用户名: 密码: 验证码:
水下球形机器人的运动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水下机器人学及各种与机器人相关的科学技术的发展,水下机器人的研究已经取得了许多令人瞩目的成果,目前,世界上有许多国家正在致力于水下机器人的研究与开发,水下机器人的应用领域非常广泛,其应用领域涉及工业、渔业、探索和军事等等,水下机器人已经成为人们认识、开发和利用海洋的一个重要工具。水下机器人的控制是实现水下机器人运动的关键所在,水下机器人的控制问题涉及的方面非常多,水下机器人运动控制的难点主要在于它的工作环境为水下,而水下各种扰动和不确定因素的影响,以及实验环境的不便利势必会增添水下机器人的控制难度。使用一些传统的方法设计水下机器人控制器时,所获得的性能尚不能令人完全满意,因此有必要努力探讨高效的且易于实现的水下机器人运动控制方法。
     本论文将所研制的由喷水推进器和伺服电机组合的三套喷水推进系统作为矢量喷水推进方式的自主式水下球形机器人作为主要研究对象,进行相关的推进系统建模和动力学建模等研究,并在所建立模型的基础上研究出适合于该矢量喷水推进水下球形机器人的智能控制算法,该算法需要实现水下球形机器人在复杂海洋环境下的稳定运动控制,并且该算法需对模型要求不高、不过于复杂,以利于工程实现。本论文旨在选取对系统数学模型要求不高的模糊控制方法作为控制方法的主要研究对象,将自适应控制和滑模控制方法与其结合起来以设计出适合于水下球形机器人的控制器。
     论文的主要研究工作如下:第一,对所研发的自主式矢量喷水推进水下球形机器人进行了机械设计,然后对水下球形机器人内部控制系统进行了电气设计,使人们从宏观上了解自主式矢量喷水推进水下球形机器人的整体架构和工作原理。第二,详细地讨论了水下球形机器人推进系统的设计与分配以及合推力计算,并分别对单个喷水推进系统和多个喷水推进系统进行了建模与辨识研究以实现推进系统的推力预报,推力预报则主要采用实验测量和理论分析相结合的方法,该部分所得到的喷水推进系统模型为水下球形机器人动力学模型中的控制输入矢量。第三,在流体力学基本概念的基础上对水下机器人的运动学和动力学进行了分析,得到了水下机器人总的动力学模型,根据水下机器人运动学和动力学分析结果,针对矢量喷水推进水下球形机器人这一特殊形体进行了动力学声明,进而实现了必要的简化计算,最终得到了该水下球形机器人的简化动力学模型,并对该模型进行了相关的仿真实验,将仿真结果与实际水下实验结果对比以验证所建立模型的有效性;对水下球形机器人前进、升沉和转艏这三个自由度的运动进行了相关的流体力学特性分析,得到了水下球形机器人球体内结构对速度和压力的影响情况。第四,在所建立的喷水推进器和水下球形机器人的模型的基础上,对水下球形机器人进行了相关的控制算法研究,力求探究得到合适的运动控制方法,先对水下球形机器人水平方向上的前进运动进行了PID控制和模糊滑模控制的研究,再基于模糊控制理论、自适应控制理论和滑模控制理论,将其有机结合,针对水下球形机器人提出了改进的自适应模糊滑模控制器,并进行了有扰动存在下的仿真研究,同时,将其结果与所设计的PID控制器和模糊滑模控制器的仿真结果进行了对比,以证明所设计的改进的自适应模糊滑模控制器是否优越。第五,采用基于传感器的反馈信息在模糊控制思想的基础上可在线调整的控制器,对水下球形机器人经常用到的前进、升沉和转艏这三个自由度的运动进行了一系列的水下运动实验,并对多个机器人的共同前进运动进行了水下运动实验,以验证该水下球形机器人的可行性和有效性。
With the development of underwater robotics and robot-related science and technology,the researches on underwater robots have made many remarkable achievements, at present,there are many countries in the world are committed to the research and development ofunderwater robots. Underwater robots show significant potential of being applied in the fieldsof industry, fishery, exploration, and military and so on. Underwater robots have become oneof the most important tools to exploit and use marine resources. The control of underwaterrobots is one of the key technologies for these kinds of robots, and the control problems ofunderwater robots involve many aspects. The difficulty of underwater robot control lies in itsworking environment is underwater, underwater various disturbances and uncertainties, aswell as the inconvenience of the experimental environment is bound to add the difficulty ofunderwater robot control. The resultant performance cannot satisfy our requirements whenusing some traditional methods to design the controller of underwater robots. Therefore, it isnecessary to investigate more efficient and easy to implement motion control methods.
