用户名: 密码: 验证码:
微细电火花沉积与去除可逆加工关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先进制造技术的水平是决定国家经济发展和现代化进程的重要因素之一。随着制造技术内涵的不断拓展,材料的加工已经不再局限于传统的去除过程。作为先进制造技术的一个重要分支,微细精密加工技术的开发和研究受到了各国的高度重视。在这一背景下,微细电火花加工以其无宏观作用力、加工单位小、可控性好等诸多优点而成为微细加工领域的研究热点之一。
     以往对微细电火花加工技术的研究主要集中在如何提高其去除加工时的精度、效率和微细化程度等方面,然而电火花加工的原理决定了其电极损耗、极性效应等存在的必然性。本文从微细电火花加工的机理及工艺特殊性出发,深入研究了微细电火花加工中的工具电极损耗和极性效应规律。并以此为出发点,确定了在同一加工系统中实现微细电火花沉积与去除可逆加工的可行性,进而提出了电火花沉积与去除可逆加工方法。分别从加工极性效应、工作介质和加工工艺参数选择等方面研究了微细电火花沉积与去除可逆加工的实现条件和转换策略。
     分析了微细电火花沉积加工中影响工具电极材料蚀除的主要因素。建立了时变放电通道半径条件下,工具电极材料蚀除的单脉冲放电温度场仿真模型。分析了工具电极蚀除的微观过程,研究了放电通道中由于放电能量密度变化对工具电极材料蚀除形式的影响规律。研究了不同类型脉冲电源在微细电火花沉积加工中的放电波形特点及对沉积材料成形的影响,并分析了其适用场合。
     对微细电火花沉积加工的沉积材料特性进行了深入研究。结果表明,沉积材料内部微观组织结构致密,与基体结合紧密;沉积材料的成分取决于工具电极材料,在以空气为加工介质的沉积加工过程中发生了微量氧化;硬度测试结果表明,45钢、钨沉积材料硬度相对与工具电极材料有较大的提高;沉积材料具有较好的承受压缩载荷的能力,黄铜沉积材料能承受的最大压强约为490Mpa,45钢的沉积材料能承受的最大压强约为1764Mpa,说明微细电火花沉积加工方法能适用于微细支撑结构的制作。
     研究了微细电火花沉积加工微细结构的沉积策略问题,提出了两种沉积加工策略:基于单圆柱沉积加工稳定性的多次沉积策略和基于放电间隙伺服的分层扫描沉积加工策略。提出了基于间隙伺服控制进行工具电极实时补偿,X-Y平面规划单层扫描轨迹的沉积加工策略。建立了工具电极轴向损耗补偿模型,得到了分层扫描沉积加工中沉积层厚度的一致性规律,提出了平面任意形状路径轨迹规划方法。并进行了微细电火花沉积加工实验,得到了加工效果较好的沉积样件。
     研究了微细电火花可逆加工方法制作微细结构的实现过程,建立了微细电火花可逆加工系统。提出了微细电火花可逆加工实现的具体工艺步骤,将其分为微细工具电极的在线制作、微细电火花沉积加工工艺和微细电火花精微选择性去除3个相互联系的阶段,形成了微细电火花可逆加工方法。利用微细电火花可逆加工工艺方法进行了金属微三维结构的成功制作。在微细电火花选择性去除加工过程中,采用了多种去除加工方式,包括Z轴方向的直接去除加工、轴向阵列孔加工、径向孔加工及分层铣削加工等去除方式,得到成形精度和尺寸精度良好的金属微三维结构。在微细电火花分层铣削去除加工工艺中,提出了采用工具电极预置长度方法进行工具电极的轴向损耗补偿,提高了加工效率和加工精度,达到较好的清根效果。
     综上所述,本文研究的微细电火花沉积与去除可逆加工方法,具有设备简单、可操作性强、材料适应范围广、能量易于控制等特点,突破了传统电火花加工的单一模式,为微细加工技术提供了一种新的技术手段。
The level of Advanced Manufacturing Technology (AMT) is one of the most important factors to influence economic development and modernization. With the development of manufacturing technology, materials processing is no longer confined to traditional removal process. As an important branch of AMT, micro machining technology has been much accounted of all over the world. With the unique advantages such as non-contact process, small removal unit, energy easy to be controlled and so on, micro electrical discharge machining (EDM) process has become one of the research focuses in the field of micro-machining.
