用户名: 密码: 验证码:
水下机器人特性分析及其控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下机器人作为人类探索和开发海洋的工具,其在军事和民用两方面都发挥着重要的作用,21世纪将是水下机器人技术迅速发展和应用的时代,水下机器人这一高新技术也将成为学者们研究的重点。到目前为止,学者们已经将多种控制方法应用到了水下机器人系统中,已取得了很多优秀的成果,但是对于水下机器人的控制来说仍有很多问题有待于解决。考虑到水下机器人所处的海洋环境的复杂多变,如何在不同海况下实时判定水动力系数,进而建立相对精确的数学模型,如何设计更为有效的控制器来控制水下机器人的运动,如何在系统出现执行器和传感器故障情况下设计稳定的控制器来帮助水下机器人完成任务,这些都是需要我们进一步研究的问题。
     本论文首先从水下机器人的系统特性出发,以速度势函数作为桥梁,利用势流理论研究了水下机器人所处海况与水动力系数的关系;其次,在不考虑系统出现故障的情况下,对水下机器人系统进行线性化处理,进而给出了水下机器人航向和潜深控制器的设计方法;最后,针对水下机器人的强耦合、非线性的特点,同时考虑执行器和传感器故障,提出了几种容错控制方法。
     本论文在充分继承前人成果的基础上,作了进一步的研究,主要取得了下面的创新性成果:
     一、设计了鲁棒H∞航向控制器和潜深控制器。在不考虑执行器和传感器故障的情况下,利用线性矩阵不等式知识为水下机器人航向控制系统、潜深控制系统分别设计了鲁棒H∞航向控制器和潜深控制器。所设计的基于状态观测器的鲁棒H∞控制器,解决了部分状态不可测的自治式水下机器人航向控制系统的控制器设计问题,并实现了状态观测器和控制器的同时设计,和前人给出的方法相比具有收敛速度快和待求参数矩阵少的特点。另外,在已有的自治式水下机器人潜深动力学模型的基础上,给控制输入引入了一个具有硬性限制的控制舵角扰度,使得所研究的控制问题更具有实际意义。应用线性矩阵不等式的处理方法,将控制受限的水下机器人的潜深控制器的存在问题转化为线性矩阵不等式是否有可行解的问题。该方法的给出为水下机器人潜深控制器设计方法提供了新的思路;
     二、提出了基于线性矩阵不等式的H∞容错控制方法。利用线性矩阵不等式知识,针对一类非线性项满足利普希茨条件的非线性系统,分别给出了只发生执行器故障和同时发生传感器、执行器故障两种情况下的H∞容错控制器设计方法,并将该方法成功应用到水下机器人航向控制系统中。该H∞容错控制方法不仅保证了水下机器人系统在故障和正常情况下系统的稳定性,而且对干扰具有较好的抑制作用,它不仅适用于水下机器人航向控制系统,也适用于非线性项满足李普希茨条件的多输入的非线性系统,该容错控制方法为非线性系统的容错控制提供了新途径;
     三、提出了基于反馈线性化的水下机器人保性能容错控制方法,该方法不仅可以保证具有传感器故障时的系统的稳定性,还可以使系统具有指定的性能指标,为解决水下机器人传感器故障问题提供了新思路,具有一定的理论和实际意义;
     四、提出了基于故障诊断观测器的容错控制方法,分别针对具有常值故障和时变故障两种故障形式的非线性系统,设计了故障诊断观测器和容错控制器,将适用于线性系统的容错控制方法推广到了一类特殊的非线性系统,拓宽了应用范围,并将该方法应用到水下机器人航向控制系统中。文中所设计的容错控制器不仅可以保证故障系统的渐进稳定性,还可以使故障系统满足多种性能指标。在矩阵不等式的处理过程中,采用分块矩阵形式,使得运算简单方便。
Underwater vehicle, as marine tool explored and developed by human, is playing animportant role in both military and civilian fields. Underwater vehicle that will be furtherdeveloped and more sophisticated along with development and utilization of marine resources,protection of marine, and human knowledge, will be widely used in21st century. So far,many control methods have been applied to system of underwater vehicle, and contributed tomany outstanding achievements. However, there are still a lot of problems to be solved incontrol of underwater vehicle.Taking into account the complexity of the existing environmentof underwater vehicle, it is necessary to conduct further research concerning how to determinethe hydrodynamic coefficients in different marine conditions at any time and establish aprecise relatively mathematical model, how to design a more effective controller to makeunderwater vehicle move, and how to design a stable controller to help underwater vehicle tocomplete work when the systems have faults of actuator and sensor, etc.
