用户名: 密码: 验证码:
木材除湿干燥模糊解耦控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干燥设备是木材干燥作业的基础条件,其性能优劣对木材干燥质量有着直接的影响。在其控制系统的设计过程中,采用合理的控制策略可以使干燥设备发挥最优性能,从而缩短干燥时间,降低能耗,提高木材的干燥质量,增加企业的经济效益。因此,将智能控制算法应用到木材除湿干燥控制系统的设计中具有一定的实用意义。本研究在分析典型木材除湿干燥设备总体结构和工作原理的基础上,设计了一种基于模糊解耦理论的木材除湿干燥控制系统,能够根据干燥窑内温度、相对湿度的变化,动态的调节除湿机的开启比例,给出一个控制周期T内最佳的除湿机开启与停止时间,从而精确控制干燥窑内的温度、相对湿度,满足木材干燥基准的要求。主要研究结果如下:
     (1)基于模糊解耦理论,设计了用于木材除湿干燥过程控制的多变量模糊解耦控制器。在设计过程中,对多变量系统进行模糊解耦分析,将其分解为温度-除湿机开启比例的温度模糊控制器,相对湿度-除湿机开启比例的相对湿度模糊控制器两个SISO系统;然后对两个SISO系统进行模糊控制器的设计,其模糊控制规则是在对北京凯明提琴有限公司多年使用木材除湿干燥设备积累的控制经验进行总结、分析后得到的,并以此作为模糊推理的依据,分别得到两个SISO系统的控制输出查询表;最后将2个SISO系统的控制输出按照“取小法”的合成法则进行合成,得到多变量系统的解耦控制输出。
     (2)针对除湿机不能频繁开启、停止,且开启、停止之间需要一定的时间间隔的工作特点,提出控制周期T的概念,可以根据所处干燥阶段的不同,设定不同的控制周期T,对除湿机进行控制。这样在保证对干燥窑内温度、相对湿度的精准控制的基础上,可以减轻设备磨损,延长设备寿命,同时对干燥质量也有一定的提高。
     (3)根据辅助电加热器在木材除湿过程不同阶段的作用和功能,提出其在干燥预热阶段、干燥阶段的控制思想,保证在不影响除湿机本身的供热能力的基础上,能够精确地补充干燥窑内湿空气所需的热量。
     (4)搭建了木材除湿干燥控制系统的硬件平台,并对其控制软件进行了设计。控制系统采用ATmega1280单片机作为控制器,以DWIN智能触摸屏为人机交互方式,选用合理的温湿度传感器和数据存储芯片,编制相应的控制程序,完成木材除湿干燥过程的精准控制和可视化操作。
     (5)对北京凯明提琴有限公司的木材除湿干燥设备在仪表控制和模糊解耦控制两种方式下的实际运行情况进行总结分析,结果表明:相比仪表控制方式,本研究设计的控制系统能够在保证干燥质量的前提下,缩短干燥周期,由原来的30天减为23天;降低能耗,节能17%左右,同时除湿机的工作时间减少157小时,减轻了设备磨损,延长设备寿命。
     本研究第一次将模糊解耦理论应用到木材除湿干燥过程的控制中,并设计了相应的控制系统,经过两年多的实际生产使用,取得了很好的应用结果,干燥木材的合格率在95%以上。该研究成果可为同类型的木材除湿干燥设备的设计与应用提供参考,具有良好的应用前景。
Drying equipment is a key part in wood drying process, and its performance greatlyaffects the drying quality. In the design of control system for drying equipment, reasonablecontrol strategies could maximize the performance of drying equipment, thus shortening thedrying time, reducing energy consumption, improving the drying quality and increasingeconomic efficiency of enterprises. So it would be practically significant to introduce theintelligent control algorithm into the design of the control system of dehumidification drying.Analyzed with the overall structure and working principle of dehumidification dryingequipment, in this study, a kind of intelligent control system was designed on the basis of fuzzydecoupling theory. The control system could dynamically adjust the run-time proportion ofdehumidifier according to the changes of temperature and relative humidity in the drying kiln,then calculate turn-on time and stop time of dehumidifier in one control cycle T, so as toexactly control the drying process to meet the wood drying schedule. Main results for thisstudy are as follows:
     (1) Based on the fuzzy decoupling theory, a multivariable fuzzy decoupling controller wasdesigned for the process control of dehumidification drying. During the design process, it wasdivided into two SISO systems: temperature--the run-time proportion of dehumidifier andrelative humidity--the run-time proportion of dehumidifier; then the fuzzy controllers for twoSISO systems were designed respectively, their fuzzy control rules were established afteranalyzing and summarizing the control experiences which was accumulated from the long-termuse process of dehumidification drying equipment in Beijing Kaiming fiddle CO., LTD. Next,fuzzy reasoning was calculated on the basis of the fuzzy control rules so as to get the fuzzycontrol query tables of two SISO systems respectively. In the end the control output of MISOsystem was gotten from the synthesis calculation conducted between the control outputs of twoSISO systems in accordance with “min” criterion.