     In the past, the researches of micro EDM mainly focus on how to improve the machining accuracy, the machining efficiency, and the micro-level of removal. But the principle of EDM determines the phenomena of tool electrode wear and polarity effect are inevitable. In this paper, the tool electrode wear and the polarity effect in micro EDM process are researched firstly based on analyzing the mechanism and process characteristics of micro EDM. On this basis, a reversible machining method is put forward, in which metal material can be deposited or removed in one EDM machining system. From analyzing the polarity effect, the working medium, the processing parameters, the processing conditions of the micro reversible EDM and the transformation strategy from deposition machining to removal machining are researched.
     The major factors influence the tool electrode removal in micro EDM deposition are analyzed, and the temperature field simulation of tool electrode under the condition of single discharge with time-varying discharge channel radius is developed. Through analyzing the micro-process of the tool electrode removal, the law of different tool electrode removal form with different discharge energy density in discharge channel is obtained. In addition, the discharge waveform characteristics of transistor pulse source and RC pulse source in micro EDM deposition are analyzed, the formation process of the deposited material with the discharge characteristics are researched.
     The characteristics of the deposited material have been analyzed detailed, the results show that the deposited material has compact fine texture and bonds close to the base material, the components of the deposited material are almost the same as those of the tool electrode and micro oxidation occurs using air working medium. Hardness test results show that when using 45 steel and tungsten as tool electrode, the hardness of deposited materials increase obviously compare with the tool electrode. Moreover, the deposited material has a better ability to withstand compression loads. Brass deposited material can withstand the maximum pressure of about 490Mpa and 45 steel deposited material of about 1764Mpa, which show that micro EDM deposition process can be applied to fabrication of micro supporting structures.
     The deposition strategies of fabricating micro structures by using micro EDM deposition process are researched. In this paper, two kinds of deposition strategies are put forward, which are multi-deposition based on the stability of single cylinder deposition and scanning layer by layer deposition based on discharge gap servo. The deposition strategy combines the tool electrode real-time servo along Z axis with the X-Y plane single layer scanning path planning is built. The tool electrode wear compensation model and the consistency law of deposition layer are analyzed. In this research, a scanning path planning method of arbitrary shape in X-Y plan is built too, and the samples from deposition experiments have satisfied results.
     On the basis of above researches, the machining system of micro reversible EDM is built and the micro reversible EDM method is put forward. The micro reversible EDM method can be divided into three continuous processes, which are micro tool electrode on-line machining, micro EDM deposition process, and micro EDM selective removal process. In step of selective removal process, several removal strategies including direct removing along Z-axis, axial direction array-holes and radial direction micro holes drilling on the deposited micro cylinder and micro EDM milling were carried out respectively, micro 3D structures of metal material with high shape accuracy and high dimensional precision are fabricated successfully. In micro EDM milling process, a present length method of tool electrode is applied to compensate the axial wear, which improve the machining efficiency and machining precision and easy to achieve the better results of clearing root
     All above, the reversible EDM method is a breakthrough of traditional EDM, which provides the ability of depositing or removing metal material for fabrication of micro structures in one machining system. The new reversible EDM process has the advantages such as the low-cost equipment requirements, a wide adaptability of materials and the energy easy to be controlled and so on, which provides a new technique method for micro machining technology.
