用户名: 密码: 验证码:
基于多源生理数据与模糊建模方法的操作员功能状态预测与调节
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从技术可行性、经济性和安全性的角度出发,人类已经意识到,以彻底取代人类操作员为目的的完全自动化的实现正变得越来越困难,人类操作员仍将继续长期存在于各种系统中。因此,对人机交互系统的研究成为了自动化技术发展的另一个分支。在高安全性要求的人机交互系统中,微小的事故往往可能造成巨大的损失。其中,由操作员功能状态(Operator Functional State, OFS)失效造成的其所承担的任务无法有效完成是导致各种事故发生的重要原因。为此,一些学者提出了适应性自动化(Adaptive Automation, AA)的概念。在AA系统中,通过对OFS进行估计和预测,一旦发现操作员出现高风险状态,立刻对其任务负荷进行调整或提醒操作员采取一定措施,以使操作员所承担的任务要求与其当前的状态两者相匹配。在AA系统的构建中,建立可以对OFS进行精确估计和预测的模型是一个关键问题。本文通过对操作员电生理数据进行采集和分析,使用模糊建模方法建立了基于操作员电生理数据的OFS估计和预测模型,完成了如下的研究工作:
     (1)使用aCAMS (automation-enhanced Cabin Air Management System)软件对5名操作员被试进行了多任务负荷仿真实验,并采集了被试在不同任务负荷下的电生理数据及其任务性能数据。对电生理数据进行滤波、功率谱分析、数据平滑等预处理,通过相关性分析,得到了3个EEG特征作为OFS模型的输入,使用被试的任务性能数据作为OFS的量化指标和模型的输出,为后续的模糊建模工作提供了数据集;
     (2)使用粒子群优化(Particle Swarm Optimization, PSO)算法对OFS模糊模型的参数进行估计。在该过程中,比较了PSO算法与增量型PID控制器的内在联系,将二者结合提出了一种新的搜索方式,开发了一种增量型PID控制的PSO算法(IPID-PSO)。为了检验该算法的有效性,首先在7个基准函数的优化问题中进行了测试,发现对于多峰函数,IPID-PSO算法在优化效果上有优于其它3种PSO算法的表现。接着,将IPID-PSO算法应用于OFS模糊模型的参数估计中,所得的模糊模型实现了对OFS的良好估计;
     (3)使用Wang-Mendel (WM)方法进行OFS模糊建模。在基于WM方法进行模糊模型设计时,分析了高斯隶属函数的宽度参数σ对模糊模型抗噪声能力的影响。为了确定最优的σ值,在使用聚类法进行论域划分时,设计了一种混合高斯隶属函数,将对σ的确定转化为对相邻隶属函数重叠度δ值的确定。为了得到最优的δ值,首先比较了使用不同δ值的模糊模型在4个数据集预测中的性能,得到了适用于不同含噪水平数据的最优δ值,说明了进行最优δ值选取的普遍意义。接着,将同样的比较应用于OFS模糊建模中,取得了类似的结论,并实现了对OFS的良好估计。同时,比较结果显示,使用聚类方法加混合高斯隶属函数的论域划分形式在OFS模糊建模中表现出了优于传统均匀论域划分形式的性能;
     (4)为了实现AA系统的功能,即对操作员高风险状态的预防,使用了OFS预测的概念,据此建立了OFS动态预测模型,并进行了仿真验证。对OFS预测模型的结构进行了估计,结果显示,采用WM方法的一阶模糊模型可以获得最优性能。为了提高对高风险OFS的有效预测率,用多模型策略代替了单模型策略,并建立了多个WM模型用于OFS预测。为了验证该预测模型的有效性,设计了一种自适应任务分配策略,对基于该自适应任务分配策略的人机交互控制系统进行了仿真。仿真结果显示,在该人机交互系统中,OFS得到了有效的调节,操作员的任务性能水平得到了显著改善,同时,操作员高风险状态出现的次数大大减少,从而大幅度提高了人机系统的安全性。
From the technical feasibility, economy and safety point of view, mankind has realized that the implementation of fully automation with the purpose of completely replacing the human operator is becoming increasingly difficult, thus human operators will continue to persist in various kinds of system. Therefore, the study of human-machine (HM) interaction system becomes another branch of automation technology development. In safety-critical HM systems, trivial accidents often may cause huge losses. Among them, operator's assigned task failure caused by operator functional state (OFS) breakdown is found one of the main reasons of such accidents. To prevent accidents, the adaptive automation (AA) concept was proposed. In AA systems, the OFS are evaluated and predicted. Once a high-risk OFS is detected, either the operator's task will be reallocated or the operator will be required to do some adjustments to make the two match each other. In the realization of AA systems, building the exact model used for OFS evaluation and prediction is a key problem. After collecting and analyzing operators'physiological data, in this paper, the fuzzy modeling method based on operators' physiological data was employed as the main paradigm to derive the OFS evaluation and prediction model. The main contributions are as follows:
     (1) The aCAMS software was used to simulate the multi-task environment and5subjects participated in the experiments. Physiological data and the task performance data were collected while operators were working with different tasks. The raw physiological data were preprocessed with filtering, power spectrum analysis, data smoothing and so on. After that, by using the correlation analysis technique,3EEG features were selected as the inputs of the OFS model. The operator task performance data were used to quantify the OFS and were treated as the output of the OFS model. This work prepared the dataset used in the following OFS fuzzy modeling.
     (2) The particle swarm optimization (PSO) algorithm was employed to estimate the OFS fuzzy model's parameters. During this process, the PSO algorithm and the incremental PID controller were compared and their intrinsic links were analyzed. The two were combined and a new search strategy was proposed and an incremental-PID-controlled PSO (IPID-PSO) algorithm was developed. To verify the usefulness of the algorithm, the IPID-PSO was firstly applied in the optimization of7benchmark functions. The results showed for multi-modal functions, IPID-PSO performed better than other3PSO variants on final results. Then, the IPID-PSO was applied to the estimation of the OFS fuzzy model parameters. The derived fuzzy model can well evaluate the OFS.