     Firstly, from the perspective of system characteristics of underwater vehicle, therelationships between hydrodynamic coefficients and marine conditions of underwater vehiclewill be researched by using potential flow theory with the velocity potential function as abridge. Secondly, under the considering that system is no fault, design method of diving depthcontroller and underwater vehicle heading are both proposed through linearization ofunderwater vehicle system. Finally, some methods of fault-tolerant control are describedtaking into account the actuator and sensor failure, as well as the characteristics in strongcoupling and nonlinear.
     The contents and innovations in this paper are as follows on the basis of absorption ofthe previous results and research advanced:
     Firstly, robust H∞heading controller and diving depth controller have been designed.Without taking into account the fault of actuator and sensor, the robust H∞heading controllerand diving depth controller have been designed respectively by using linear matrix inequalityin heading control system and diving depth control system of underwater vehicle. The part ofstate nonmeasurable problems in heading control system of underwater vehicle can be solvedby robust H∞controller of state observer which has been designed, and achieve asimultaneous design of state observer and controller. It has advantage of fast convergence rateand less unknown parameter matrix comparing to the previous. In addition, in the base of dynamic model in existing underwater vehicle, it will make more practical significance incontrol problem though introducing hardness limited in control input. The existing problem ofdiving depth controller of underwater vehicle is converted to the problem whether linearmatrix inequality has feasible solution.It will provide a new idea to design diving depthcontroller of underwater vehicle by using methods mentioned above.
     Secondly, based on linear matrix inequality, a method of H∞fault-tolerant control ispresented. The methods of H∞fault-tolerant control on the conditions that only actuatorfaults or simultaneous sensor and actuator faults exist have been designed respectively using aclass of nonlinear systems satisfying Lipschitz condition. The methods above have beenapplied to heading controller successfully. The methods of H∞fault-tolerant control not onlyensure the system to achieve stability in fault or normal circumstances, but inhibit interferenceeffectively. It applies not only to the course in heading control system of underwater vehicle,but also applies to multi-input nonlinear systems satisfying Lipschitz conditions, whichprovide a new way to achieve fault-tolerant control of nonlinear system.
     Thirdly, based on feedback linearization theory, a method of guaranteed costfault-tolerant control in underwater vehicle is proposed, which not only can make the systemin stability in sensor failure, but make the system fulfill the specified performance indicators.It certainly has some theoretical and practical significance to provide a new way to reslovesensor fault of underwater vehicle.
     Fourthly, the fault-tolerant control method is proposed based on fault diagnosis observer,fault diagnosis observer and fault-tolerant controller are respectively designed correspondingto the nonlinear systems of constant fault and time-varying fault. The fault-tolerant controlmethod applied to the linear system is extended to a special class of nonlinear systems,broadening the range of application, and applying to heading control system of underwatervehicle. The fault-tolerant controller designed not only can guarantee the asymptotic stabilityin fault system, but meet multi-performance index. It will be simple and convenient when theform of partitioned matrix is used.