     (2) The dehumidifier cannot frequently open and shut down, and it requires a certain timeinterval between the opening and closing. For these working characteristics, the concept ofcontrol cycle T was proposed. According to the different drying stage, it can be configured todifferent values to control dehumidifier. This method could not only ensure the precise controlof temperature and relative humidity in the drying kiln, but also reduce device wearing toprolong the life cycle of the device, and improve the drying quality to some extent.
     (3) Considering the functions of auxiliary electric heater at different stages ofdehumidification drying, different control ideas for drying preheating stage and drying stagewere put forward. It could accurately supply the required heat in the drying kiln withoutaffecting the heating capacity of dehumidifier itself.
     (4) The hardware platform of control system for dehumidification drying was built andcontrol software was designed. Control system chosen ATmega1280single chip asmicrocontroller and adopt DWIN intelligent touch screen as the man-machine interactive way.Then suitable temperature&relative humidity sensor and data storage chip were selected.Finally the corresponding control programs were established to realize the precise control andvisual operation of dehumidification drying.
     (5) The actual use of dehumidification drying equipment under instrument control andfuzzy decoupling control were analyzed and summarized respectively in Beijing Kaimingfiddle CO., LTD. The results indicated that compared with instrument control, the controlsystem designed in this study could shorten the drying time, from30daysto23days; reducethe energy consumption and the energy-saving ratio is17%on the premise of good dryingquality. At the same time, the running time of dehumidifier decreased by157hours, so thedevice wear was reduced to extend the life of equipment.
     The research used fuzzy decoupling theory in the process control of dehumidificationdrying for the first time. The corresponding control system was designed. It has been used inthe actual production for over two years and obtained a good application result. The qualifiedrate of wood after drying in the equipment is over95%. The study can provide a reference for the design and application of the same type of dehumidification drying equipment. It has agood application prospect.
引文
[1]张璧光,高建民等.实用木材干燥技术[M].北京:化学工业出版社,2005.
    [2]王喜明.木材干燥学[M].北京:中国林业出版社,2007.
    [3]庄寿增.对我国木材干燥技术创新与发展问题的几点思考[J].林产工业,2008,35(2):6-9.
    [4]张璧光.木材科学与技术研究进展[M].北京:中国环境科学出版社,2004.
    [5]顾炼百,庄寿增.我国木材工业现状与科技需求[J].木材工业,2009,23(3):24-27.
    [6]张璧光,谢拥群.国际干燥技术的最新研究动态与发展趋势[J].木材工业,2008,22(2):5-7.
    [7]张璧光.我国木材干燥技术的创新途径与发展前景[J].中国林业,2001,(5):14-16.
    [8] Shusheng Pang. Emissions From Kiln Drying of Pinus radiata Timber: Analysis, Recovery, andTreatment[J]. Drying Technology,2012,30(10):1099-1104.
    [9] Patrick Perré, Romain Rémond, Julien Colin, et al. Energy Consumption in the Convective Drying ofTimber Analyzed by a Multiscale Computational Model[J].Drying Technology,2012,30(11-12):1136-1146.
    [10]中国人民大学气候变化与低碳经济研究所.中国低碳经济年度发展报告[M].北京:石油工业出版社,2011.
    [11]楚杰,段新芳,吕斌,等.基于低碳经济的木材工业发展战略研究[J].木材工业,2013,27(3):25-28,46.