     (3) The Wang-Mendel (WM) method was employed for OFS fuzzy modeling. In the WM-based fuzzy model designing, the relationship between the Gaussian membership function's a parameter and the fuzzy model anti-noise ability was analyzed. The clustering method was employed for the domain partition. To determine the best a value, by using an hybrid Gaussian membership function, the determination of a was transferred to the determination of adjacent membership functions'intersection point membership grade8which was called the overlap value. To derive the best δ value, firstly, different8values were adopted in fuzzy models which were used for the prediction of4datasets and the prediction performances were compared. Thus the best8value was derived for each dataset with different noise level and the generalization of8selectioin was demonstrated. Then, the same comparison was executed in the OFS fuzzy modeling by using WM method with different8values and the similar conclusion was derived. Meanwhile, comparison demonstrated that, domain partition based on clustering method and the hybrid Gaussian membership performed better than the traditional even domain partition in the OFS fuzzy modeling.
     (4) To realize the function of the AA system which means the prevention of high-risk OFS, the "OFS Prediction" concept was used. According to this concept, the OFS dynamic predictive model was constructed and verified. Firstly, the predictive model structure was identified. The results demonstrated the WM-based1st-order input-output model can get the best performance for OFS prediction. To improve the effective prediction rate of high-risk OFSs, the multi-model strategy was used instead of the single model, and multiple WM models were built for OFS prediction. To verify the usefulness of the predictive model, an adaptive task allocation strategy was designed and based on which an adaptive HM system was simulated. Simulation results showed the OFS can be effectively regulated, the operator task performance can be significantly improved and the number of high-risk OFSs can be greatly reduced in the adaptive HM system. Thus, the safety of HM system was substantially enhanced.
引文
[1]托马斯·谢利丹(美).人与自动化[M].西安:西安交通大学出版社,2007.
    [2]Hockey G J, Bdzola L. Effects of time-pressure on decision-making under uncertainty: changes in affective state and information processing strategy[J]. Acta psychologica, 2000,104(3):283-301.
    [3]Bates D., Cohen M., Leape L. Reducing the frequency of errors in medicine using information technology[J]. Journal of the American Medical Informatics Association, 2001,8(4):299-308.
    [4]Chang S. H, Choi S. S, Park J. K.. Development of an advanced human-machine interface for next generation nuclear power plants[J]. Reliability Engineering & System Safety, 1999,64(1):109-126.
    [5]Wilson G. F., Russell C. A. Operator Functional State Classification Using Multiple Psychophysiological Features in an Air Traffic Control Task[J]. Human Factors,2003, 45(3):381-389.
    [6]Fournier L. R., Wilson G F, Swain C. R. Electrophysiological, behavioral, and subjective indexes of workload when performing multiple tasks:manipulations of task difficulty and training[J]. International Journal of Psychophysiology,1999,31(2):129-145.
    [7]Hockey G J., Gaillard A. K. The Assessment and Prediction of Human Performance Degradation in Complex Tasks[M]. Amsterdam, the Netherlands:IOS Press,2003.
    [8]Deutsch S. Reconceptualizing Expertise Explaining an Expert's Error [A]. In:Proceedings of the Seventh International NDM Conference[C]. Amsterdam, The Netherlands, 2005:1-6.
    [9]Hooey B. L. Requirements for a Design Rationale Capture Tool to Support NASA's Complex Systems[A]. In:Proceedings of International Workshop on Managing Knowledge for Space Missions[C]. Pasadena, USA,2007:1-10.
    [10]Wilson G F., Russell C. A. Real-Time Assessment of Mental Workload Using Psychophysiological Measures and Artificial Neural Networks[J]. Human Factors,2003, 45(4):635-644.
    [11]Tsang P. S., Vidulich M. A. Handbook of Human Factors and Ergonomics (3rd Edition)[M]. Hoboken, USA:John Wiley & Sons,2006.
    [12]Gundel A., Wilson G. F. Topographical changes in the ongoing EEG related to the difficulty of mental tasks[J]. Brain Topography,1992,5(1):17-25.
    [13]Nickel P. Sensitivity and Diagnosticity of the 0.1-Hz Component of Heart Rate Variability as an Indicator of Mental Workload[J]. Human Factors,2003,45(4):575-590.
    [14]Neumann D. L., Lipp O. V. Spontaneous and reflexive eye activity measures of mental workload[J]. Australian Journal of Psychology,2002,54(3):174-179.
    [15]Gurkok H., Nijholt A. Brain-Computer Interfaces for Multimodal Interaction:A Survey and Principles [J]. International Journal of Human-Computer Interaction, 2012,28(5):292-307.
    [16]Papadelis C., Papadeli C. K., Vlachogiannis E. Effects of mental workload and caffeine on catecholamines and blood pressure compared to performance variations [J]. Brain and Cognition,2003,51(1):143-154.
    [17]聂能,尧德中,谢正祥.生物医学信号数字处理技术及应用[M].北京:科学出版社,2005.
    [18]Wilson G. F., Russell C. Operator Functional State Classification Using Neural Networks with Combined Physiological and Performance Features[A]. In:Proceedings of the Human Factors and Ergonomics Society Annual Meeting[C]. Santa Monica, CA, USA, 1999,43(20):1099-1102.
    [19]Zhang J. H., Mahfouf M., Linkens D. A. Adaptive Fuzzy Model of Operator Functional State in Human-Machine System:A Preliminary Study[A]. In:Proceedings of the 5th IASTED International Conference:Biomedical Engineering[C]. Innsbruck, Austria, 2007,555:118-123.
