用户名: 密码: 验证码:
孔底电动冲击器控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲击-回转钻进是一种效率相对较高的钻进方法,其本质就是在回转的钻头上施加一
     定频率的冲击能量。在冲击-回转钻技术中回转的钻头对岩石不仅有静的给进压力和扭矩,
     同时还附加了连续的冲击载荷。因此,冲击-回转钻进就是带冲击载荷的回转钻进。按照
     回转和冲击对碎岩所占的比重不同可以分为冲击-回转钻进和回转-冲击钻进,目前统称冲
     击-回转钻进。
     从十九世纪末期开始,人们就设想对回转的钻具施加冲击能量,以提高在硬岩中的钻
     进效率。而实现冲击-回转钻进技术的关键在于冲击器。从一百多年前最初懵懂的想法到
     现如今层出不穷的各种冲击器,冲击-回转钻进以及其相关的配套钻探技术得到了飞速的
     发展。目前,国内外成功研制出各种各样的冲击器,按照作用机理不同可以将冲击器划分
     为:液动冲击器、风动冲击器、钻杆传动式冲击器等,其中比较常见的为液动和风动冲击
     器。经过多年的研究、发展,用于冲击-回转钻进的冲击器在技术层面以及工程应用领域
     已经相对较为成熟,但传统的液动、风动冲击器也存在一些不足,主要如下:
     (1)冲击器工作参数无法井下调整
     传统的冲击器一经下井只能按照预先设定的冲击功和冲击频率进行冲击,无法根据地
     层不同做出适当调整。
     (2)无法遥控
     地表泥浆泵(空压机)一开始运转,冲击器即处于工作状态,在井下开始工作后无法
     通过地表控制;遇到紧急情况需停止工作时,必须关闭泥浆泵(空压机),可能造成烧钻
     等事故。
     (3)无法获得冲击器井下工作状况
     对于冲击器可能出现的:空打、水路堵死、冲击器卡死等状况,无法做出准确分析,
     只能凭经验主观判断。已经不能很好的满足现今钻探设备对自动化程度要求较高的需要。
     (4)对泥浆泵等有特殊要求
     由于传统的冲击器一般依靠泥浆泵(空压机)驱动,因此其要求较大的泥浆泵(空压
     机)排量和压力——超过正常钻进的需要,有时过大的流量会带来孔壁失稳等负面效果。
     液动冲击器对钻井液的含砂量等也有严格要求。
     (5)应用领域有限
     受钻井液重力等因素的影响,传统的冲击器一般只适用于垂直钻进,在水平钻进和定
     向钻进中的应用有一定的局限性。同时,传统的液动和气动冲击器必须依靠钻井液或者压
     缩空气作为驱动介质,对于无法使用钻井液(压缩空气)的特种钻进场合,则无法应用。
     针对以上不足或需改进之处,结合电磁原理,本课题提出电动冲击器的研究方案。本电动冲击器系统依据电磁冲击原理工作,使用动力电池组供电,具备地表遥控的能力,能实现孔底工作参数的地表遥控调整。本文结合中国地质调查局科研项目“孔底电动冲击器及其配套钻探技术的研究”,对电动冲击器整体结构、工作原理、钻具机械结构、遥控系统、孔底监控系统、性能测试系统等部分做了深入研究。本文主要完成了以下几方面的工作:
     (1)电动冲击器系统工作原理分析及钻具结构设计
     电动冲击器系统基于电磁原理,使用动力电池组供电,并能通过地表遥控孔底电动冲击器实现相关参数的调整。电动冲击器系统分为动力电池密封舱、监控系统密封舱、电磁冲击装置密封舱等三大部分,各部分相互独立,通过水密电缆等结构密封、连接。
     电动冲击器对于泥浆泵(空压机)等配套设施无特殊要求,电动冲击器由动力电池组驱动,对钻井液等也无特殊要求。因此,其可以方便的应用于水平或者定向施工以及某些无法有效传输钻井液的特种钻进场合。
     (2)电动冲击器遥控系统的实现
     研究了钻井液压力脉冲在电动冲击器遥控系统中的应用,以钻井液压力脉冲作为信号下传的通道,结合电动冲击器遥控的需要研制了地表编码系统和井内解码系统。设计了本遥控系统的地表信源编码、信息编码以及井内解码方法;采用PPM方法实现命令信息的编码,设计了遥控命令信息的编码格式;采用基于中位平均值法的滤波算法完成解码系统对数据的处理,最终完成了遥控系统的研制。
     (3)电动冲击器系统的计算分析
     构建了正作用、反作用、双作用三种方式电磁冲击装置的简化模型,并进行了相关计算。根据计算结果双作用电磁冲击装置在相同条件下能获得更大的冲击功和更高的冲击频率,因此系统选用双作用电磁冲击装置作为最终方案。建立了双作用电磁冲击装置的运动模型,结合该模型对电磁冲击装置的运动过程进行了动力学计算分析;根据计算结果获得了电磁冲击装置的最优控制过程,并计算出了电磁冲击装置冲击功、冲击频率的极限特征公式。对电磁冲击装置磁场强度沿线圈轴线的分布情况进行了计算仿真,由仿真结果可知:磁场在线圈中部较为集中、平缓,在线圈两端将快速衰减;因此,提出在磁杆的设计过程中需将磁性材料尽量集中在线圈中部。
     (4)电动冲击器孔底监控系统的设计
     详细介绍了孔内解码系统的硬件设计以及孔内解码系统对钻井液压力脉冲遥控命令的解析过程。研究了孔内监控系统的电源模块、USB模块、检测模块、CPU模块等功能模块的电路原理和硬件设计。结合电磁冲击装置的控制过程,设计了以IGBT为功率元件,以IR2110为IGBT驱动芯片的全桥驱动电路;分析了传统驱动电路的不足,设计了基于555定时器的改进型驱动电路,并对新设计的驱动电路进行了详细的分析研究;为防止驱动信号混乱,有效保护驱动电路,设计了基于GAL16V8的控制信号处理电路;经实际试验测试,该驱动电路很好的完成了电磁冲击装置的控制。完成了本监控系统各部分的软件设计。
     电动冲击器孔底监控系统可以实现井内钻井液压力、冲击器实际工作频率、电流、渗漏、温度等参数(工作状态)的实时检测、记录,提钻后可实现数据回放,有助于现场人员了解井内工作状况。对于渗漏、卡死等故障系统能做出判断,并自主给以相应的解决,自动化程度有一定的提高。