引文
[1]朱大奇,刘乾,胡震.无人水下机器人可靠性控制技术.中国造船.2009,50(2):183-192页
    [2]赵福龙.水下机器人故障诊断与容错控制研究.哈尔滨工程大学硕士学位论文.2008:1-2页
    [3]方少吉.水下机器人故障诊断与容错控制系统的研究.哈尔滨工程大学硕士学位论文.2007:1-2页
    [4]徐玉如,庞永杰,甘永,孙玉山.智能水下机器人技术展望.智能系统学报.2006,1(1):9-16页
    [5]蒋新松,封锡盛,王棣棠.水下机器人.沈阳:辽宁科学技术出版社,2000:225-242,249-282,292-297页
    [6] Aoki T., Murashima T., Tsukioka S., et al. Development of deep sea free swimingROV”UROV7K”. OCEANS'99.1999:1307-1311P
    [7] International Submarine Engineering Ltd, online available at: http://www.ise.bc.ca/
    [8]燕奎臣,李一平,袁学庆.远程自治水下机器人研究.机器人.2002,24(4):299-303页
    [9] Bachmayer R., Leonard N., Graver J., et al. Underwater gliders: recent developmentsand future applications. Underwater Technology,2004, UT'04.2004InternationalSymposium on,2004:195-200P
    [10] Roberts G. N., Sutton R.. Advanced in unmanned marine vehicles. Herts. UnitedKongdom: The Institution of Electrical Engineers,2006
    [11] Slocum battery glider operations manual, Webb Research Corporation,East Falmouth,MA,2002
    [12] Eriksen C.C., Osse T.J., Light R.D., et al. Seaglider: a long-range autonomousunderwater vehicle for oceanographic research. IEEE Journal of Oceanic Engineering,2001,26(4):424-436P
    [13] Sherman J., Davis R. E., Owens W. B., et al. The autonomous underwaterglider”Spray”. IEEE Journal of Oceanic Engineering.2001,26(4):437-446P
    [14]王晓鸣.混合驱动水下自航行器动力学行为与控制策略研究.天津大学博士学位论文.2009:1-4页
    [15]武建国.混合驱动水下滑翔器系统设计与性能分析.天津大学机械工程学院博士学位论文.2010:1-3页
    [16]彭学伦.水下机器人的研究现状与发展趋势.机器人技术与应用.2004,4:43-47页
    [17]毕道明,李硕,俞建成等.水下滑翔机器人控制系统设计与实现.微计算机信息.2006,22(11-1):18-19页
    [18]吴利红,俞建成,封锡盛.水下滑翔机器人水动力研究与运动分析.船舶工程.2006,28(1):12-16页
    [19]王延辉.水下滑翔器动力学行为与鲁棒控制策略研究.天津大学博士学位论文.2007,12:2-8页
    [20]刘芙蓉,陈辉.自主式水下潜器研究开发综述.舰船科学技术.2008,30(5):20-23页
    [21]李一平.水下机器人—过去、现在和未来.自动化博览.2002,3:153-155页
    [22]曹江丽.水下机器人路径规划问题的关键技术研究.哈尔滨工程大学博士学位论文.2009:2-5页
    [23]段群杰.水下机器人实时路径规划方法研究.哈尔滨工程大学博士学位论文.2007:1-5页
    [24] Yoerger. D. N. and Slotine. J. E. Robust trajectory control of underwater Vechcles.IEEE J. of Oceanic Engineering.1985, QE-10(4):462-470P
    [25]王丽荣,甘永,徐玉如等.滑模观测器在水下机器人推力器故障诊断中的应用.哈尔滨工程大学学报.2005,26(4):425-429页
    [26]王薇.非线性系统的滑模控制研究.中国海洋大学博士学位论文.2005,6:1-2,33-53页
    [27]王青山. AUV在海流环境中的滑模变结构控制应用技术研究.哈尔滨工程大学硕士学位论文.2007,3:37-43页
    [28]高剑.自主水下航行器轴向运动的自适应反演滑模控制.西北工业大学学报.2007,25(5):552-554页
    [29]朱旭光. AUV的改进滑模变结构控制技术研究.哈尔滨工程大学硕士学位论文.2008,1:39-43页
    [30]施小成,周佳加,边信黔等.模糊滑模变结构控制在AUV纵倾控制中的应用.计算机仿真.2008,25(10):168-171页
    [31]邹克旭,欧白羽,王晨等.基于滑模方法的机器鱼运动控制.机器人技术与应用.2009,4:18-21页
    [32]夏庆锋,刘健.模糊滑模控制在AUV控制中的应用.微计算机信息.2010,26(4-1):26-28页