     The developed autonomous spherical underwater robots will be seemed as an object ofstudy, and the three sets of water jet propulsion system which is the combination of the waterjet thrusters and servo motors were as the way of vectored water jet propulsion. The relatedstudy about propulsion system modeling and dynamic modeling will be carried on, and got anintelligent control algorithm which is fit for the vectored water jet propulsion sphericalunderwater robots on the basis of the model. The control algorithm should be more suitable toimplement a stable motion control in the complicated underwater environments; also, itshould be simple and has a low requirement of the model, which can be easily implemented inproject applications. This paper aimed to choose the fuzzy control as the main research point,and combined the self-adaptive control and sliding mode control to design a controller whichis more suitable for the spherical underwater robots.
     The main research work of this paper are as follows: First, we carried mechanical designon the developed autonomous vectored water jet propulsion spherical underwater robots, andwe also carried electrical design on the inner control circuit of the spherical underwater robots,so that people can understand the overall framework and working principle of the autonomousvectored water jet propulsion spherical underwater robots. Second, we discussed the designand distribution of the propulsion system in detail, and we calculated the resultant actuatingforce, also we carried on modeling and identification research on a single and multiple water jet propulsion systems respectively in order to realize the thrust forecast of the propulsionsystems. The thrust forecast mainly uses the method of combining experimentalmeasurements and theoretical analysis, and the derived water jet propulsion system model isthe control input vector of underwater spherical robots dynamic model. Third, we analyzedthe kinematics and dynamics of the underwater robots on the basic concepts of the fluidmechanics, and built the dynamics model of the whole system. According to the analysisresults of kinematics and dynamics, we carried the dynamics statement on the vectored waterjet propulsion spherical underwater robots, thus we realized the necessary calculationssimplified and gained the simplified dynamics model based on the spherical underwaterrobots finally. We also carried on model simulation, and compared the simulation results withthe actual underwater experimental results in order to verify the validity of the model. Inaddition, we discussed the hydraulics analysis of three underwater motions, surge, heave, andyaw of the spherical underwater robots and obtained the impact of the spherical underwaterrobots structure on velocity and pressure. Fourth, we studied the control algorithm of thespherical underwater robots based on the model of water jet thrusters and sphericalunderwater robots, and we carried research on the PID control and the fuzzy sliding modecontrol for forward movement of spherical underwater robots firstly, then based on the fuzzycontrol, the self-adaptive control, and the sliding mode control, we proposed an improvedadaptive fuzzy sliding mode controller for the developed spherical underwater robots, and wecarried on simulation studies with disturbance, at the same time we compared its results withthe simulation results of the designed PID controller and fuzzy sliding mode controller inorder to prove the excellence of the improved adaptive fuzzy sliding mode controller. Finally,we carried out a series of experiments on three degrees of freedom of movement, surge, heave,and yaw, by adopting sensor-based feedback controller which can be adjusted online based onfuzzy control idea. Also, we carried on the common surge motion experiments of multipleunderwater robots in order to prove the feasibility and validity of the developed sphericalunderwater robots.