    [12]张宜生,黄安民,叶克林.低碳经济视角下木材工业的发展展望[J].木材工业,2010,24(2):17-20.
    [13]国家林业局.发展现代林业促进绿色增长[M].北京:中国林业出版社,2011.
    [14]谢拥群,张璧光.我国木材干燥技术与研究动态[J].干燥技术与设备,2009,7(4):147-152.
    [15]张璧光,谢拥群.木材干燥的国内外现状与发展趋势[J].干燥技术与设备,2006,4(1):7-14.
    [16]高建民,伊松林,张璧光,等.我国木材节能干燥技术进展[J].木材工业,2010,24(6):21-24.
    [17] Gu Lianbai. Recent research and development in wood drying technologies in China[J]. DryingTechnology,2007,25(3):463-469.
    [18]张璧光,伊松林,周永东.我国木材干燥设备制造业概况与存在的问题[J].干燥技术与设备,2011,9(4):176-178.
    [19]胡传坤,高建民.我国木材热泵除湿干燥研究进展[J].安徽农业科学,2008,36(27):12050-12051.
    [20] Jijun Zhang,Dacheng Yang.A Note on Development of Industrial Drying Technology inChina[J].Drying Technology,2012,30(3):320-325.
    [21] Arun S. Mujumdar.Editorial: Why Four Decades of R&D in Drying[J]. DryingTechnology,2013,31(6):617-618.
    [22] Arun S. Mujumdar.Research and development in drying: recent trends and future prospects[J]. DryingTechnology,2004,22(1-2):1-26.
    [23] Mujumdar A S,Wu Z H.Thermal Drying Technologies:New Developments and Future R&DPotential[C].Proceedings of the5th Asia-Pacific Drying Conference,Hongkong,2007:1-8.
    [24]黄立新,陈国华,Mujumdar A S.干燥技术最新研究进展和展望[J].干燥技术与设备,2007,5(5):215-219.
    [25]战剑锋,王旭,战靓.木材含水率仪及木材干燥过程自动控制仪的发展现状与发展方向[J].林业机械与木工设备,2001,29(5):4-6.
    [26]宁炜,张璧光,许彩霞.木材除湿干燥技术的现状与应用前景[J].中国林业,2004(3):18-20.
    [27]张璧光,赵忠信.我国除湿干燥机的发展概况[J].林业科技通讯,1996,(5):6-8.
    [28] Czeslaw Strumillo.Perspectives on development in drying[J]. Drying Technology,2006,24(9):1059-1068.
    [29] Dufour P. Control Engineering in drying technology: review and trends[J]. Drying Technology,2006,24(7):889-904.
    [30] Skuratov N V. Intelligent wood drying control: problems and decisions[J]. Drying Technology,2008,26(5):585-589.
    [31]王吉,郑青榕,蔡振雄,等.热泵干燥技术现状及应用前景浅析[J].化学工程与装备,2008,(04):105-106,66.
    [32]刘元森.热泵设计和应用[J].新能源,1983,7(5):15-20.
    [33]姚才华,张涛,陆鸿,等.热泵木材干燥技术的新进展[J].林业机械和木工设备,1999,27(11):7-9.
    [34]张璧光.我国木材干燥技术现状与国内外发展趋势[J].北京林业大学学报,2002,24(5/6):262-266.
    [35] Paul Bannister,et al. Heat pump dehumidifier drying technology-status potential and prospects7thInternational Energy Agency Conference Beijing[M].中国建筑工业出版社,2002,219-230.
    [36] Takuoki Hisada.Present state of the wood drying in Japan and problems to be solved[C].7thInternational IUFRO Wood Drying Conference,Japan,2001,2-13
    [37]张璧光,李延军.热泵干燥木材的技术现状与发展趋势[J].干燥技术与设备,2003,(1):6-8.
    [38]张璧光,宁炜.我国热泵木材干燥机的发展概况与面临的问题[J].流体机械,2003,31(增刊):81-83.
    [39]张璧光,赵忠信,霍光青,等.高温双热源除湿干燥机的研制[J].北京林业大学学报,1995,17(supp2):25-29.
    [40]周永东,张璧光,赵忠信.木材热泵除湿干燥机节能工艺的研究[J].北京林业大学学报,1995,l7(1):83-89.