引文
1赵万生.先进电火花加工技术.国防工业出版社.2003
    2 K.H. Ho, S.T. Newman. State of the Art Electrical Discharge Machining (EDM). International Journal of Machine Tools & Manufacture, 2003, 43:1287~1300
    3 A.L. Livshits. Electron-Erosion Machining of Metals. Butterworth & Co, London, 1960:10~12
    4 Norliana Mohd Abbas, Darius G. Solomon, Md. Fuad Bahari. A review on current research trends in electrical discharge machining. International Journal of Machine Tools & Manufacture, 2007, 47:1214~1228
    5刘正勋.我国特种加工技术的回顾与展望.电加工.1999,(5):6~11
    6徐小兵,毛利尚武.日本电火花加工技术的发展动态.电加工与模具.2003,(1):1~3
    7小林和彦,真柄卓司,尾崎好雄等.电火花加工的现状与未来[J].金属成型工艺.1995,13(5):38~41
    8郑红,宋博岩,刘晋春等.模糊控制技术在电火花加工中的应用现状与展望.电加工.1996,(2):2~7
    9郭永丰,赵万生,耿春明.电火花加工最新技术进展.航空制造技术.2003,(1):43~45, 55
    10 Hayakawa, Kojima, Kunieda etc. Influence of plasma extinction on machining stability in EDM process. Journal of the Japan Society for Precision Engineering. 1996,62(5):686~690
    11 Hayakawa, Kunieda. Numerical analysis of arc plasma temperature in EDM process based on magnetohydrodynamics. Transactions of the Japan Society of Mechanical Engineers, Part B,1996,62(8):3171~3177
    12 Mukund R.Patel, Maria A.Barrufet, Philip T.Eubank etc. Theoretical Models of the Electrical Discharge Machining Process.Ⅱ.The anode erosion model. J.Appl.Phys.1989,66(9):4104~4111
    13 Hashiguchi K. Numerical calculations for the electron energy distribution in ahelium, hollow-cathode glow discharge. Plasma Science,1985,105(8):451~456
    14 Xia H, Hashimoto H, Kunieda M etc. Measurement of energy distribution in continuous EDM process. Journal of the Japan Society for Precision Engineering. 1996,62(8):1141~1145
    15 Heng xia, Kunieda, Nishiwaki etc. Measurement of energy distribution into electrode in EDM process. Advancement of Intelligent Production, 1994(5):601~606
    16亓利伟,楼月明,李明辉.放电通道的波动性与电火花加工机理.上海交通大学学报.2001,35(7):989~997
    17赵伟,任延华,任中根,等.电火花放电通道中带电粒子运动规律的研究.机械科学与技术,2001,20(5):762~763
    18于学问,黄涤非,金玉惠.电火花加工放电通道的探讨.电加工,1984(3):8~13
    19 Kunieda M, Xia H, Nishiwaki N. Observation of arc column movement during monopulse discharge in EDM. Annuls of the CIRP, 1992,41(1):227~230
    20 Wang ZL, Cui ZJ. Study of discharge channel in electrical discharge machining in gas. Proceedings of the 16th International Conference on Gas Discharges and their Applications, Xi’an China, 2006 ,2 :2745~2749
    21崔景芝.微细电火花加工的基本规律及其仿真研究.哈尔滨工业大学博士学位论文.2007,6
    22崔景芝,王振龙.放电通道的微观模拟及其物理特性研究.电加工与模具,2007(1):13~16
    23毛利尚武,斋藤長男,成宫久喜,河津俊秀.粉末混入加工液による放電仕上加工.電気加工学会誌,1991, 25(49):47~60
    24 N.Mohri, N.Saito, M.Higashi. A New Process of Finish Machining on Free Surface by EDM Methods. Annals of CIRP,1991,40(1):207~210
    25 Yoshiyuki UNO, Akira OKADA, Yasuhiro HAYASHI and Yoshiaki TABUCHI. Surface Modification by EDM with Nickel Powder Mixed Fluid. International Journal of Electrical Machining,1999,4,(1):47~52