    [20]Christensen J. C., Estepp J. R., Wilson G. F. The effects of day-to-day variability of physiological data on operator functional state classification[J]. Neuroimage,2012, 59(1):57-63.
    [21]Liang S. F., Lin C. T., Wu R. C. Monitoring Driver's Alertness Based on the Driving Performance Estimation and the EEG Power Spectrum Analysis[A]. In:Proceedings of 27th Annual International Conference of the Engineering in Medicine and Biology SocietyfC]. Shanghai, China,2006:5738-5741
    [22]Lin C. T., Wu R. C., Liang S. F., Chao W. H. EEG-based drowsiness estimation for safety driving using independent component analysis[J]. IEEE Transactions on Circuits and System.2005,52(12):2726-2738.
    [23]Ratcliff. R. Modeling aging effects on two-choice tasks:Response signal and response time data[J]. Psychology and Aging,2008,23(4):900-916.
    [24]Lee M. D., Zhang S., Munro M.. Psychological models of human and optimal performance in bandit problems[J]. Cognitive Systems Research,2011,12(2):164-174.
    [25]Billings C. E. Aviatioin Automation:The Search for Human-Centered Approach[M]. New Jersy:Lawrence Erlbaum Associates Publishers,1997.
    [26]Endsley M. R. Design and Evaluation for Situation Awareness Enhancement[A]. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting[C]. Santa Monica, CA, USA,1988,32(2):97-101.
    [27]Endsley M. R. Toward a Theory of Situation Awareness in Dynamic Systems[JJ. Human Factors,1995,37(1):32-64.
    [28]Pope A. T., Bogart E. H., Bartolomb D.S. Biocybernetic system evaluates indices of operator engagement in automated task[J]. Biological Psychology,1995, 40(1-2):187-195.
    [29]Borghini G.s Astolfi L., Vecchiato G. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness [J]. Neuroscience & Biobehavioral Reviews, http://dx.doi.org/1 0.1016/j.neubiorev.2012.10.003
    [30]Hollender N., Hofmann C, Deneke M. Integrating cognitive load theory and concepts of human-computer interaction[J]. Computers in Human Behavior,2010,26(6):1278-1288.
    [31]Wilson G. F., Fisher F. Cognitive task classification based upon topographic EEG data[J]. Biological Psychology,1995,40(1-2):239-250.
    [32]Schmidt E. A., Schrauf M., Simon M. Drivers'misjudgement of vigilance state during prolonged monotonous daytime driving[J]. Accident Analysis & Prevention, 2009, 41(5):1087-1093.
    [33]Lal S. K., Craig A. A critical review of the psychophysiology of driver fatigue[J], Biological Psychology,2001,55(3):173-194.
    [34]Kiymik M. K., Akin M., Subasi A. Automatic recognition of alertness level by using wavelet transform and artificial neural network[J]. Journal of Neuroscience Methods, 2004,139(2):231-240.
    [35]Kaber D. B., Endsley M. R. The effects of level of automation and adaptive automation on human performance, situation awareness and workload in a dynamic control task[J]. Theoretical Issues in Ergonomics Science,2004,5(2):113-153.
    [36]Endsley M. R. Level of automation effects on performance, situation awareness and workload in a dynamic control task[J]. Ergonomics,1999,42(3):462-492.
    [37]Kaber D. B., Perry C. M., Segall N. Situation awareness implications of adaptive automation for information processing in an air traffic control-related task[J]. International Journal of Industrial Ergonomics,2006,26(5):447-462.
    [38]康卫勇,袁修干,柳忠起.飞机座舱视觉显示界面脑力负荷综合评定方法[J].航天医学与医学工程,2008,21(2):103-107.
    [39]傅佳伟,石立臣,吕宝粮.基于EEG的警觉度分析与估计研究综述[J].中国生物医学工程学报,2009,28(4):589-596.
    [40]易华辉,宋笔锋,王远达.无人机操作员势态感知的实验研究[J].人类工效学,2007,13(3):301-304.
    [41]Byrne E. A., Parasuraman R. Psychophysiology and adaptive automation[J]. Biological Psychology,1996,42(3):249-268.
    [42]Parasuraman R., Mouloua M., Molloy R. Effects of Adaptive Task Allocation on Monitoring of Automated Systems[J]. Human Factors,1996,38(4):665-679
    [43]Moray N., Inagaki T., Itoh M. Adaptive automation, trust, and self-confidence in fault management of time-critical tasks[J]. Journal of Experimental Psychology:Applied, 2000,6(1):44-58.
    [44]Prinzel L. J., Freeman F. G, Scerbo M. W. A Closed-Loop System for Examining Psychophysiological Measures for Adaptive Task Allocation[J]. The International Journal of Aviation Psychology,2000,10(4):393-410.
    [45]Meshkati N. Control rooms'design in industrial facilities [J]. Human Factors and Ergonomics in Manufacturing & Service Industries,2003,13(4):269-277.
    [46]Haarmann A., Boucsein W., Schaefer F. Combining electrodermal responses and cardiovascular measures for probing adaptive automation during simulated flight[J]. Applied Ergonomics,2009,40(6):1026-1040.
    [47]Stuiver A., Mulder L. M., Brookhuis K. A. Adaptive Task Support Based on Dynamic Human State Estimation[A]. In:Proceedings of 4th International Conference on Self-Adaptive and Self-Organizing Systems Workshop (SASOW), Budapest, Hungary, 2010:153-158.
    [48]Cegarra J., Chevalier A. The use of Tholos software for combining measures of mental workload:Toward theoretical and methodological improvements [J]. Behavior Research Methods,2008,40(4):988-1000.
    [49]Miller C. A., Parasuraman R. Designing for Flexible Interaction Between Humans and Automation:Delegation Interfaces for Supervisory Control[J]. Human Factors,2007, 49(1):57-75.