    [33]吴宝举,李硕,王晓辉.自治水下机器人自适应滑膜控制.机械设计与制造.2010,7:142-144页
    [34]刘和平,龚振邦,李敏等.水下机器人浪涌中横摇角的模糊滑模控制.武汉理工大学学报.2009,31(14):122-133页
    [35]肖涛.基于Backstepping方法的水下机器人自适应滑模控制技术研究.哈尔滨工程大学硕士学位论文.2009,3:26-42页
    [36]朱计华,苏玉民,李晔. AUV近水面运动的积分变结构控制及仿真.系统仿真学报.2007,19(22):5321-5324页
    [37]熊华胜,边信黔,施小成.积分变结构控制原理在AUV航向控制中的应用仿真.船舶工程.2005,27(5):30-33页
    [38]魏英杰,毕凤阳,张嘉钟.时滞时变AUV的模糊变结构控制.系统工程与电子技术.2009,31(8):1949-1952页
    [39]张铭钧,段群杰.基于神经网络的水下机器人运动预测控制方法.中国造船.2001,42(3):43-51页
    [40]沈伟.模糊PID控制在水下机器人运动控制中的应用.哈尔滨工程大学硕士学位论文.2005,3:39-68页
    [41]孙玉山,甘永,万磊.堤坝检测水下机器人模糊自适应控制方法研究.海洋工程.2005,23(4):52-55页
    [42]梁霄,张均东,李巍.水下机器人T-S型模糊神经网络控制.电机与控制学报.2010,14(7):99-104页
    [43]于华男,戴军,徐玉如等.基于遗传算法的水下机器人模糊控制器优化设计.哈尔滨工程大学学报.2002,23(5):12-15页
    [44] Yuh, J. A neural net controller for underwater robotic vehicles. IEEE J. OceanicEngineering.1990,15(3):161-166P
    [45] Ishii, K. Fujii,T. and Ura,T. Neural metwork system for online controller adaptation andits application to underwater robot. Proceedings of IEEE Intemational Conference onRobotics&Automation,1998:756-761P
    [46]张铭钧,祝海涛,苗青.水下机器人运动控制神经网络的结构与学习方法.哈尔滨工程大学学报.2000,21(1):67-70页
    [47]梁霄,李晔,万磊等.基于鲁棒神经网络的水下机器人运动控制.东南大学学报.2006,36(I):1-4页
    [48]胡红波,马爱民.自治式潜水器规避航行神经网络控制器设计.火力与指挥控制.2007,32(4):65-68页
    [49]汤莉. AUV神经网络水平面航迹跟踪控制研究.哈尔滨工程大学硕士学位论文.2009,3:25-69页
    [50] Goheen, K R. and Jeffery, R. E. Multivariable self-tuning autopilots for autonomousand remotely operated underwater vehicles. IEEE Journalof Oceanic Engineering.1990,15(3):144-151P
    [51] Yuh, J. Anadaptive and learning control system for underwater robusts.13thWorldCongress Intemational Federation of Automatic tontrol, San Francisco, CA.1996(A):145-150P
    [52] Choi, S. K. and Yuh, J. Experimental study on a leaming control system with boundestimation for underwater vehicles. Int’ I J of Autonomous Robots.1996,3(2/3):187-194P
    [53] Tabaii, S. S. El-Hawary, F and El-Hawary, M. Hybrid adaptive control of autonomousunderwater vehicles. Proceedings of Symposium of Autonomous Underwater VehiclesTechnology.1994:275-282P
    [54]高建树,邢志伟,张宏波.基于观测器的水下机器人神经网络自适应控制.机器人.2004,26(6):515-518页
    [55]俞建成,李强,张艾群等.水下机器人的神经网络自适应控制.控制理论与应用.2008,25(1):9-13页
    [56]俞建成,张艾群,王晓辉等.基于模糊神经网络水下机器人直接自适应控制.自动化学报.2007,33(8):840-845页
    [57]刘学敏,徐玉如.水下机器人运动的S面控制方法.海洋工程.2001,19(3):81-84页
    [58]刘建成,于华男,徐玉如.水下机器人改进的S面控制方法.哈尔滨工程大学学报.2002,23(1):33-36页
    [59]王建国,吴恭兴,万磊等.广义S面的水下机器人控制器设计.电机与控制学报.2009,13(1):144-148页
    [60]郭冰洁,徐玉如,李岳明.水下机器人S面控制器的改进粒子群优化.哈尔滨工程大学学报.2008,29(12):1277-1282P
    [61]熊华胜,边信黔,施小成.鲁棒H∞滤波器在AUV航向控制中的应用仿真.机器人.2005,27(6):526-534页