    26 Wong Y S, Lim L C, Iqbal Rahuman, Tee W M. Near-mirror-finish Phenomenon in EDM Using Powder-mixed Dielectric. J. Mater. Process Technology, 1998,79(1):30~40
    27 Ming Q Y, He L Y. Powder-suspension Dielectric Fluid for EDM. J. Mater. Process Technology,1995,52(1):44~54
    28索来春,居喜国,郭永丰,赵万生.混粉大面积电火花加工机理的分析.制造技术与机床.1998, (7): 24~26
    29朱玲龙,杨连文,赵福令.混粉电火花加工工艺初探.电加工, 1999, (5): 24~27
    30 M. Kunieda, M. Yoshida. Electrical Discharge Machining in Gas. Annals of the CIRP, 1997, 46(1):143~146
    31国枝正典,吉田政弘.気中放電加工.精密工学会誌 . 1998, 64(12):1735~1738
    32 ZhanBo Yu, Takahashi Jun, Kunieda Masanori. Dry Electrical Discharge Machining of Cemented Carbide. Journal of Materials Processing Technology, 2004, 149(6):353~357
    33 Masanori Kunieda, Tsutomu Takaya, Shintaro Nakano. Improvement of Dry EDM Characteristics Using Piezoelectric Actuator. Annals of the CIRP, 2004, 53(1):183~186
    34 M. Kunieda, C. Furudate. High Precision Finish Cutting by Dry WEDM. Annals of the CIRP, 2001, 50(1):121~124
    35 Zhang Q H, Zhang J H, Deng J X, etc. Ultrasonic Vibration Electrical Discharge Machining in Gas. Journal of the Materials Processing Technology, 2002,129(1):135~138
    36 Zhang Q H, Zhang J H, Ren S F, etc. Study on Technology of Ultrasonic Aided Electrical Machining in Gas. Journal of the Materials Processing Technology, 2004,149(3):636~640
    37李立青.气体介质中电火花成形加工工艺技术研究.哈尔滨工业大学博士学位论文.2005.9
    38李立青,赵万生,狄士春,等.气体介质中电火花铣削加工工艺实验研究.南京理工大学学报,2006,30(1):12~16
    39 J.Tao, A.J.Shih. Dry and Near-Dry Electrical Discharge Milling Processes. Proceedings of the 15th International Symposium on Electromachining. 2007,275~280
    40 Lin GU, Wansheng ZHAO, Lei LI. Electrical Discharge Machining in Jetted Mist. Proceedings of the 15th International Symposium on Electromachining. 2007,297~300
    41 Qing Gao, Qinhe Zhang, Jianhua Zhang, Xing Ai. Powder Mixed Near Dry Electrical Discharge Machining. Proceedings of the 16th International Symposium on Electromachining. 2010, 79~83
    42 N.Mohri, N.Saito, Y.Tsunekawa. Metal Surface Modification by Electrical Discharge Machining with Composite Electrode. Annals of the CIPP, 1993, 42(1):219~222
    43葉石雄一郎.表面改質放電加工の最新技術.講習會最新放電加工における革新型制作技術動向とその将来性.日本機械学会.1999: 21~24
    44後藤昭弘ほか.放電表面処理装置(EDCOAT).電気加工学会誌 , 2000,34(75):38~43
    45毛利尚武,斋藤长男.表面改質放電加工.精密工学会誌.1998,64(12):1715~1719
    46 Z.L. Wang, Y. Fang, P.N. Wu, W.S. Zhao, K. Cheng. Surface Modification process by Electrical Discharge Machining with A Ti Power Green Compact Electrode. Journal of Materials Processing Technology. 2002, 129:139~142
    47 Z.L.Wang, Y.Fang, W.S.Zhao, et al. A Surface Modification Method by using EDM, Key Engineering Materials, 2004,Vol.259-260:592~595
    48方宇.液中放电沉积关键技术研究.哈尔滨工业大学博士论文.2006
    49周兆英,王晓浩,叶雄英等.微型机电系统.中国机械工程.2000,11(1):163~168