    [41]广东晟启热能设备有限公司.高效热泵除湿干燥机:中国,ZL200820047218[P].
    [42] Vasile Minea.Efficient Energy Recovery with Wood Drying Heat Pumps[J]. DryingTechnology,2012,30(14):1630-1643.
    [43] Vasile Minea.Heat-Pump–Assisted Drying: Recent Technological Advances and R&D Needs[J].Drying Technology,2013,31(10):1177-1189.
    [44] Kong Hoon Lee, Ook Joong Kim,Jongryul Kim. Performance simulation of a two-cycle heat pumpdryer for high-temperature drying[J]. Drying Technology,2010,28(5):683-689.
    [45]高瑞清,周永东,李晓玲,等.小型除湿干燥机干燥乐器用材的实践[J].木材工业,2004,18(6):38-40.
    [46]姜丽杰,杨晓军.小型木材除湿干燥机应用效果分析[J].吉林林业科技,2008,37(3):27-29.
    [47]黄新月,章建平.热泵除湿干燥技术在木材干燥中的应用[J].铁道运营技术,2005,11(2):14-16.
    [48] De-Ku Shang, Anders Rasmuson, Xiao-Done Zhang. Design of solar-dehumidification wood dryingkiln characterized by high capacity and temperature[J]. Drying Technology,1995,13(5-7):1431-1445.
    [49]张璧光.太阳能节能与热泵节能干燥技术[J].通用机械,2006,(7):18-20.
    [50]张璧光,赵忠信,高建民,等.高温双热源除湿与太阳能组合干燥技术的研究[J].北京林业大学学报,1997,19(3):56-62.
    [51]张璧光,赵忠信,高建民,等.高温双热源除湿与太阳能组合干燥技术[J].林产工业,1998,25(3):30-33.
    [52] Zhang Biguang, Zhao Zhongxin, Gao Jianmin,et al. The combination system of solar energy with heatpump dehumidifier for lumber drying[J]. Journal of Beijing Forestry University,1998,7(2):110-118.
    [53]张璧光.太阳能-热泵除湿机-微机监控联合干燥系统的研究[J].北京林业大学学报,1991,13(3):29-35.
    [54]张璧光,宁炜.蒸汽-热泵联合干燥木材能耗的实验测试与分析[J].华北电力大学学报,2004,31(6):82-84.
    [55]宁炜,张璧光.蒸汽与热泵联合干燥木材的匹配分析[J].干燥技术与设备,2004,2(2):41-43.
    [56] Wang X.G, Liu Wei, Gu Lizhu, et al.Development of an intelligent control system for wood dryingprocesses[C].2001IEEE/ASME International Conference on Advanced Intelligent Mechatronics(AIM2001),2001,(1):371-376.
    [57] Givon Yan, Clarence W.De Silva, X.G.wang. Modeling and adaptive control of a kiln dryer forwood[C].IASTED International Conference on Control and Applications held inBanff,Canada,July25-29,1999:144-149.
    [58] Qinglei Hu,Jun Cao, Liping Sun, et al.Neural network based robust variable structure control of wooddrying kiln[C].Chinese Control and Decision Conference,2009,Guilin(CN),4828-4833.
    [59]常建民,王东林,高建民.木材干燥全自动控制系统的研制[J].北京林业大学学报,2003,25(2):72-75.
    [60]薛巨峰,张佳薇,许海燕.基于DSP的木材干燥窑多路参数测试系统的研制[J].林业机械与木工设备,2006,34(7):23-25.
    [61]姚磊,黄林,张保健,等.基于ARM的间接炉气式木材干燥窑监控系统设计[J].农机化研究,2009,(7):121-123.
    [62]周屹,李萍.模糊控制器在木材干燥工艺中的设计研究[J].林业机械与木工设备,2007,35(4):30-32.
    [63]曹军,张佳薇.智能化木材干燥窑的数据采集系统[J].自动化仪表,2004,25(1):27-29.
    [64]谢永华,王克奇,张妤.基于DRNN的木材干燥窑智能控制系统[J].东北林业大学学报,2010,38(10):119-121.
    [65]汪海涛,韩玉杰.免疫PID控制器在木材干燥控制系统中的应用研究[J].林业机械与木工装备,2008,36(10):19-21.