    [62]韩云涛,孙尧,莫宏伟.水下超高速航行体非线性鲁棒控制器设计.武汉理工大学学报.2010,34(2):221-232页
    [63]华克强,王秀娟.水下机器人姿态保性能鲁棒控制物理仿真研究.船海工程.2009,38(3):32-35页
    [64]熊华胜,边信黔,施小成.自治水下机器人深度的鲁棒H∞控制仿真.计算机仿真.2007,24(3):156-159页
    [65]王延辉.水下滑翔器动力学行为与鲁棒控制策略研究.天津大学博士学位论文.2007:71-108页
    [66] Niederlinski A. A heuristic approach to the design of interacting multi-variable systems.Automatica.1971,7:691-701P
    [67] Saljak D D. Reliable control using multiple control systems. Int.J.Control.1980,31:303-329P
    [68] Patton R J. Robustness issues in fault tolerant control. In: Proc. of InternationalConference on Fault Diagnosis,Toulouse, France,1993,1081-1117P
    [69] Patton R J. Fault-tolerant control: the1997situation. In: Proc. of IFAC/IMACsSymposium on Fault Detection and Safety for Technical Process. Hull, England,1997,1033-1055P
    [70]葛建华,孙优贤.容错控制系统的分析与综合.杭州:浙江大学出版社,1994
    [71]南英,陈士橹,戴冠中.容错控制进展.航空与航天.1993,(4):62-67页
    [72] HUBER R, et al. Self-repairing flight control system. SAE Technology Paper Series.1984:1-20P
    [73] LOOZE D P, et al. An automatic redesign approach forrestructruable control systems.IEEE Trans. on Control System Magzine.1985,5(1):16-22P
    [74] ERYUREK E, et al. Fault-tolerant control and diagnosis for large scale systems. IEEETrans. on Control System Magzine.1995,15(5):34-42P
    [75] DIAO Y, PASSINO K M. Stable fault-tolerant adaptove fuzzy/neural control for aturbine engine. IEEE Trans. on Control Systems Technology.2001,9(3):494-509P
    [76] KABORE P, and WANG H.. Design of fault diagnosis filters and fault-tolerant controlfor a class of nonlinear systems. IEEE Trans. on Automatic Control.2001,46(11):1805-1809P
    [77] ZHU D Q, KONG M. Fault-tolerant control of dynamic nonlinear system using creditassign fuzzy CMAC. ACTA Automatica Sinica.2006,32(3):329-336P
    [78] ZHU D Q, KONG M. Adaptive Fault-tolerant Control of nonlinear systems:AnImproved CMAC-Based Fault Learning Approach. International Journal of Control.2007
    [79] EDIN O, GEOFF R. Thruster fault diagnosis and accommodation for open-frameunderwater vehicles. Control Engineering Practice.2004,12:1575-1598P
    [80] ZHU D Q, GU W. Sensor fault diagnosis of autonomous underwater vehicle based onnonlinear principal component analysis.6th IFAC Symposium on IntelligentAutonomous Vehicle, Toulouse, France,2007,9
    [81]方少吉,王丽荣,朱计华,庞永杰.水下机器人传感器容错控制技术的研究.机器人.2007,29(2):155-159页
    [82] CRISTI R F A, PAPOULIAS, HEALEY A J. Adaptive sliding mode control ofautonomous underwater vehicles in the dive plane. IEEE Journal of OceanicEngineering.1990,15(3):152-160P