    [50]Mulder L. M., Dijksterhuis C, Stuiver A. Cardiovascular state changes during performance of a simulated ambulance dispatchers'task:Potential use for adaptive support[J]. Applied Ergonomics,2009,40(6):965-977.
    [51]Dijksterhuis C, Brookhuis K., Waard D. D. Effects of steering demand on lane keeping behaviour, self-reports, and physiology. A simulator study [J]. Accident Analysis & Prevention,2011,43(3):1074-1081.
    [52]Mulder B., Waard D. D., Hoogeboom P., Quispel L., Stuiver A. Using Physiological Measures For Task Adaptation[J]. Probing Experience,2008,8:221-234.
    [53]Stuiver A., Mulder B. Artefact-free real-time computation of cardiovascular measures[A]. In:Proceedings of the 3rd International Conference on Affective Computing and Intelligent Interaction and Workshop[C]. Amsterdam, Netherland,2009:1-6.
    [54]Matthews R, McDonald N J, Trejo L J. Psycho-physiological sensor techniques:an overview[A]. In:Proceedings of 11th International Conference on Human Computer Interaction[C]. Las Vegas, USA,2005:22-27.
    [55]Son I. Y., Guhe M., Gray W. D., Yazici B., Schoelles M. Human perormance assessment using fNIR[A]. In:Proceedings of Biomonitoring for Physiological and Cognitive Performance during Military Operations[C]. Orlando, FL, USA,2005.
    [56]Mendel J., Hing J. T., Ayaz H. Optical Brain Imaging to Enhance UAV Operator Training, Evaluation, and Interface Development[J]. Journal of Intelligent & Robotic Systems, 2011,61(1-4):423-443.
    [57]Ayaz H., Shewokis P. A., Bunce S., Izzetoglu K. Optical brain monitoring for operator training and mental workload assessment[J]. Neurolmage,2012,59:36-47.
    [58]Durantin G, Gagnon J. R, Tremblay S., Dehais F. Using near infrared spectroscopy and heart rate variability to detect mental overload[J]. Behavioural Brain Research,2014, 259:16-23.
    [59]Wilson M. R., Poolton J. M., Malhotra N., Ngo K., Bright E., Masters R. Development and Validation of a Surgical Workload Measure:The Surgery Task Load Index (SURG-TLX)[J]. World Journal of Surgery,2011,35(9):1961-1969.
    [60]Cinaz B., Arnrich B., Marca R. L., Troster G. Monitoring of mental workload levels during an everyday life office-work scenario[J]. Personal and Ubiquitous Computing, 2013,17(2):229-239.
    [61]Dadashi N., Stedmon A. W., Pridmore T. P. Semi-automated CCTV surveillance:the effects of system confidence, system accuracy and task complexity on operator vigilance, reliance and workload[J]. Applied Ergonomics, 2013,44(5):730-738.
    [62]Reid G. B. The Subjective Workload Assessment Technique:A Scaling Procedure for Measuring Mental Workload[J]. Advances in Psychology,1988,52:185-218.
    [63]Gore B. F. Human performance cognitive-behavioral modeling:A benefit for occupational safegy[J]. International Journal of Occupational Safety and Ergonomics, 2002,8(3):339-351.
    [64]Myung J. I., Pitt M. A. Optimal experimental design for model discrimination[J]. Psychological Review,2009,116(3):499-518.
    [65]Sweller J. Cognitive Load During Problem Solving:Effects on Learning[J]. Cognitive Science,1988,12(2):257-285
    [66]Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis[J]. Brain Research Reviews,1999,29(2-3):169-195.
    [67]Ullsperger P., Freude G, Erdmann U. Auditory probe sensitivity to mental workload changes-an event-related potential study [J]. International Journal of Psychophysiology, 2001,40(3):201-209.
    [68]Basar E., Schurmann M., Eroglu C. B. Alpha oscillations in brain functioning:an integrative theory[J]. International Journal of Psychophysiology,1997,26(1-3):5-29.
    [69]Pfurtscheller G., Aranibar A. Event-related cortical desynchronization detected by power measurements of scalp EEG[J]. Electroencephalography and Clinical Neurophysiology, 1977,42(6):817-826.
    [70]Gevins A., Smith M. E., McEvoy L., Yu D. High-resolution EEG mapping of cortical activation related to working memory:effects of task difficulty, type of processing, and practice[J]. Cerebral Cortex,1997,7(4):374-385.
    [71]Faircliugh S. H., Venables L., Tattersall A. The influence of task demand and learning on the psychophysiological response[J]. Internatioinal Journal of Psychophysiology,2005, 56(2):171-184.
    [72]Doppelmay M., Finkenzeller T., Sauseng P. Frontal midline theta in the pre-shot phase of rifle shooting:Differences between experts and novices[J]. Neuropsychologia,2008, 46(5):1463-1467.
    [73]Boksem M. S., Meijman T. F., Lorist M. M. Effects of mental fatigue on attention:An ERP study[J]. Cognitive Brain Research,2005,25(1):107-116.
    [74]Papadelis C, Chen Z., Papadeli C. K. Monitoring sleepiness with on-board electrophysiological recordings for preventing sleep-deprived traffic accidents [J]. Clinical Neurophysiology,2007,118(9):1906-1922.
    [75]Kannathal N., Choo M. L., Acharya U. R., Sadasivan P. K. Entropies for detection of epilepsy in EEG[J]. Computer Methods and Programs in Biomedicine,2005, 80(3):187-194.
    [76]Rosso O. A., Martin M. T., Plastino A. Brain electrical activity analysis using wavelet-based informational tools (Ⅱ):Tsallis non-extensivity and complexity measures[J]. Physica A:Statistical Mechanics and its Applications,2003, 320(15):497-511.