    [66]姚小桂.T409木材干燥专家系统研制开发[J].林业科技开发,1998,12(3):20-22.
    [67]周玉成,程放.木材工业自动化技术应用现状及展望[J].木材工业,2006,20(2):59-62.
    [68]周玉成,程放,詹新生等.数控木材加工系统的设计与实现[J].木材工业,2004,18(2):15-17.
    [69]匙璟青.智能木材干燥控制系统的可视化研究[D].北京:中国林业科学研究院,2009.
    [70]侯晓鹏.木材干燥智能控制系统的研究[D].北京:中国林业科学研究院,2010.
    [71]王诗宓.多变量系统分析与设计[M].北京,清华大学出版社,1992.
    [72]王永初.解耦控制系统[M].成都:四川科学技术出版社,1985.
    [73]桑保华,薛晓中.多变量解耦控制方法[J].火力与指挥控制,2007,32(11):13-16.
    [74]马平,杨金芳,崔长春,等.解耦控制的现状及发展[J].控制工程,2005,12(2):97-100.
    [75]王晓哲,李界家,吴成东,等.多变量系统解耦方法综述[J].沈阳建筑工程学院学报,2000,16(2):143-145,149.
    [76]陈雪波.多变量系统的非平衡补偿[J].控制与决策,1989,4(3):31-34.
    [77] To Kelai, Ho Danial W C. A note on the decoupling controller design for unity feedback system[J].控制理论与应用,1997,14(2):162-170.
    [78] Godbole D N, Sastry S S. Approximately decoupling and asymptotic tracking for MIMO systems.IEEETrans on Automatic Control,1995,40(3):441-450.
    [79] Koivo H N. A multivariable self-tuning controller[J].Automatica,1980,16(4):315-366.
    [80] Wittenmark B, Middleton R, Goodwin G C. Adaptive decoupling of multivariablesystems[J].Controller,1987,46(6):1993-2009.
    [81]柴天佑.多变量间接自适应解耦控制算法[J].自动化学报,1991,17(5):51-54.
    [82]王晰,李少远.多模型分层递阶自适应前馈解耦控制[J].控制与决策,2005,20(1):17-22.
    [83] Chai T Y, Lang S J, Gu X Y. A generalized self-tuning feed-forward controller and multivariableapplication[C].Florida: Proceedings of24th IEEE conference on decision and control,1995.
    [84]蒋慰孙,叶银忠.多变量控制系统分析与设计[M].北京,中国石化出版社,2001.
    [85]达成莉.多变量系统解耦现状的分析[J].工业控制计算机,2011,24(12):69-71.
    [86]仪垂杰,韩敬礼.模糊解耦控制的应用与研究[J].自动化与仪表,1992,7(4):54-56.
    [87]胡泽新,邵惠鹤.基于神经网络的解耦控制新方法及其应用[J].1993,8(6):409-412.
    [88] Cheng C B. Fuzzy process control: construction of control charts with fuzzy numbers[J].Fuzzy Sets andSystems,2005,(2):287-303.
    [89] Chai T Y. Multivariable Intelligent decoupling control and its application[C].Hefei: Proceedings of3thWorld Congress on Intelligent Control and Automation,2000.
    [90]王启志.工程解耦控制系统的研究[D].厦门,华侨大学,2002.
    [91]张化光,杨英旭,柴天佑.多变量模糊控制的现状和发展(Ⅰ)-关于分层、自学习、自适应等问题[J].控制与决策,1995,10(3):193-203.
    [92]张化光,杨英旭,柴天佑.多变量模糊控制的现状和发展(Ⅱ)-关于解耦、神经网、变结构等问题[J].控制与决策,1995,10(4):289-295.
    [93] G V S Raju. Adapative hierarchical fuzzy controller[J]. IEEE Transaction on systems,man andcybernetics,1993,23(4):973-980.
    [94]徐承伟,吕勇哉.模糊系统的串联补偿解耦[J].自动化学报,1987,13(3):177-183.
    [95] C W Yu, Y Z Lu. Decoupling in fuzzy systems: A cascade compensation approach[J].Fuzzy Sets andSystems,1989,29(2):177-185.