    50 Dominiek Reynaerts, Wim Meeusen, Hendruk Van Brussel. Machining of three-dimensional mictrstructures in silcon by eletro-dischage machining. Sensors and Actuators A. 1998, 67:159~165
    51 M. Bayramoglu,A.W. Duffill.Manufacturing Linear and Circular Contours Using CNC EDM and Frame Type Tools . Int. J. Mach. Tools Manufact. 1994,35(8):1125~1136
    52 Dominiek Reynaerts, Wim Meeusen, Hendruk Van Brussel. Machining of three-dimensional mictrstructures in silcon by eletro-dischage machining. Sensors and Actuators A. 1998, 67:159~165
    53王振龙.微细加工技术.国防工业出版社.2005
    54 Yong Li, Min Guo, Zhaoying Zhou. Micro electro discharge machine with an inchworm type of micro feed mechanism. Journal of the International Societies for Precision Engineering and Nanotechnology. 2002, (26):7~14
    55 H.M. Chow, B.H. Yan, F.Y. Huang. Micro slit machining using electro-discharge machining with amodified rotary disk electrode (RDE). Journal of Materials Processing Technology. 1999, (91):161~166
    56 T. Masuzawa, M. Fujino, K. Kobayashi.Wire Electro-Discharge Grinding foricro-Machining.Annals of the CIRP.1985, 34(1):431~434
    57 Fuzhu Han, Yuji Yamada, Taichi Kawakami, Masanori Kunieda. Experimental attempts of sub-micrometer order size machining using micro-EDM. Precision Engineering, 2006, 30:123~131
    58 Hung Sung Liu, Biing Hwa Yan, Chien Liang Chen, Fuang Yuan Huang. Application of micro-EDM combined with high-frequency dither grinding to micro-hole machining. International Journal of Machine Tools & Manufacture, 2006, 46:80~87
    59 M.P. Jahan, Y.S. Wong, M. Rahman. A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials. Journal of the Materials Processing Technology, 2009, 209:3956~3967
    60 M.P. Jahan, Y.S. Wong, M. Rahman. A study on the quality micro-hole machining of tungsten carbide by micro-EDM process using transistor and RC-type pulse generator. Journal of the Materials Processing Technology, 2009, 209:1706~1716
    61 Masanori Kunieda, Atsushi Kameyama. Study on decreasing tool wear in EDM due to arc spots sliding on electrodes. Precision Engineering, 2010, 34:546~553
    62崔晶,李勇,熊英.一种高深宽比微细槽的电火花加工工艺.北京工业大学学报,2010,3(3):289~293
    63 Nachiappan Ravi, Han Huang. Fabrication of symmetrical section microfeatures using the electro-discharge machining block electrode methode. Journal of micromechanics and microengineering. 2002,12:905~910
    64 Nachiappan Ravi, Shan Xue Chuan. The effects of electro-discharge machining block electrode method for microelectrode machining. Journal of micromechanics and microengineering. 2002,12:532~540
    65贾宝贤,王振龙,赵万生.用块电极轴向进给发电火花磨削微细轴.电加工与模具.2004, (3):26~29
    66胡富强,王振龙,赵万生.线电极放电磨削(WEDG)技术的研究与应用[J].哈尔滨工业大学学报.2004,35(10):1171~1174
    67 Ju-Kyoung. Lee. A study on the Characteristics of Electrode Fabrication for Micro-Hole. Proceedings of the 15th International Symposium on Electromachining. 2007 :231~234