引文
[1] Giacomo Marani, Song K. Choi, Junku Yuh. Underwater autonomous manipulation forintervention missions AUVs[J]. Ocean Engineering.2009,36(1):15-23P
    [2] Mohan Santhakumar, Thondiyath Asokan. Investigations on the hybrid tracking controlof an underactuated autonomous underwater robot[J]. Advanced Robotics.2010,24(11):1529-1556P
    [3] Elena Garcia, Maria Antonia Jimenez, Pablo Gonzalez De Santos, Manuel Armada.The evolution of robotics research[J]. IEEE Robotics and Automation Magazine.2007,14(1):90-103P
    [4]葛晖,徐德民,项庆睿.自主式水下航行器控制技术新进展[J].鱼雷技术.2007,15(3):1-7,14P
    [5]李晔,常文田,孙玉山,苏玉民.自治水下机器人的研发现状与展望[J].机器人技术与应用.2007,(1):25-31页
    [6]蒋新松,封锡盛,王棣棠编著.水下机器人[M].沈阳:辽宁科学技术出版社,2000,39,238-243页
    [7]林西川.球形水下潜器的设计与建模研究[D].哈尔滨工程大学硕士学位论文.2008:9-13页
    [8] Xichuan Lin, Shuxiang Guo, Yanling Hao, Xiufen Ye, Chenguang Qiu, Juan Du. Asimplified dynamics modeling of a spherical underwater vehicle[C]. Proceedings of the2008IEEE International Conference on Robotics and Biomimetics, February22-25,2009, Bangkok,Thailand,1140-1145P
    [9] Xichuan Lin, Shuxiang Guo, Koujirou Tanaka, Seji Hata. Development and Evaluationof a Vectored Water-jet-based Spherical Underwater Vehicle [J]. INFORMATION-AnInternational Interdisciplinary Journal.2010,13(6):1985-1998P
    [10] Xichuan Lin, Shuxiang Guo. Development of a spherical underwater robot equippedwith multiple vectored water-jet-based thrusters[J]. Journal of Intelligent&RoboticSystems.2012,67(3-4):307-321P
    [11] Xichuan Lin, Shuxiang Guo, Chuanfeng Yue, Juan Du.3D Modelling of a VectoredWater Jet-Based Multi-Propeller Propulsion System for a Spherical UnderwaterRobot[J]. International Journal of Advanced Robotic Systems.2013,10:1-8P
    [12] Shuxinag Guo, Juan Du, Xiufen Ye, Hongtao Gao, Yizhou Gu, Real-time adjustingcontrol method based on attitude sensor signal feedback and its application in sphericalunderwater vehicle[C]. Proceedings of the2010IEEE International Conference onInformation and Automation, Harbin, China, June20-23,2010:1393-1397P
    [13]杜娟.新型水下球形机器人的控制系统研究[D].哈尔滨工程大学硕士学位论文.2010:9-12页
    [14]兰晓娟,孙汉旭,贾庆轩.水下球形机器人BYSQ_2的原理与动力学分析[J].北京邮电大学学报.2010,33(3):20-23页
    [15] Xiaojuan Lan, Hanxu Sun, Qingxuan Jia. The hydrodynamics analysis for theunderwater robot with a spherical hull[C]. Proceedings of the SPIE-The InternationalSociety for Optical Engineering,2009,7331:73310E-1~73310E-8P
    [16]兰晓娟.一种新型水下球形机器人的若干关键技术研究[D].北京邮电大学博士学位论文.2011:11-14页
    [17] S.K. Choi, G.Y. Takashige, J. Yuh. Experimental study on an underwater roboticvehicle: ODIN[C]. Proceedings of the1994Symposium on Autonomous UnderwaterVehicle Technology, Cambridge, MA, July19-20,1994:79-84P
    [18] S.K. Choi, J. Yuh. Experimental study on a learning control system with boundestimation for underwater robots[C]. Proceedings of the1996IEEE InternationalConference on Robotics and Automation, Minneapolis, Minnesota, April,1996:2160-2165P
    [19] H.T. Choi, A.Hanai, S.K.Choi, J.Yuh. Development of an Underwater Robot,ODIN-III[C]. IEEE International Conference on Intelligent Robots and Systems, LasVegas, NV, United states, October27-31,2003:836-841P
    [20] J. Yuh, Jing Nie. Application of non-regressor-based adaptive control to underwaterrobots: experiment[J]. Computers and Electrical Engineering.2000,26(2):169-179P
    [21] Tarun Kanti Podder, Nilanjan Sarkar. Fault-tolerant control of an autonomousunderwater vehicle under thruster redundancy[J]. Robotics and Autonomous Systems.2001,34(1):39-52P