    [96]徐承伟.模糊关系系统的反馈解耦[J].自动化学报,1989,15(6):537-539.
    [97] C W Yu, Y Z Lu. Decoupling fuzzy relational systems: An output feedback approach[J].IEEETransaction on systems,man and cybernetics,1989,19(2):414-417.
    [98]杨辉,王金章.多变量解耦模糊控制器的研究[J].控制与决策,1988,3(3):17-21.
    [99]陈耀.多变量模糊控制的研究现状[J].昆明工学院学报,1995,20(6):44-51.
    [100] Walichiewicz L. Decomposition of linguistic rule in the design of a multidimensional fuzzy controlalgorithm[J]. Cybernetics System Res,1984,2(3):185-193.
    [101] E Czogalaand, H J Zimmermann. Some aspects of synthesis of probabilistic fuzzy controllers[J].Fuzzy Sets and Systems,1984,13(2):169-178.
    [102] Gupta M M. Multivariable structure of fuzzy control system[J].IEEE Transactions on System, Manand Cybernetics,1986,16(5):638-656.
    [103]胡慧,刘国荣,等.多变量系统模糊自适应解耦控制方法综述[J].湖南工程学院学报,2004,14(3):11-13,18.
    [104] Yager R R. On the construction of hierarchical fuzzy systems models [J]. IEEE Transactions: systemsman cybernetics,1998,28(1):55-56.
    [105]张蕊,叶建华,钱虹,等.多变量模糊控制工程应用方法[J].上海电力学院学报,2008,24(3):243-247.
    [106] J B Kiszka, M M Gupta, G M Trojan. Multivariable fuzzy controller under Godel’simplication[J].Fuzzy Sets and Systems,1990,34(3):301-321.
    [107]平玉环,于希宁,孙剑,等.多变量系统模糊解耦方法综述[J].仪器仪表用户,2010,17(1):1-2.
    [108] Chen Bing. Tong Shaocheng, Liuxiaoping. Fuzzy approximate disturbance decoupling of MIMOnonlinear systems by backstepping approach[J].Fuzzy Sets and systems,2007,158(10):1097-1125.
    [109] Marino R, Cinili F. Input-output decoupling control by measurement feedback in four wheel activesteering vehicles[C].San Diego CA, USA: The45th IEEE Conference on Decision&Control,2006.
    [110] Yuji Izuno, Ryuzo Takeda, Mutsuo Nakaoka. New fuzzy reasoning-based high-performancespeed/position servo control schemes incorporating ultrasonic motor[C]. IEEE Trans on IndustryApplications,1992,28(3):613-618.
    [111] Batur Celal, Kasparian Vicken. Predictive fuzzy expert controllers[J].Computers IndustrialEngineering,1991,20(2):199-209.
    [112]李雪峰,杨先发,周凤岐.多变量模糊解耦控制系统研究与应用[J].西北工业大学学报,1995,13(1):56-60.
    [113]郝久玉,陈伟,李惠敏,等.多变量模糊控制系统的前馈解耦[J].天津大学学报,2004,37(5):396-399.
    [114]湛力,罗喜霜,张天桥.非线性系统的自组织模糊控制解耦控制[J].计算机仿真,2004,21(1):38-40.
    [115]李飞,马休,曹卫华,等.煤气混合过程热值与压力的模糊补偿解耦控制[J].中南大学学报(自然科学版),2011,42(1):94-99.
    [116]彭勇刚,韦巍.人工气候箱温湿度模糊控制[J].农业工程学报,2006,22(8):166-169.
    [117]李辉.一种多变量模糊神经网络解耦控制器的设计[J].控制与决策,2006,21(5):593-596.
    [118]张玲,张文苑,郑恩让.一种模糊解耦控制系统的设计与仿真研究[J].计算机仿真,2010,27(8):118-121.
    [119]王万良,赵燕伟,吴启迪,等.电脑孵化机多变量模糊专家控制[J].农业机械学报,1998,29(3):84-89.
    [120]陈明义,成晓民,陈润泰.多变量模糊控制器及其应用[J].中南工业大学学报,1995,26(4):550-554.
    [121]何小宁,肖伸平,王兵,等.多变量模糊控制系统的结构分解及其应用[J].计算机测量与控制,2005,13(5):452-454,467.