    68 Naotake Mohri, Hideki Takezawa, Katsushi Furutani, et al. A new process ofaddictive and removal machining by EDM with a thin electrode. Annals of the CIRP,2000,49(1):123~126
    69 Yoshiro Ito, Rie Tanabe, Naotake Mohri. Self-Sharpening of Thin Tungsten Electrode in Single, High-Current Discharge-Its Dynamics and Mechanism. Annals of the CIRP, 2007,56(1):229~232
    70曹国辉,王振龙,迟关心,等.基于单脉冲放电的钨微细电极快速成形方法及应用研究.机械工程学报,2003,39(7):43~47
    71 Ken’ichi Takahata, Y. B. Gianchandani. Batch Mode Micro-Electro-Discharge Machining. Journal of Microelectromechanical Systems. 2002, (4):102~111
    72彭良强,伊福廷,张菊芳.大面积微细结构的电火花加工.航空制造技术. 2002,(5):47~48
    73邹丽芸,张院春,彭良强,等.基于LIGA技术的微细电火花加工优化研究.电加工与模具. 2004,(增刊):39~41
    74彭良强.基于LIGA技术的微细电火花加工.机器工人. 2004,(1):26~28
    75 T.Masuzawa. Three-Dimensional Micro-machining by Machine Tools. Annals of the CIRP. 1997,46(2):621~628
    76 Yu Zuyuan. Three Dimensional Micro-EDM Using Simple Electrodes. Disseration of the University of Tokyo. 1997,(352):149~155
    77 Z.Y.Yu, T.Masuzawa, M.Fujino. 3D Micro-EDM with Simply Shaped Electrode. Annals of the CIRP. 1997,46(1):1~8
    78 Z.Y.Yu, T.Masuzawa, M.Fujino. 3D Micro-EDM with Simply Shaped Electrode. Part I: Machining of Cavities with Sharp Corners and Electrode Wear Compensation. International Journal of Electrical Machining. 1998,3:7~12
    79 Z.Y.Yu, T.Masuzawa, M.Fujino. 3D Micro-EDM with Simply Shaped Electrode. Part 2: Machining and Error Analysis of Conical and Spherical Cavities.. International Journal of Electrical Machining. 1998,3:71~78
    80王英,高德东.分层去除微细电火花铣削加工工艺规律研究.机械科学与技术,2009,3(3):356~359
    81王振龙.微细电火花加工关键技术研究.哈尔滨工业大学博士学位论文.2000,8
    82王振龙,赵万生,迟关心,刘光壮.微三维结构型腔的微细电火花加工.微细加工技术. 2000,(1):71~74
    83李勇,佟浩,郁鼎文,王扬.三维微细电火花伺服扫描加工工艺.纳米技术与精密工程,2008,4(7):307~311
    84王振龙,赵万生,刘光壮.基于分层制造原理的微细电火花加工技术研究.机械工程学报. 2002,38(2):22~26
    85赵万生,王振龙,郭东明.国外特种加工技术的最新进展.电加工. 1999,(5):12~19
    86 Gang Li, Wansheng ZHAO, Key Technologies of Machine Tool for Micro Electro Discharge Machining, Proceedings of the 15th International Symposium on Electromachining:2007,253~256
    87 Gang LI, Wan-sheng ZHAO, Rui GUO. Development and Application of a Precision Micro EDM System. The International Conference on Integration and Commercialization of Micro and Nano-systems 2007, Sanya, 2007
    88董颖怀.一种微型涡轮发动机的设计及其关键制造技术研究.哈尔滨工业大学博士学位论文.2009,7
    89 WANG Zhenlong, DONG Yinghuai. Micro-EDM Milling of Micro Compressor prototype. International Conference on Integration and Commercialization of Micro and Nanosystems. 2007:1243~1248
    90董颖怀,王振龙,彭子龙,陈辉.微型涡轮发动机中的压气机部件的设计仿真及加工试验.上海交通大学学报.2009,9(9):1517~1520
    91 Itiro O R,早川伸哉,糸魚川文広,等.微細放電加工における付着加工を利用した造形法.電気加工学会全国大会講演論文集,高知県,日本,1999,11:89~92
    92早川伸哉,糸魚川文広,中村隆等.微細放電付着加工次にょる3元形状創成法.精密工学会誌.2000,66(12):1943~1947
    93 Hayakawa S, Itiro O R, Itoigawa F, et al. Micro Fabrication Using EDM Deposition. Initiatives of Precision Engineering at the Beginning of a Millennium, 10th International Conference on Precision Engineering (ICPE). Yokohama Japan, 2001, 6:18~20