    [22] T.W. Kim, J. Yuh. Application of on-line neuro-fuzzy controller to AUVs[J].Information Sciences.2002,145(1-2):169-182P
    [23] K.D. Do, Z.P. Jiang, J. Pan, H. Nijmeijer. A global output-feedback controller forstabilization and tracking of underactuated ODIN: A spherical underwater vehicle[J].Automatica.2004,40(1):117-124P
    [24] M. Chyba, T. Haberkorn, R.N. Smith, S.K. Choi. Design and implementation of timeefficient trajectories for autonomous underwater vehicles[J]. Ocean Engineering.2008,35(1):63-76P
    [25] M. Chyba, T. Haberkorn, S.B. Singh, R.N. Smith, S.K. Choi. Increasing underwatervehicle autonomy by reducing energy consumption[J]. Ocean Engineering.2009,36(1):62-73P
    [26] Marc Carreras Perez. A Proposal of a behavior-based control architecture withreinforcement learning for an autonomous underwater robot[D]. University of GironaPh.D Thesis.2003:113-153P
    [27] P. Ridao, A. Tiano, A. El-Fakdi, M. Carreras, A. Zirilli. On the identification ofnon-linear models of unmanned underwater vehicles[J]. Control Engineering Practice.2004,12(12):1483-1499P
    [28]任志良,张刚译著.无人水下航行器进展(Advances in Unmanned Marine Vehicles)(G.N.Roverts R.Sutton编)[M].北京:电子工业出版社,2009:93-100页
    [29] S. Watson, P. N. Green. Design considerations for micro-autonomous underwatervehicles (μAUVs)[C]. Proc,4th IEEE Conference on Robotics, Automation andMechatronics (RAM), Singapore, June28-30,2010:429-434P
    [30] S. Watson, P. N. Green. Propulsion systems for micro-autonomous underwater vehicles(μAUVs)[C]. Proc,4th IEEE Conference on Robotics, Automation and Mechatronics(RAM), Singapore, June28-30,2010:435-440P
    [31] Simon A. Watson, Dominic J. P. Crutchley and Peter N. Green. The design andtechnical challenges of a micro-autonomous underwater vehicle (μAUV)[C].Proceedings of the2011IEEE International Conference on Mechatronics andAutomation, Beijing, China, Aug.7-10,2011:567-572P
    [32] Simon A. Watson and Peter N. Green. A de-coupled vertical controller formicro-autonomous underwater vehicles (μAUVs)[C]. Proceedings of the2011IEEEInternational Conference on Mechatronics and Automation, Beijing, China, Aug.7-10,2011:561-566P
    [33] Simon A. Watson, Dominic J.P. Crutchley, Peter N. Green. The mechatronic design of amicro–autonomous underwater vehicle[J]. Journal International Journal ofMechatronics and Automation.2012,2(3):157-168P
    [34] Shuxiang Guo, Shilian Mao, Liwei Shi, Maoxun Li. Development of an amphibiousmother spherical robot used as the carrier for underwater microrobots[C]. Proceedingsof the2012ICME International Conference on Complex Medical Engineering, Kobe,Japan, July1-4,2012:758-762P
    [35] S. Guo, S. Mao, L. Shi, M. Li. Design and kinematic analysis of an amphibiousspherical robot[C]. Proceedings of the2012IEEE International Conference onMechatronics and Automation, Chengdu, China, Aug.5-8,2012:2214-2219P
    [36]徐玉如,庞永杰,甘永,孙玉山.智能水下机器人技术展望[J].智能系统学报.2006,1(1):9-16页
    [37] Jan Petrich, Daniel J. Stilwell. Robust control for an autonomous underwater vehiclethat suppresses pitch and yaw coupling[J]. Ocean Engineering.2011,38(1):197-204P
    [38] Lionel Lapierre. Robust diving control of an AUV[J]. Ocean Engineering.2009,36(1):92-104P
    [39] Roque Saltaren Pazmi o, Cecilia E. Garcia Cena, Cesar Alvarez Arocha, Rafael AracilSantonja. Experiences and results from designing and developing a6DoF underwaterparallel robot[J]. Robotics and Autonomous Systems.2011,59(2):101-112P
    [40] Silvia M. Zanoli, Giuseppe Conte. Remotely operated vehicle depth control[J]. ControlEngineering Practice.2003,11(4):453-459P
