1988, 175:184-191.
    Slotkin, T. A., and Seidler, F. J. Comparative developmental neurotoxicity of organophosphates in vivo:Transcriptional responses of pathways for brain cell development, cell signaling, cytotoxicity and neurotransmitter systems. Brain. Res. Bull.2007,72:232-274.
    Slotkin, T. A., and Seidler, F. J. Oxidative stress from diverse developmental neurotoxicants:Antioxidants protect against lipid peroxidation without preventing cell loss. Neurotoxicol. Teratol.2010,32:124-131.
    Susan, J., Manisha, K., Nisha, R., Deepak, B. Protective effect of vitamin E in dimethoate and malathion induced oxidative stress in rat erythrocytes. J. Nutr. Biochem.2001. 12:500-504.
    Vandana, S., Poovala, V. K., Kanji, Hiroyasu. T., Abdulla, K. S. Role of oxidant stress and antioxidant protection in acephate-induced renal tubular cytotoxicity. Toxicol. Sci.1998,46:403-409.
    Wagner, E. D., Mcmillan, S. M., Plewa, M. J. Cytotoxicity of organophosphorus ester (OP) insecticides and cytotoxic synergism of 2-acetoxyacetylaminofluorene (2AAAF) in chinese hamster ovary (CHO) cells. Bull. Environ. Contam. Toxicol. 2005,75:329-334.
    Walles, S. A. S. Mechanisms of DNA damage induced in rat hepatocytes by quinines. Cancer. Lett.1992,63:47-52.
    Wang, C., Zhang, N., Li, L., Zhang, Q., Zhao, M. R., Liu, W. P. Enantioselective interaction with acetylcholinest erase of an organophosphate insecticide fenamiphos.Chirality.2010,22:612-617.
    Wang, T. C., Lin, C. M., Lo, L. W. Genotoxicity of methoxyphosphinyl insecticide in mammalian cells.Zoological. Studies.2003,42:462-469.
    Zhang, Q., Wang, C., Sun, L. W., Li, L., Zhao, M.R. Cytotoxicity of lambda-cyhalothrin on the macrophage cell line RAW 264.7. J Environ. Sci.2010,22: 428-432.
    Zhao, M. R., Zhang, Y., Wang, C. Fu. Z W., Gan, J. Y., Liu, W. P. Induction of macrophage apoptosis by an organochlorine insecticide acetofenate. Chem. Res. Toxicol.2009a.22:504-510.
    黄进,杨国宇,李宏基.抗氧化剂作用机制研究进展.自然杂志,2003,26:76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700