    94金柏冬,王振龙,彭子龙,等.电火花沉积加工微细结构的研究.华中科技大学学报(自然科学版),2007,35(S1):89~92
    95张永生.空气中微细放电沉积与去除可逆加工技术的研究.哈尔滨工业大学硕士学位论文.2003,7
    96曹国辉.基于脉冲放电的若干微细加工方法及试验研究.哈尔滨工业大学博士学位论文.2004
    97金柏冬.气中微细电火花沉积关键技术研究.哈尔滨工业大学博士学位论文,2007,6
    98 Itiro O R, Itoigawa F, Hayakawa S, etc. Development of Advanced Alloying Process Using Micro EDM Deposition Process. Proceedings of the 7th Biennial Conference on Engineering Systerms Design and Analysis, Manchester, United Kingdom, July 19-22,2004,1:365~370
    99 H. Tong, Y. Wang, Y. Li. Vibration-assisted Servo Scanning 3D Micro EDM. J. Micromech. Microeng. 2008,18(2):501~508
    100 H. Tong, Y. Li, Y. Wang, D. Yu. Experimental Research on Vibration Assisted EDM of Micro-structures with Non-circle Cross-section. J. Mater. Process. Technol. 2007,(10):1312~1321
    101杜立群,莫顺培,张余升,刘冲.UV-LIGA和微细电火花加工技术组合制作三维金属微结构.光学精密工程,2010(2):363~368
    102刘冲,刘文涛,杜立群,莫顺培.一种三维金属微型腔的组合加工方法.纳米技术与精密工程,2010(1):90~94
    103胡洋洋,朱荻,李寒松,曾永彬,明平美.UV-LIGA与微细电火花加工组合制造微细电解阵列电极.东南大学学报(自然科学版) ,2010(1):106~110
    104 H. Tong, Y. Li, Y. Wang, D. Yu. Experimental research on vibration assisted EDM of micro-structures with non-circle cross-section. J. Mater. Process. Technol. 2007,(10):1312~1321
    105张兴,郝一龙等.跨世纪的新技术—微机电系统(MEMS).电子科技导报.1999,(4):2~6
    106丁衡高.微机电系统的科学研究与技术开发.清华大学学报.1997, 37(9):1~5
    107 T. Masuzawa. State of the Art of Micromachining. CIRP Ann. Manuf. Technol. 2000,49(2):473~488
    108李国平,陈子辰.微机电系统的研究内容与发展现状.微电子学.2001, 31(6):389~391
    109苑伟政,李晓莹.微机械及微细加工技术.机械科学与技术.1997, 16(3):503~508
    110朱荻.微米与纳米级加工技术.航空制造技术.2001,6:22~25
    111 Bernd M. Schumacher. After 60 years of EDM the discharge process remains disputed. Journal of Materials Processing Technology. 2004,(149):376~381
    112李勇,王显军,郭旻,周兆英,严晓敏,胡敏.微细电火花加工关键技术研究.清华大学学报.1999,39(8):45~48
    113王振龙,赵万生.微细电火花加工中电极材料的蚀除机理研究.机械科学与技术.2002,21(1):124~126
    114宋小中.电火花微细加工的工艺研究.电加工.1995,(2):14~18
    115 Daryl D. Dibitonto, Philip T. Eubank, Mukund R. Patel, Maria A. Barrufet. Theoretical models of the electrical discharge machining process.Ⅰ. A simple cathode erosion model. J. Appl. Phys. 1989,66(9):4096~4103
    116楼乐明.电火花加工计算机仿真研究.上海交通大学博士学位论文.2000
    117 P. T. Eubank, M. R. Patel, M. A. Barrufet, et a1. Theoretical Models of the Electrical Discharge Machining Process. III. The Variable Mass, Cylindrical Plasma Model. Journal of Applied Physics. 1993,73:7900~7909
    118黄树槐,肖跃加,莫健华等.快速成形技术的展望.中国机械工程. 2000,11(1-2):195~200
    119杨迪等.金属硬度实验.计量出版社.1983
    120 Hayakawa S, Itiro O R, Itoigawa F, et al. Fabracation of Microstructure Using EDM Deposition. Proceedings of the 13th International Symposium for Electromachining (ISEM XIII), Bilbao, Spain, May 9-11, 2001:783~793
    121陈光,傅恒志.非平衡凝固新型金属材料.科学出版社.2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700