    [41] I.S. Akkizidis, G.N. Roberts, P. Ridao, J. Batlle. Designing a Fuzzy-like PD controllerfor an underwater robot [J]. Control Engineering Practice.2003,11(4):471-480P
    [42] Nguyen Quang Hoang, Edwin Kreuzer. Adaptive PD-controller for positioning of aremotely operated vehicle close to an underwater structure: Theory and experiments [J].Control Engineering Practice.2007,15(4):411-419P
    [43] Gianluca Antonelli. On the use of adaptive/integral actions for six-degrees-of-freedomcontrol of autonomous underwater vehicles[J]. IEEE Journal of Oceanic Engineering.2007,32(2):300-312P
    [44]田甜,刘健,刘开周.自适应模糊PID控制在AUV控制中的应用[J].微计算机信息.2008,24(3-1):4-6,81页
    [45]翟宇毅.超小型水下机器人的设计和控制[D].上海大学博士学位论文.2007:62-68页
    [46] Przemys aw Herman. Decoupled PD set-point controller for underwater vehicles[J].Ocean Engineering.2009,36(6-7):529-534P
    [47] Przemys aw Herman. Modified set-point controller for underwater vehicles[J].Mathematics and Computers in Simulation.2010,80(12):2317-2328P
    [48] Bo Wang, Yumin Su, Lei Wan, Yushan Sun. Adaptive PID control system for anautonomous underwater vehicle[J]. High Technology Letters.2011,17(1):7-12P
    [49] Jun Luo, Zhijie Tang, Yan Peng, Shaorong Xie, Tingting Cheng, Hengyu Li.Anti-disturbance Control For an Underwater Vehicle In Shallow Wavy Water[J].Procedia Engineering.2011,15:915-921P
    [50]吴小平,冯正平,朱继懋.模糊PID策略在AUV控制中的应用[J].舰船科学技术.2007,29(1):95-98P
    [51]吕翀,庞永杰,张磊.基于MPSO算法的水下机器人PD控制器[J].北京工业大学学报.2010,36(6):728-734页
    [52]程代展等译著.应用非线性控制(Slotine J.E., Li W.著)[M].北京:机械工业出版社,2006:186-264页
    [53] Ji-Hong Li, Pan-Mook Lee. Design of an adaptive nonlinear controller for depthcontrol of an autonomous underwater vehicle[J]. Ocean Engineering.2005,32(17-18):2165-2181P
    [54] Francisco Curado Teixeira, António Pedro Aguiar, António Pascoal. Nonlinear adaptivecontrol of an underwater towed vehicle[J]. Ocean Engineering.2010,37(13):1193-1220P
    [55] Zhijun Li, Chenguang Yang, Nan Ding, Stjepan Bogdan, Tong Ge. Robust adaptivemotion control for underwater remotely operated vehicles with velocity constraints[J].International Journal of Control, Automation and Systems.2012,10(2):421-429P
    [56] Santhakumar Mohan, Jinwhan Kim. Indirect adaptive control of an autonomousunderwater vehicle-manipulator system for underwater manipulation tasks[J]. OceanEngineering.2012,54:233-243P
    [57]俞建成,张艾群,王晓辉,苏立娟.基于模糊神经网络水下机器人直接自适应控制[J].自动化学报.2007,33(8):840-846页
    [58]俞建成,李强,张艾群,王晓辉.水下机器人的神经网络自适应控制[J].控制理论与应用.2008,25(1):9-13页
    [59] Lijun Zhang, Xue Qi, Yongjie Pang. Adaptive output feedback control based onDRFNN for AUV[J]. Ocean Engineering.2009,36(9-10):716-722P
    [60]诸静等编著.模糊控制原理与应用[M].北京:机械工业出版社,2001:100-188页
    [61] Radu-Emil Precup, Hans Hellendoorn. A survey on industrial applications of fuzzycontrol[J]. Computers in Industry.2011,62(3):213-226P
    [62] J. Guo, F.-C.Chiu, C.-C. Huang. Design of a sliding mode fuzzy controller for theguidance and control of an autonomous underwater vehicle[J]. Ocean Engineering.2003,30(16):2137-2155P
    [63]李晔.微小型水下机器人运动控制技术研究[D].哈尔滨工程大学博士学位论文.2007:104-108页
    [64] Kashif Ishaque, S.S. Abdullah, S.M. Ayob, Z. Salam. Single input fuzzy logiccontroller for unmanned underwater vehicle[J]. Journal of Intelligent and RoboticSystems: Theory and Applications.2010,59(1):87-100P
    [65] K. Ishaque, S.S. Abdullah, S.M. Ayob, Z. Salam. A simplified approach to designfuzzy logic controller for an underwater vehicle[J]. Ocean Engineering.2011,38(1):271-284P
    [66] Bin Xu, Shunmugham R. Pandian, Norimitsu Sakagami, Fred Petry. Neuro-fuzzycontrol of underwater vehicle-manipulator systems[J]. Journal of the Franklin Institute.2012,349(3):1125-1138P