    [77]Rosso O. A., Martin M. T., Figliola A. EEG analysis using wavelet-based information tools[J]. Journal of Neuroscience Methods,2006,153(2):163-182.
    [78]Kar S., Bhagat M., Routray A. EEG signal analysis for the assessment and quantification of driver's fatigue[J]. Transportation Research Part F:Traffic Psychology and Behaviour, 2010,13(5):297-306.
    [79]Jorna P. M. Spectral analysis of heart rate and psychological state:A review of its validity as a workload index[J]. Biological Psychology,1992,34(2-3):237-257.
    [80]Aasman J., Mulder G, Mulder L. M. Operator Effort and the Measurement of Heart-Rate Variability[J]. Human Factors,1987,29(2):161-170.
    [81]Nocera F. D., Camilli M., Terenzi M. A Random Glance at the Flight Deck:Pilots' Scanning Strategies and the Real-Time Assessment of Mental Workload [J]. Journal of Cognitive Engineering and Decision Making,2007, 1(3):271-285.
    [82]Bonner M. A., Wilson G. F. Heart Rate Measures of Flight Test and Evaluation[J]. The International Journal of Aviation Psychology,2002,12(1):63-77.
    [83]Fairclough S. H., Venables L. Prediction of subjective states from psychophysiology:A multivariate approach[J]. Biological Psychology,2006,71(1):100-110.
    [84]Togo F., Takahashi M. Heart rate variability in occupational health-a systematic review[J]. Industrial Health,2009,47(6):589-602.
    [85]Miyake S., Yamada S., Shoji T., Takae Y., Kuge N., Yamamura T. Physiological responses to workload change. A test/retest examination[J]. Applied Ergonomics,2009, 40(6):987-996.
    [86]Henelius A., Hirvonen K., Holm A., Jussi K. Mental workload classification using heart rate metrics[A]. In:Proceedings of the 2009 International Conference of the IEEE Engineering in Medicine and Biology Society[C]. Minneapolis, MN, USA, 2009:1836-1839.
    [87]Hoover A., Singh A., Brown S. F., Muth E. Real-time detection of workload changes using heart rate variability[J]. Biomedical Signal Processing and Control,2012, 7(4):333-341.
    [88]Zhao C. L., Zhao M., Liu J. P., Zheng C. X. Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator [J]. Accident Analysis & Prevention,2012,45:83-90.
    [89]Laurenta F., Valderrama M., Besserve M. Multimodal information improves the rapid detection of mental fatigue[J]. Biomedical Signal Processing and Control,2013, 8(4):400-408.
    [90]Veltman J. A., Gaillard A. K. Physiological indices of workload in a simulated flight task[J]. Biological Psychology,1996,42(3):323-342.
    [91]Ryu K., Myung R. Evaluation of mental workload with a combined measure based on physiological indices during a dual task of tracking and mental arithmetic [J]. International Journal of Industrial Ergonomics,2005,35(11):991-1009.
    [92]Cannon J., Krokhmal P. A., Chen Y, Murphey R. Detection of temporal changes in psychophysiological data using statistical process control methods[J]. Computer Methods and Programs in Biomedicine,2012,107(3):367-381.
    [93]Baldwin C. L., Penaranda B. N. Adaptive training using an artificial neural network and EEG metrics for within-and cross-task workload classification[J]. Neurolmage,2012, 59(1-2):48-56.
    [94]Yin Z., Zhang J. H. Operator functional state classification using least-square support vector machine based recursive feature elimination technique[J]. Computer Methods and Programs in Biomedicine,2014,113(1):101-115.
    [95]Kumar M., Weippert M., Vilbrandt R. Fuzzy Evaluation of Heart Rate Signals for Mental Stress Assessment[J]. IEEE Transactions on Fuzzy Systems,2007,15(5):791-808.
    [96]Ting C. H., Mahfouf M., Nassef A., Linkens D. A. Real-Time Adaptive Automation System Based on Identification of Operator Functional State in Simulated Process Control Operations [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans,2010,40(2):251-262.
    [97]McCulloch W. S., Pitts W. A logical calculus of the ideas immanent in nervous activity [J]. The Bulletin of Mathematical Biophysics,1943,5(4):115-133.
    [98]Rosenblatt F. The perceptron:A probabilistic model for information storage and organization in the brain[J]. Psychological Review,1958,65(6):386-408.
    [99]Hopfield J. J. Neural networks and physical systems with emergent collective computational abilities [A]. In:Proceedings of the National Academy of Sciences of the United States of America[C].1982,79(8):2554-2558
    [100]Lin Y., Tang P., Zhang W. J., Yu Q. Artificial neural network modelling of driver handling behaviour in a driver-vehicle-environment system [J]. International Journal of Vehicle Design,2005,37(1):24-45.
    [101]Mazaeva N., Ntuen C., Lebby G. Self-Organizing Map (SOM) model for mental workload classification[A]. In:Proceedings of IFSA World Congress and 20th NAFIPS International Conference[C]. Vancouver, Canada,2001,3:1822-1825.
    [102]Wu C. X., Liu Y. L. Queuing Network Modeling of Driver Workload and Performance [J]. IEEE Transactions on Intelligent Transportation Systems,2007, 8(3):528-537.
    [103]Gianazza D. Forecasting workload and airspace configuration with neural networks and tree search methods[J]. Artificial Intelligence,2010,174(7-8):530-549.
    [104]Basheer I. A., Hajmeer M. Artificial neural networks:fundamentals, computing, design, and application[J]. Journal of Microbiological Methods,2000,43(1):3-31.
    [105]Lin C. J., Hsieh M. H. Classification of mental task from EEG data using neural networks based on particle swarm optimization[J]. Neurocomputing,2009, 72(4-6):1121-1130.
    [106]Vapnik V. Statistical learning theory[M]. New York:Wiley,1998.