    [83] HEALEY A J, LIENARD D. Multivariable sliding Oceani mode control for autonomousdiving and steering of unmanned underwater vehicles. IEEE Journal of c Engineering.1993,18(3):327-339P
    [84] OMERDIC E, Roberts G N. Thruster fault accommodation for underwater vehicles.First IFAC workshop on guidance and control of underwater vehicles, Newport, SouthWales, UK,2003:221-226P
    [85]颜明重,刘乾,朱大奇.基于神经网络的水下机器人容错控制方法与实验研究.船海工程.2009,38(5):138-141页
    [86]方少吉,王丽荣,朱计华等.水下机器人传感器容错控制技术的研究.机器人.2007,29(2):155-159页
    [87]朱大奇,陈亮,刘乾.一种水下机器人传感器故障诊断与容错控制方法.控制与决策.2009,24(9):1335-1339P
    [88]杨立平,张铭钧,褚振忠等.水下机器人抗积分饱和控制及主动容错控制方法.哈尔滨工程大学学报.2010,31(6):755-761页
    [89]张立川,徐德民,李俊.基于冗余管理的水下航行器深度容错控制方法.火力与指挥控制.2009,34(7):57-59页
    [90]高立娥,刘卫东,张萍.基于两级神经网络传感器故障诊断与容错控制技术.鱼雷技术.2008,16(6):34-37页
    [91] YOERGER D G, SLOTINE J J E. Adaptive sliding control of an experimentalunderwater vehicle. Proceedings of IEEE International Conference on Robotics andAutomation, California, USA,1991:2746-2751P
    [92] YANG K C H, CHOI S K. Fault-tolerant system design of an autonomous underwatervehicle—ODIN: an experimental study. International Journal of Systems Science.1999,30(9):1011-1019P
    [93] PODDER T K, ANTONELLI G, SARKAR N. Fault tolerant control of an autonomousunderwater vehicle under thruster redundancy: Simulation and experiments.Proceedings of IEEE International Conference on Robotics and Automation. SanFrancisco, USA,2000:276-285P
    [94] PODDER T K, SARKAR N. Fault-tolerant control of an autonomous underwatervehicle under thruster redundancy. Robotics and Autonomous Systems.2001,34(1):39-52P
    [95] EDIM O, GEOFF R. Fault diagnosis and accommoda-tion for ROVs. Sixth IFACconference on manoeuvring and control marine craft, Girona, Spain,2003:575-588P
    [96] LIM C M, CHEN C H. Robust Fault-Tolerant Control for a Biped Robot Using aRecurrent Cerebellar Model Articulation Controller. IEEE Transactions on Systems,Man and Cybernetics-Part B.2007,37(1):110-123P
    [97]俞建成,张艾群,王晓辉.7000米载人潜水器推进器故障容错控制分配研究.机器人.2006,28(5):519-524页
    [98]王建国,吴恭兴,孙玉山等.水下机器人容错控制研究.第十四届中国海洋(岸)工程学术讨论会论文集.257-260页
    [99] Tarun Kanti Podder, Nilanjan Sarka. Fault-tolerant control of an autonomous underwatervehicle under thruster redundancy. Robotics and Autonomous Systems.2001,34(1):39-52P
    [100]陈艾琴,刘乾,朱大奇.基于BP神经网络的水下机器人推进器故障辨识算法.电脑知识与技术.2009,5(19):5214-5216页
    [101] Lin C M, Chen C H. Robust fault2tolerant cont rol for a biped robot using a recurrentcerebellar model articulation cont roller. IEEE Transactions on Systems, Man andCybernetics: B.2007,37(1):110-123P