    [67]于华男,戴军,徐玉如,庞永杰.基于遗传算法的水下机器人模糊控制器优化设计[J].哈尔滨工程大学学报.2002,23(5):12-15页
    [68]赵文德,李建朋,张铭钧,徐建安.基于浮力调节的AUV升沉运动控制技术[J].南京航空航天大学学报.2010,42(4):411-417页
    [69] H. K.(Khalil, Hassan K.). Nonlinear Systems, Third Edition[M]. Peason EducationInc., Publishing as Prentice Hall,2002:552-578P
    [70]刘金坤编著.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005:1-15,109-187页
    [71]陈志梅,王贞艳,张井岗编著.滑模变结构控制理论及应用[M].北京:电子工业出版社,2012:1-18,119-209页
    [72] Alessandro Pisano, Elio Usai. Output-feedback control of an underwater vehicleprototype by higher-order sliding modes[J]. Automatica.2004,40(9):1525-1531P
    [73] T. Chatchanayuenyong, M.Parnichkun. Neural network based-time optimal slidingmode control for an autonomous underwater robot[J]. Mechatronics.2006,16(8)471-478P
    [74] Hyun-Sik Kim, Yong-Ku Shin. Expanded adaptive fuzzy sliding mode controller usingexpert knowledge and fuzzy basis function expansion for UFV depth control[J]. OceanEngineering.2007,34(8-9):1080-1088P
    [75]高剑,徐德民,李俊,严卫生,张福斌.自主水下航行器轴向运动的自适应反演滑模控制[J].西北工业大学学报.2007,25(4):552-555页
    [76] Seung-Keon Lee, Kyoung-Ho Sohn, Seung-Woo Byun, Joon-Young Kim. Modelingand controller design of manta-type unmanned underwater test vehicle[J]. Journal ofMechanical Science and Technology.2009,23(4):987-990P
    [77] Serdar Soylu, Bradley J. Buckham, Ron P. Podhorodeski. A chattering-freesliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrustallocation[J]. Ocean Engineering.2008,35(16):1647-1659P
    [78] Mohan Santhakumar, Thondiyath Asokan. Investigations on the hybrid tracking controlof an underactuated autonomous underwater robot[J]. Advanced Robotics.2010,24(11):1529-1556P
    [79] Huanyin Zhou, Kaizhou Liu, Xisheng Feng. State feedback sliding mode controlwithout chattering by constructing Hurwitz matrix for AUV movement[J].International Journal of Automation and Computing.2011,8(2):262-268P
    [80]施小成,周佳加,边信黔,陈涛.模糊滑模变结构控制在AUV纵倾控制中的应用.计算机仿真.2008,25(10):168-171,189页
    [81]贾鹤鸣,程相勤,张利军,边信黔,严浙平.基于离散滑模预测的欠驱动AUV三维航迹跟踪控制[J].控制与决策.2011,26(10):1452-1458页
    [82] Hai Yang, Jie Ma. Nonlinear control for autonomous underwater glider motion basedon inverse system method[J]. Journal of Shanghai Jiaotong University (Science).2010,15(6):713-718P
    [83] Xinkai Chen. Adaptive sliding mode control for discrete-time multi-input multi-outputsystems[J]. Automatica.2006,42(3):427-435P
    [84] C.S. Chin, S.H. Lum. Rapid modeling and control systems prototyping of a marinerobotic vehicle with model uncertainties using xPC Target system[J]. OceanEngineering.2011,38(17-18):2128-2141P
    [85] Ming-jun Zhang, Zhen-zhong Chu. Adaptive sliding mode control based on localrecurrent neural networks for underwater robot[J]. Ocean Engineering.2012,45:56-62P
    [86]蒋宗礼编著.人工神经网络导论[M].北京:高等教育出版社,2001:1-14页
    [87] Kazuo Ishii, Tamaki Ura. An adaptive neural-net controller system for an underwatervehicle[J]. Control Engineering Practice.2000,8(2):177-184P
    [88] Pepijn W.J. van de Ven, Colin Flanagan, Daniel Toal. Neural network control ofunderwater vehicles[J]. Engineering Applications of Artificial Intelligence.2005,18(5):533-547P
    [89]郭冰洁,万磊,梁霄,王建国.水下机器人的S型模糊神经网络控制[J].系统仿真学报.2008,20(15):4118-4121页
    [90]张铭钧,高萍,徐建安.基于神经网络的自治水下机器人广义预测控制[J].机器人.2008,30(1):91-96页
    [91] Ahmad Bagheri, Jalal Javadi Moghaddam. Simulation and tracking control based onneural-network strategy and sliding-mode control for underwater remotely operatedvehicle[J]. Neurocomputing.2009,72(7-9):1934-1950P
    [92] A. Bagheri, T.Karimi, N.Amanifard. Tracking performance control of a cablecommunicated underwater vehicle using adaptive neural network controllers[J].Applied Soft Computing Journal.2010,10(3):908-918P