    [107]Liang Y. L., Reyes M. L., Lee J. D. Real-Time Detection of Driver Cognitive Distraction Using Support Vector Machines[J]. IEEE Transactions on Intelligent Transportation Systems,2007,8(2):340-350.
    [108]Zhang J. H, Qin P. P., Raisch J., Wang R. B. Predictive modeling of human operator cognitive state via sparse and robust support vector machines[J]. Cognitive Neurodynamics,2013,7(5):395-407.
    [109]Setnes M., Babuska R. Rule-based modeling:Precision and transparency [J]. IEEE Transactions on Systems, Man and Cybernetics, Part C:Applications and Reviews,1998, 28(1):165-169.
    [110]Yen J., Wang L., Gillespie C. W. Improving the interpretability of TSK fuzzy models by combining global learning and local learning[J]. IEEE Transactions on Fuzzy Systems, 1998,6(4):530-537.
    [111]Nauck D., Kruse R. Obtaining interpretable fuzzy classification rules from medical data[J]. Artificial Intelligence in Medicine,1999,16(2):149-169.
    [112]Sentnes M., Roubos H. GA-fuzzy modeling and classification:complexity and performance[J]. IEEE Transactions on Fuzzy Systems,2000,8(5):509-522.
    [113]Castillo L., Gonzalez R., Perez R. Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm[J]. Fuzzy Sets and Systems,2001, 120(2):309-321.
    [114]Holland J. H. Adaptation in natural and artificial systems[M]. Cambridge, MA:MIT Press,1992.
    [115]Cordon O. A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems:Designing interpretable genetic fuzzy systems[J]. International Journal of Approximate Reasoning,2011,52(6):894-913
    [116]张永,吴晓蓓,向峥嵘,胡维礼.基于多目标进化算法的高维模糊分类系统的设计[J].系统仿真学报,2007,19(1):210-215.
    [117]Teng M., Xiong F., Wang R. Using genetic algorithm for weighted fuzzy rule-based system[A]. In:Proceedings of 5th World Congress on Intelligent Control and Automation[C]. Hangzhou, China,2004:4292-4295.
    [118]Sedighiani K. Constructing Interpretable Genetic Fuzzy Rule-Based System for Breast Cancer Diagnostic[A]. In:Proceedings of 2009 Global Congress on Intelligent Systems[C]. Xiamen, China,2009:441-446.
    [119]Zhang J. H., Wang X. Y., Mahfouf M., Linkens D. A. Fuzzy Logic based Identification of Operator Functional States Using Multiple Physiological and Performance Measures[A]. In:Proceedings of International Conference on Biomedical Engineering and Informatics[C]. Sanya, China,2008:570-574.
    [120]Kennedy J., Eberhart R. Particle swarm optimization[A]. In:Proceedings of IEEE International Conference on Neural Networks[C]. Perth, Australian,1995,4:1942-1948.
    [121]Shi Y. H., Eberhart R. A modified particle swarm optimizer [A]. In:Proceedings of IEEE World Congress on Conputational Intelligence [C]. Anchorage, AK, USA, 1998:69-73.
    [122]Clerc M., Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evoluationary Computation, 2002,6(1):58-73.
    [123]Kennedy J. Small worlds and mega-minds:effects of neighborhood topology on particle swarm performance[A]. In:Proceedings of Congress on Evoluationary Computation[C]. Washington D.C., USA,1999(3):1931-1938
    [124]Hu X. H., Eberhart R. Multiobjective optimization using dynamic neighborhood particle swarm optimization[A]. In:Proceedings of the World Congress on Computational Intelligence[C]. Honolulu, USA,2002:1677-1681.
    [125]Parsopoulos K. E., Vrahatis M. N. Unified Particle Swarm Optimization for Solving Constrained Engineering Optimization Problems [J]. Advances in Natural Computation, 2005,36(12):582-591.
    [126]Peram T, Veeramachaneni K. Fitness-distance-ratio based particle swarm optimization[A]. In:Proceedings of the IEEE Swarm Intelligence Symposium[C]. Indianapolis, Indiana, USA,2003:174-181.
    [127]Liang J. J., Qin A. K., Suganthan P. N., Baskar S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evoluationary Computation,2006,10(3):281-295.
    [128]Zhang Y. D., Jun Y., Wei G, Wu L. A. Find multi-objective paths in stochastic networks via chaotic immune PSO[J]. Expert Systems with Applications,2010,37(3):1911-1919.
    [129]Zhao X. C, Song B. Q., Huang P. Y, Wen Z. C, Weng J. L., Fan Y. An improved discrete immune optimization algorithm based on PSO for QoS-driven web service composition[J]. Applied Soft Computing,2012,12(8):2208-2216.
    [130]Niknam T., Amiri B. An efficient hybrid approach based on PSO, ACO and -means for cluster analysis[J]. Applied Soft Computing,2010,10(1):183-197.
    [131]Liao Y. L., Wang J. F., Wu J. L., Wang J. J., Zheng X. Y. PSO/ACO Algorithm-based Risk Assessment of Human Neural Tube Defects in Heshun County, China[J]. Biomedical and Environmental Sciences,2012,25(5):569-576.
    [132]Ramesh L., Chakraborthy N., Chowhury S. P., Chowdhury S. Intelligent DE algorithm for measurement location and PSO for bus voltage estimation in power distribution system[JJ. International Journal of Electrical Power & Energy Systems,2012,39(1):1-8.
    [133]Araujo T. F., Uturbey W. Performance assessment of PSO, DE and hybrid PSO-DE algorithms when applied to the dispatch of generation and demand[J]. International Journal of Electrical Power & Energy Systems,2013,47:205-217.
    [134]Yu S. W., Zhu K. J., Zhang X. Energy demand projection of China using a path-coefficient analysis and PSO-GA approach[J]. Energy Conversion and Management, 2012,53(1):142-153.