    [102]袁芳,叶银忠,朱大奇.基于RCMAC的水下机器人容错控制方法研究.华中科技大学学报.2009,37(I):147-150页
    [103]刘乾,朱大奇.无人水下机器人推进系统故障诊断与容错控制.系统仿真学报.2010,22(1):96-100页
    [104]刘大勇,俞建成,李智刚. UUV推进系统容错控制分配算法研究.微计算机信息.2008,24(5-2):222-224页
    [105]刘建成,万磊,戴捷,庞永杰.水下机器人推理器容错控制技术的研究.机器人.2003,25(2):163-166页
    [106]向先波,徐国华,蔡涛,茅及愚.水下机器人智能自救系统.华中科技大学学报(自然科学版).2006,34(7):111-114页
    [107]王猛.水下自治机器人底层运动控制设计与仿真.中国海洋大学硕士学位论文.2009:1-5页
    [108] Liao Shi Jun, Zhu Ji Mao, Gu Yun Guan. The numerical simulation of the dynamicproperties of the towed system in deep sea. The Ocean Engineering.1995,13(2):31-37P
    [109] Da Cunha, Costa R.R., Liu Hsu. Design of a high performance variable structureposition control of rovs. Oceanic Engineering.1995,20(1):42-55P
    [110] GLangrock D.. Application of dynamic positioning techniques to working classremotely operated vehicles. Control and Guidance of Underwater Vehicles, IEEEColloquium.1993,12(9):1-5P
    [111]曹辉进.自主式水下航行器建模与运动控制仿真研究.华中科技大学硕士学位论文.2004:8-25页
    [112]赵志高,杨建民,王磊等.动力定位系统发展状况及研究方法.海洋工程.2002,20(1):91-97页
    [113]刘建成,于华南,徐玉如.水下机器人水动力模型的辨识.哈尔滨工程大学学报.2000,22(5):11-15页
    [114]刘富强,李智敏,陈红舟.模糊推理系统的MATLAB仿真研究.船电技术.2006,4:55-57页
    [115]刘振明,潜伟建,夏志澜.模糊控制技术在水下机器人动力定位中的应用研究.控制系统.2001,1:41-44页
    [116]张玲,谢殿伟.水下机器人惯性类水动力计算研究. SHIP&BOAT.2004(3):8-10页
    [117]倪绍毓,和应军.水动力系数对潜艇运动响应的影响.船工科技.1982(1):234-236页
    [118]朱军,陈强,高俊吉,黄昆仑.扁平潜器微速与倒航水动力试验研究.水动力学研究与进展.2004(3):401-406页
    [119] Wu B S, Xian G F, Kuang X F. Investigation of hydrodynamic characteristics ofsubmarine moving close to the sea bottom with CFD method. Journal of ShipMechanics.2005,9(3):19-28P
    [120] Tasai F. Hydrodynamic Force and Moment Produced by Swaying and RollingOscillations if Cylinders on the Free Surface. Res. Inst. of Applied Mech., KyushuUniv.,Hakozaki, Fukuoka,1961:43-59P
    [121] Chen Shaoping, Chen Binkang. Hull line design for twin stern ship based on NURBScurve. Shipbuilding of China.2001,42(2):7-11P
    [122] Duan Wenyang,He Wuzhou. A boundary element method for removing the irregularfrequency effect in solving the hydrodynamic coefficients. Journal of Hydrodynamics.2002,17(2):156-161P
    [123] CHANG S S L. and PENG T K C. Adaptive guaranteed cost control of systems withuncertain parameters. IEEE Trans. Automat. Contr.,1972,17(4):474-483P
    [124] Kosmidou. Generalized Riccati equations associated with guaranteed cost control: Anoverview of solutions and features. Applied Mathematics and Computation.2007,191:511–520P
    [125]汪淳,葛彤,朱继懋.一种新型潜水装置的水动力特性分析.上海交通大学学报.2001,35(10):1547-1551页