    [93]唐旭东,庞永杰,李晔.一种水下机器人运动的过程神经元控制[J].控制理论与应用.2009,26(4):420-424页
    [94]唐旭东,庞永杰,李晔,张赫.基于混沌过程神经元的水下机器人运动控制方法[J].控制与决策.2010,25(2):213-217页
    [95]黄海,万磊,庞永杰,唐旭东.水下机器人的动态Petri递归神经网络控制方法[J].电机与控制学报.2012,16(5):91-96页
    [96]张磊,庞永杰,甘永.基于混合微粒群算法的智能水下机器人模糊神经网络控制[J].大连海事大学学报.2007,33(3):16-21页
    [97]梁霄.微小型水下机器人运动控制及可靠性研究[D].哈尔滨工程大学博士学位论文.2008:73-86页
    [98]梁霄,张均东,李巍,郭冰洁,万磊,徐玉如.水下机器人T-S型模糊神经网络控制[J].电机与控制学报.2010,14(7):99-104页
    [99] A. Bagheri, T. Karimi, N. Amanifard. Tracking performance control of a cablecommunicated underwater vehicle using adaptive neural network controllers[J].Applied Soft Computing.2010,10(3):908-918P
    [100]葛晖,敬忠良.海流作用下全驱动自主式水下航行器环境最优动力定位控制[J].上海交通大学学报.2011,45(7):961-965页
    [101]张利军,贾鹤鸣,边信黔,严浙平,程相勤.基于L_2干扰抑制的水下机器人三维航迹跟踪控制[J].控制理论与应用.2011,28(5):645-651页,
    [102]贾鹤鸣,张利军,齐雪,杨立新.基于神经网络的水下机器人三维航迹跟踪控制[J].控制理论与应用.2012,29(7):877-883页
    [103]刘学敏,徐玉如.水下机器人运动的S面控制方法[J].海洋工程.2001,19(3):81-84页
    [104]唐旭东,庞永杰,万磊.改进PSO算法在水下机器人S面运动控制参数整定中的应用[J].应用基础与工程科学学报.2009,17(1):153-160页
    [105]李岳明,庞永杰,万磊.水下机器人自适应S面控制[J].上海交通大学学报.2012,46(2):195-200,206页
    [106]张国成,万磊,李岳明.基于SVM的水下机器人预测S面控制[J].华中科技大学学报:自然科学版.2012,40(3):40-44页
    [107]刘建成,于华南.水下机器人改进的S面控制方法[J].哈尔滨工程大学学报.2002,23(1):33-36页
    [108]甘永,孙玉山,万磊.堤坝检测水下机器人运动控制系统的研究[J].哈尔滨工程大学学报.2005,26(5):575-579页
    [109]李晔,庞永杰,万磊,常文田,梁霄.水下机器人S面控制器的免疫遗传算法优化[J].哈尔滨工程大学学报.2006,27(B07):324-330页
    [110]郭冰洁,徐玉如.水下机器人S面控制器的改进粒子群优化[J].哈尔滨工程大学学报.2008,29(12):1277-1282页
    [111]王建国,吴恭兴,万磊,孙玉山,王丽荣.广义S面的水下机器人控制器设计[J].电机与控制学报.2009,13(A01):144-148页
    [112]张磊,万磊,李晔,姚志广.免疫微粒群算法优化的水下机器人运动控制器[J].计算机工程与应用.2009,45(28):215-218,239页
    [113]周焕银,刘开周,封锡盛.基于神经网络的自主水下机器人动态反馈控制[J].电机与控制学报.2011,15(7):87-93页
    [114] Lixin Pan, Hongzhang Jin, Linlin Wang. Robust Control Based on FeedbackLinearization for Roll Stabilizing of Autonomous Underwater Vehicle Under WaveDisturbances[J]. China Ocean Engineering.2011,25(2):251-263P
    [115] M. Caccia, G. Casalino, R. Cristi, G. Veruggio. Acoustic motion estimation and controlfor an unmanned underwater vehicle in a structured environment[J]. ControlEngineering Practice.1998,6(5):661-670P
    [116] M. Caccia, G. Veruggio. Guidance and control of a reconfigurable unmannedunderwater vehicle[J]. Control Engineering Practice.2000,8(1):21-37P
    [117] Lauder GV, Drucker EG. Morphology and experimental hydrodynamics of fish fincontrol surfaces[J]. IEEE Journal of Oceanic Engineering.2004,29(3):556-571P
    [118] Z. Feng, R. Allen. Reduced order H∞control of an autonomous underwater vehicle[J].Control Engineering Practice.2004,12(12):1511-1520P
    [119] Ji-Hong Li, Bong-Huan Jun, Pan-Mook Lee, Seok-Won Hong. A hierarchical real-timecontrol architecture for a semi-autonomous underwater vehicle[J]. Ocean Engineering.2005,32(13):1631-1641P
    [120] A. Pedro Aguiar, Joao P. Hespanha. Trajectory-tracking and path-following ofunderactuated autonomous vehicles with parametric modeling uncertainty[J]. IEEETransactions on Automatic Control.2007,52(8):1362-1379P
    [121] A. Pedro Aguiar, Joao P. Hespanha, António M. Pascoal. Switched seesaw control forthe stabilization of underactuated vehicles[J]. Automatica.2007,43(12):1997-2008P
    [122] Jin-Kyu Choi, Tetsuya Shiraishi, Toshinari Tanaka. Safe breakwater-following controlof an autonomous underwater vehicle with non-zero forward velocity[J]. Automation inConstruction.2007,16(6):778-786P
    [123] R. Prasanth Kumar, A. Dasgupta, C.S. Kumar. Robust trajectory control of underwatervehicles using time delay control law[J]. Ocean Engineering.2007,34(5-6):842-849P
    [124] M. Caccia. Vision-based ROV horizontal motion control: Near-seafloor experimentalresults[J]. Control Engineering Practice.2007,15(6):703-714P