    [135]Dong N., Wu C. H., Lp W. H., Chen Z. Q. An opposition-based chaotic GA/PSO hybrid algorithm and its application in circle detection[J]. Computers & Mathematics with Applications,2012,64(6):1886-1902.
    [136]Feng H. M. Particle swarm optimization learning fuzzy systems design[A]. In: Proceedings of 3rd International Conference on Information Technology and Applications[C]. Sydney, Australia,2005:363-366.
    [137]Chen C. C. Design of PSO-based Fuzzy Classificatioin Systems[J]. Tamking Journal of Science and Engineering,2006,9(1):63-70.
    [138]Marinke R., Araujo E., Coelho L. S., Matiko I. Particle swarm optimization (PSO) applied to fuzzy modeling in a thermal-vacuum system[A]. In:Proceedings of 5th International Conference on Hybrid Intelligent Systems[C]. Rio de Janeiro, Brazil,2005.
    [139]赵亮.基于协同PSO算法的模糊辨识与神经网络学习[D].上海交通大学博士学位论文,2009.
    [140]肖健梅,王锡淮,李顺林.基于T-S模糊模型的船舶柴油机动态辨识[J].交通运输工程学报,2006,6(1):80-83.
    [141]Storm R., Price K. Differential Evolution-A Simple and Efficient Heuristic for global Optimization over Continuous Spaces [J]. Journal of Global Optimization,1997, ll(4):341-359.
    [142]Cheong F., Lai R. Designing a hierarchical fuzzy logic controller using the differential evolution approach[J]. Applied Soft Computing,2007,7(2):481-491.
    [143]Aliev R. A., Pedrycz W., Guirimov B. G. Type-2 fuzzy neural networks with fuzzy clustering and differential evolution optimization[J]. Information Sciences,2011, 181(9):1591-1608.
    [144]Wang R. F., Zhang J. H, Wang X. Y. Assessment of human operator functional state using a novel differential evolution optimization based adaptive fuzzy model [J]. Biomedical Signal Processing and Control,2012,7(5):490-498.
    [145]Wang L. X., Mendel J. Generating fuzzy rules by learning from examples[J]. IEEE Transactions on Systems, Man and Cybernetics,1992,22(6):1414-1427.
    [146]Wang L. X. The WM method Completed:A Flexible Fuzzy System Approach to Data Mining[J]. IEEE Transactions on Fuzzy Systems,2003, 11(6):768-782.
    [147]Yang X. M., Yuan J. Y, Yuan J. S., Mao H. N. An improved WM method based on PSO for electric load forecasting[J]. Expert Systems with Applications, 2010, 37(12):8036-8041.
    [148]Shaghaghian M. Prediction of dissolved oxygen in rivers using a Wang-Mendel method—case study of Au Sable River[J]. World Academy of Science, Engineering and Technology,2010,38:701-708.
    [149]沈骏,李少远.Wang-Mendel模糊模型控制规则的提取及应用[J].系统工程与电子技术,2007,29(9):1524-1528
    [150]张立,高宪文等.基于Wang-Mendel模型的有约束模糊预测控制[J].控制与决策,2010,25(9):1384-1388.
    [151]於东军,谌贻华等.融合自组织映射与Wang-Mendel方法的模糊规则提取[J].南京理工大学学报,2011,35(6):759-763.
    [152]Jang J. R. ANFIS:Adaptive-Network-Based Fuzzy Inference System[J]. IEEE Transactions on Systems, Man and Cybernetics,1993,23(2):665-685.
    [153]Lin F. C, Ko L. W, Chuang C. H., Su T. P. Generalized EEG-Based Drowsiness Prediction System by Using a Self-Organizing Neural Fuzzy System[TJ. IEEE Transactions on Circuits and Systems,2012,59(9):2044-2055.
    [154]Tsekouras G, Sarimveis H., Kavakli E., Bafas G. A heirarchical fuzzy-clustering approach to fuzzy modeling[J]. Fuzzy Sets and Systems,2005,150(2):245-266.
    [155]Vernieuwe H., Verhoest N. C, Baets B. D., Hoeben R., Troch F. P. Cluster-based fuzzy models for groundwater flow in the unsaturated zone[J]. Advances in Water Resources, 2007,30(4):701-714.
    [156]Celikyilmaz A., Turksen I. B. Enhanced Fuzzy System Models With Improved Fuzzy Clustering Algorithm[J]. IEEE Transactions on Fuzzy Systems,2008,16(3):779-794.
    [157]Pedrycz W., Loia V., Senatore S. Fuzzy Clustering With Viewpoints [J]. IEEE Transactions on Fuzzy Systems,2010,18(2):274-284
    [158]Liang M. Y, Saratchandran P., Huang G B. Classfication of Mental Tasks from EEG Signals Using Extream Learning Machine[J]. International Journal of Neural Systems, 2006,16(1):29-38.
    [159]Wang Z. H., Hope R. M., Wang Z. G, Ji Q., Gray W. D. Cross-subject workload classification with a hierarchical Bayes model[J]. Neurolmage,2012,59(l):64-69.
    [160]Zhang J. H., Wang X. Y., Mahfouf M., Linkens D. A. Use of Heart Rate Variability Analysis for Quantitatively Assessing Operator's Mental Workload[A]. In:Proceedings of International Conference on BioMedical Engineering and Informatics[C]. Sanya, China,2008,668-672.
    [161]Sarter N. B. The flight management system-pilots'interaction with cockpit automation[A]. In:Proceedings of IEEE International Conference on Systems, Man, and Cybernetics[C]. Charlottesville, USA,1991,2:1307-1310.
    [162]Parasuraman R., Sheridan T.B., Wickens C. D. A model for types and levels of human interaction with automation[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2000,30(3):286-297.