    [122]刘国荣.多变量系统模糊解耦自适应控制[J].控制理论与应用,1997,14(2):152-156.
    [123]刘国荣.模型参考模糊自适应控制[J].控制理论与应用,1996,13(1):92-97.
    [124]滕树杰,张乃尧.分层模糊控制器的解析表达式及自适应控制方法[J].清华大学学报(自然科学版),2002,42(9):1248-1252.
    [125]王瑞红,高美凤.分层模糊控制器在水厂混凝投药过程中的应用[J].计算机测量与控制,2007,15(1):66-67,84.
    [126]任新宇,樊思齐.航空发动机多变量自学习模糊解耦控制[J].推进技术,2004,25(6):535-537,560.
    [127]刘骏跃.模糊解耦理论在酒精蒸馏过程中的应用[J].西安科技学院学报,2001,21(1):65-69.
    [128]李飞,马休,曹卫华,等.煤气混合过程热值与压力的模糊补偿解耦控制[J].中南大学学报(自然科学版),2011,42(1):94-99.
    [129]周玉成,刘晓平.一类离散时间非线性系统解耦问题[J].东北大学学报:自然科学版,1997,18(5):508-512.
    [130]周玉成,程放,安源,等.具有通讯约束的线性状态反馈控制系统的可控性[J].林业科学,2003,39(6):131-135.
    [131]周玉成,程放,李晓群.一类非线性系统的鲁棒自校控制器设计[J].木材工业,2003.17(3):10-12.
    [132]周玉成,程放,范留芬,等.离散时间奇异系统的可测扰动解耦[J].控制与决策,2004,19(7):787-790.
    [133] Zhou Yucheng, Xu Jiahe, Jing Yuanwei. Comparison of centralized multi-sensor measurement andstate fusion methods with ensemble Kalman filter for Process Fault diagnosis [C]. Proceedings of2010Chinese Control and Decision Conference, Xuzhou, China,2010:3302-3307.
    [134] Yu cheng Zhou, Cheng Fang, Yuan An, et al. Controllability of Linear Feedback Control Systems withCommunication Constrains[J].SCIENTIA SILVAE SINICAE,2003,39(6):131-135.
    [135] Zadeh L A. Fuzzy sets[J].Information and control,1965,8:338-353.
    [136] Lembessis E, Tanscheit R. The influence of implication operators and defuzzification methods on thedeteministics output of a fuzzy rule-based controller[A]. Lowen R, Roubens M. Proceedings of ⅣIFSA World Congress, Vol. engineering [C]. Brussels: International Fuzzy Systems Assocition,1991:109-114.
    [137] Mendel J M. Fuzzy logic systems for engineering: a tutorial[C]. Proceedings of IEEE,1995,83(3):345-377.
    [138]孙增圻,邓志东,张再兴.智能控制理论与技术[M].北京:清华大学出版社,2011.
    [139] Tanaka K, Sugeno M. Stability analysis and design of fuzzy control systems. Fuzzy Sets andSystems,1992,45(2):135-156.
    [140]石辛民,郝整清.模糊控制及其MATLAB仿真[M].北京:清华大学出版社,北京交通大学出版社,2008.
    [141]诸静,等著.模糊控制原理与应用[M].北京:机械工业出版社,2005.
    [142]韦巍,何衍.智能控制基础[M].北京:清华大学出版社,2008.
    [143]周永东,刘立新.温湿度控制系统对木材干燥的影响及优化设计[J].木材工业,1999,13(4):36-38.
    [144]马潮.高档8位单片机ATmega128原理与开发应用指南(上)[M].北京:北京航空航天大学出版社,2004.
    [145] ATmel Corp.ATmega640/V-1280/V-1281/V-2560/V-2561/V Datasheet.2014,1-10.
    [146]吕品.PLC和触摸屏组合控制系统的应用[J].自动化仪表,2010,31(8):45-47,51.
    [147]孟祥旭,李学庆.人机交互技术-原理与应用[M].北京:清华大学出版社,2004.
    [148]匙璟青,侯晓鹏,张星梅,等.基于RS-232的触摸屏技术在实验压机上的应用[J].木材加工机械,2008,19(4):11-15,18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700