    [125] R.P. Kumar, C.S. Kumar, D. Sen, A. Dasgupta. Discrete time-delay control of anautonomous underwater vehicle: Theory and experimental results[J]. OceanEngineering.2009,36(1):74-81P
    [126] Keehong Seo, Soon-Jo Chung, Jean-Jacques E. Slotine. CPG-based control of aturtle-like underwater vehicle[J]. Autonomous Robots.2010,28(3):247-269P
    [127] Marek Doniec, Iuliu Vasilescu, Carrick Detweiler, Daniela Rus. Complete SE3underwater robot control with arbitrary thruster configurations[C]. Proceedings of theIEEE International Conference on Robotics and Automation, Anchorage, AK, Unitedstates, May3-7,2010:5295-5301P
    [128] J. Javadi-Moghaddam, A. Bagheri. An adaptive neuro-fuzzy sliding mode basedgenetic algorithm control system for under water remotely operated vehicle[J]. ExpertSystems with Applications.2010,37(1):647-660P
    [129] Jonghui Han, Jonghoon Park, Wan Kyun Chung. Robust coordinated motion control ofan underwater vehicle-manipulator system with minimizing restoring moments[J].Ocean Engineering.2011,38(10):1197-1206P
    [130] Zool H. Ismail, Matthew W. Dunnigan. A region boundary-based control scheme for anautonomous underwater vehicle[J]. Ocean Engineering.2011,38(17):2270-2280P
    [131]王科俊,姚绪梁,金鸿章编著.海洋运动体控制原理[M].哈尔滨:哈尔滨工程大学出版社,2005,147-243页
    [132]张铭钧等编著.水下机器人[M].北京:海洋出版社,2000,48-60页
    [133]高双.喷水推进船舶的航向/航速控制研究[D].哈尔滨工程大学博士学位论文.2008:19-38页
    [134]孙存楼,王永生. CFD在船舶喷水推进器设计与性能分析中的应用[J].哈尔滨工程大学学报.2008,29(5):444-448页
    [135]丁江明,王永生,张志宏.船舶喷水推进器推力分布研究[J].船舶力学.2010,14(8):841-846页
    [136]丁江明,王永生,张志宏.基于动量流量法对喷水推进系统推力的CFD计算[J].海军工程大学学报.2008,20(2):91-95页
    [137]孙存楼,王永生.喷水推进器推力预报的两种不同方法比较[J].船舶力学.2010,14(11):1208-1212页
    [138] Warn-Gyu Park, Jin Ho Jang, Ho Hwan Chun, Moon Chan Kim. Numerical flow andperformance analysis of waterjet propulsion system[J]. Ocean Engineering.2005,32(14-15):1740-1761P
    [139] Jinhyun Kim, Wan Kyun Chung. Accurate and practical thruster modeling forunderwater vehicles[J]. Ocean Engineering.2006,33(5-6):566-585P
    [140] T. I. Fossen. Guidance and Control of Ocean Vehicles[M]. USA: John Wiley&SonsLtd,1994
    [141] Th.I. Fossen, J.P. Strand. Passive nonlinear observer design for ships using Lyapunovmethods: full-scale experiments with a supply vessel[J]. Automatica.1999,35(1):3-16P
    [142] P Ridao, J Batlle, M Carreras. Model identification of a low-speed UUV[C].Proceedings of the1st IFAC workshop on guidance and control of underwatervehicles,2003. UK: IFAC,2003:47-52P
    [143] Newman, John Nicholas. Marine hydrodynamics[M]. Cambridge, Massachusetts:The MIT Press,1999:139P
    [144] T.I. Fossen. Marine Control Systems. Guidance, Navigation and Control of Ships,Rigs and Underwater Vehicles[M]. Trondheim, Norway: Marine Cybernetics,2002
    [145]刘金琨等编著.先进PID控制MATLAB仿真(第3版)[M].北京:电子工业出版社,2011:1-75页
    [146] Shiuh-Jer Huang, Hung-Yi Chen. Adaptive sliding controller with self-tuning fuzzycompensation for vehicle suspension control[J]. Mechatronics.2006,16(10):607-622P
    [147] Mehdi Roopaei, Bijan Ranjbar Sahraei, Tsung-Chih Lin. Adaptive sliding modecontrol in a novel class of chaotic systems[J]. Communications in Nonlinear Scienceand Numerical Simulation.2010,15(12):4158-4170P
    [148] Meysar Zeinali, Leila Notash. Adaptive sliding mode control with uncertaintyestimator for robot manipulators[J]. Mechanism and Machine Theory.2010,45(1):80-90P
    [149] Mohammad Motamedi, Mohammad Taghi Ahmadian, Gholamreza Vossoughi, SeyedMehdi Rezaei, Mohammad Zareinejad. Adaptive sliding mode control of apiezo-actuated bilateral teleoperated micromanipulation system[J]. PrecisionEngineering.2011,5(2):309-317P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700