    [163]Hoc J.M. From human-machine interaction to human-machine cooperation[J]. Ergonomics,2000,43(7):833-843.
    [164]Parasuraman R., Riley V. Humans and Automation:Use, Misuse, Disuse, Abuse[J]. Human Factors,1997,39(2):230-253.
    [165]Bleil M., Manzey D. AutoCAMS 2.0 Manual[M]. Berlin:Technical University of Berlin, 2008.
    [166]Malik M., Bigger J. T., Camm A. J., Kleiger R. E. Heart rate variability standards of measurement, physiological interpretation, and clinical use[J]. European Heart Journal,1996,17(3):354-481.
    [167]姚柏祥.心电信号特征提取与心率变异性信号分析方法研究[D].中山大学硕士学位论文,2008.
    [168]李增勇,王成寿等.汽车驾驶员驾驶过程中的心率变异性功率谱分析[J].中国生物医药工程学报,2003,22(6):574-576.
    [169]杨少增,张建华,王行愚.操作员心理负荷特征选择:心率变异性(HRV)分析方法[A].第十届人-机-环境工程大会论文集[C].三亚,中国,2010:12-16.
    [170]张树京,齐立心.时间序列分析简明教程[M].北京:北方交通大学出版社,2003.
    [171]Lu H. Y., Sriyanyong P., Song Y. H., Dillon T. Experimental study of a new hybrid PSO with mutation for economic dispatch with non-smooth cost function[J]. International Journal of Electrical Power & Energy Systems,2010,32(9):921-935.
    [172]Montalvo I., Lzquierdo J., Garcia R., Herrera M. Improved performance of PSO with self-adaptive parameters for computing the optimal design of Water Supply Systems [J]. Engineering Applications of Artificial Intelligence,2010,23(5):727-735.
    [173]Afshar M. H. Large scale reservoir operation by Constrained Particle Swarm Optimization algorithms[J]. Journal of Hydro-environment Research,2012,6(1):75-87.
    [174]Trelea I. C. The particle swarm optimization algorithm:convergence analysis and parameter selection[J]. Information Processing Letters,2003,85(6):317-325.
    [175]Hashemi A. B., Meybodi M. R. A note on the learning automata based algorithms for adaptive parameter selection in PSO[J]. Applied Soft Computing,2011,1 1(1):689-705.
    [176]Bergh F., Engelbrecht A. P. A study of particle swarm optimization particle trajectories[J]. Information Sciences,2006,176(8):937-971.
    [177]恩格尔·伯里特.计算群体智能[M].北京:清华大学出版社,2009.
    [178]Shen L. Q., Liu Z., Zhang Z. Y, Shi X. L. Frame-level bit allocation based on incremental PID algorithm and frame complexity estimation[J]. Journal of Visual Communication and Image Representation,2009,20(1):28-34.
    [179]Coelho L. S., Grebogi R. B. Chaotic synchronization using PID control combined with population based incremental learning algorithm[J]. Expert Systems with Applications, 2010,37(7):5347-5352.
    [180]Salomon R. Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms[J]. Biosystems,1996,39(3):263-278.
    [181]Yao X., Liu Y, Lin G. M. Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation,1999,3(2):82-102.
    [182]Lee C. Y, Yao X. Evolutionary programming using mutations based on the Levy probability distribution[J]. IEEE Transactions on Evolutionary Computation,2004, 8(1):1-13.
    [183]王立新,王迎军.模糊系统与模糊控制教程[M].北京:清华大学出版社,2003.
    [184]Liu B. D. A Survey of Entropy of Fuzzy Variables[J]. Journal of Uncertain Systems, 2007,1(1):4-13.
    [185]Farsa M. A., Zolfahari S. Chaotic time series prediction with residual analysis method using hybrid Elman-NARX neural networks[J]. Neurocomputing,2010, 73(13-15):2540-2553.
    [186]Gholipour A., Araabi B. N., Lucas C. Predicting Chaotic Time Series Using Neural and Neurofuzzy Models:A Comparative Study[J]. Neural Processing Letters,2006, 24(3):217-239.
    [187]Ma Q. L., Zheng Q. L., Peng H., Zhong T. W. Chaotic Time Series Prediction Based on Evolving Recurrent Neural Networks [A], In:Proceedings of the International Conference on Machine Learning and Cybernetics[C]. HongKong, China, 2007:3496-3500.
    [188]Melin P., Soto J., Castillo O., Soria J. A new approach for time series prediction using ensembles of ANFIS models[J]. Expert Systems with Applications,2012, 39(3):2494-3506.
    [189]Sello S. Solar cycle forecasting:A nonlinear dynamics approach[J]. Astronomy & Astrophysics,2001,377(1):312-320.
    [190]Billings C. E. Some questions about advanced automation[A]. In: Proceedings of the Second Automation Technology and Human Performance Conference [C]. Cocoa Beach, FL, USA,1996:314-320.
    [191]Morrison J. G, Gluckman J. P. Definitions and prospective guidelines for the application of adaptive automation[A]. In:Human performance in automated systems: Current research and trends[M]. Mahwah, NJ:Erlbaum,1994:256-263.
    [192]Kaber D. B., Wright M. C, Prinzel L. J., Clamann M. P. Adaptive Automation of Human-Machine System Information-Processing Functions[J]. Human Factors,2005, 47(1):730-741.
    [193]Boucsein W. Engineering Psychophysiology:Issues and Applications[M]. New Jersey: Lawrence Erlbaum Associates,2000.
    [194]Nickel P., Roberts A. C., Hockey G. J. Assessment of high risk operator functional state markers in dynamical systems-preliminary results and implications [A]. In:Proceedings of human factors and ergonomics society Europe chapter annual meeting[C]. Turin, Italy, 2005:26-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700