    [126]张赫,庞永杰,李晔.潜水器水动力系数计算方法研究.武汉理工大学学报(交通科学与工程版).2011,35(1):67-69页
    [127]戴遗山.舰船在波浪中运动的频域与时域势流理论.北京:国防工业出版社,1998:1-2页
    [128]戴遗山,段文洋.船舶在波浪中运动的势流理论.北京:国防工业出版社,2008:36-39,63-68,78-84页
    [129] Mugdha S. Naik, Sahjendra N. Singh. State-dependent Riccati equation-based robustdive plane control of AUV with control constraints. Ocean Engineering.2007,34:1711-1723P
    [130] C. Silvestre, A. Pascoal. Depth control of the INFANTE AUV using gain-scheduledreduced order output feedback. Control Engineering Practice.2007,15:883-895P
    [131] Robert J. Veillette, et al. Design of reliable control systems. IEEE TRANSACTIONSON AUTOMATIC CONTROL, VOL.37, NO.3, MARCH1992,290-304P
    [132]俞立.鲁棒控制.北京:清华大学出版社,2002:1-10,27页
    [133] M.V. Kothare, V. Balakrishnan and M. Morari. Robust constrained model predictivecontrol using linear matrix inequalities. Automatica.1996,32(10):1361–1379P
    [134]路尧. X字型舵鱼雷的故障诊断与容错控制技术研究.西北工业大学硕士学位论文,2007:15-19页
    [135] Hua C. C., Guan X. P and Shi P. Adaptive fuzzy control for uncertain interconnectedtime-delay systems. Fuzzy Sets and Systems.2005, V153:447-458P
    [136]唐功友,高德欣,张宝琳.基于观测器的受扰非线性系统近似最优跟踪控制.控制理论与应用.2007,24(5):725-731页
    [137] Lingli Ni. Fault-Tolerant Control of Unmanned Underwater Vehicles.Virginia:VirginiaPolytechnic Institute and State University,2001
    [138] Jean-Jacques E. Slotine,Wei ping Li.应用非线性控制.程代展等译.北京:机械工业出版社,2006:1-9页
    [139]郑云峰,杨盐生,李铁山.带有执行器的船舶航向控制反馈线性化设计.大连海事学报.2004,30(3):14-17页
    [140] Brockett R W. Feedback invariants for nonliear systems. Proc6th IFAC Congress.1978.1115-1120P
    [141] JAKUBCZYKB, RESPONDEKW. On the linearization of control systems. Bull AcadPolonaise Sci Ser Math,1980(28):517-522P
    [142] HUNT L R, SU R, MEYER G. Design for multi-input nonlinear systems in differentialgeometric control theory. Boston: Brikhauser,1983.268-298P
    [143] Isidori A.. Nonliear control systems:an introduction, Springer Verlag,1989
    [144] Hauser J. E.. Approximate tracking for nonliear systems with application to flightcontrol. Doctoral thesis, College of Engineering, University of California,Berkeley.1989
    [145]李殿璞.非线性控制系统理论基础.哈尔滨:哈尔滨工程大学出版社,2006:128-168页
    [146] Tomoaki Kobayashi, Kaoruko Onji, Joe Imae and Guisheng Zhai. Nonliner Control forAutonomous Underwater Vehicles Using Group Method of Data Handling.International Conference on Control. Automation and Systems2007. Oct. in COEX,Seoul, Korea,17-20P
    [147]张柯,姜斌.基于故障诊断观测器的输出反馈容错控制设计.自动化学报.2010,36(2):274-281页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700