     (5)研制适合本电动冲击器的性能测试系统
     对性能测试系统的总体方案进行了研究,设计出适合孔底电动冲击器的性能测试系统。融合触点法和光电法的特点,设计了使用位移传感器测量冲锤位移并最终实现冲击功检测的方法;设计了使用电感式接近开关实现冲击频率的非接触式测量方法;分析了温度、冲
     程、冲锤速度、工作电压、工作电流等电动冲击器工作参数的测量方法,详细分析了冲击功和冲击频率的测试过程。设计了基于C8051F340的下位机检测系统和基于VC的上位机系统;下位机和上位机之间采用USB总线通讯,介绍了USB通讯的软件设计过程,设计了本系统上下位机的数据通讯协议。
     (6)本电动冲击器性能测试结果
     经实际试验测试:电动冲击器动力电池组可持续工作约100分钟;监控系统用电池约可持续工作540分钟,待机约760分钟。在孔内钻井液包围的环境下,工作100分钟后,电磁驱动装置温升不超过45℃,电磁冲击装置仍可有效工作。IGBT芯片温升不超过25
     ℃,对IGBT工作性能基本无影响。电动冲击器最大冲击行程约30mm;电动冲击器的单次冲击功约3-11.8焦耳;冲击频率约为5-8.5Hz。
     通过本文的研究主要获得以下几个创新点:
     (1)提出基于电磁原理的电动冲击器
     针对传统液动、风动冲击器在工程应用中的一些问题,研制出基于电磁原理的电动冲击器系统。并结合所研制的电动冲击器,研制出其性能参数测试系统。
     (2)实现冲击功和冲击频率的单独调整
     电动冲击器的工作特性与传统液动、风动冲击器有本质的区别,电动冲击器的冲击功和冲击频率可以单独调整,而传统液动、风动冲击器下井后工作参数基本上无法改变。电动冲击器的冲击频率可通过控制电磁冲击装置的通电周期来实现;冲击功可通过调整电磁冲击装置通电占空比来进行调整。可以选择使电动冲击器工作在:大冲击功-高冲击频率、大冲击功-低冲击频率、小冲击功-高冲击频率、小冲击功-低冲击频率四种模式下,这一点对于钻进硬度级别不同的岩石具有重要意义。
     (3)实现冲击器的遥控
     传统的液动、气动冲击器一旦下井,无论井底工况或岩性是否发生变化,冲击器工作状态和参数均无法改变,而电动冲击器系统可以实现地表遥控启动、停止、调功、调频等功能。在同一回次钻进不同地层时,根据地层不同在地表调整冲击器的工作参数,有利于提高在复杂地层条件下的钻进效率。
     综上,电动冲击器遥控系统、监控系统、性能测试系统以及机具和机械密封系统均能实现了预期效果,较好的达到了预定研究目标;电动冲击器工作可行。但冲击功、冲击频率等参数与传统的液动和风动冲击器有一定的差距,考虑到该技术刚刚投入研究,其仍有巨大的发展空间和潜力。最后结合试验结果,对电动冲击器的后续研究提出了几点建议。
Percussive-rotary drilling technique is one most effective drilling method, of which essence is a certain frequency percussive energy on the bit. There's a continual percussive force on the bit not only the static pressure and torque in percussive-rotary drilling technique. So percussive-rotary drilling is rotary drilling with percussive force. This technique can be divided into percussive-rotary drilling and rotary-percussive drilling as the difference effective of the rotary drilling and percussive drilling, and it is now generally referred to as percussive-rotary drilling.
     From the late 19th century, people had conceived of adding percussive force to the rotary drilling device to improve the drilling efficiency of hard rock. The hammer is the key technique to percussive-rotary drilling. In the last 100 years, from the initial idea to variety of hammers, the Percussive-rotary drilling technique and the concerned technique have got a rapid development. Nowadays, we have developed a variety of hammer. As the mechanism's difference, it can be divided into hydraulic hammer, pneumatic hammer, electric hammer, and so on. Hydraulic hammer and pneumatic hammer are both of the most popular hammers.
     With many years'research and development, the technical level and the practical using of the hammer which is used to percussive-rotary drilling have been very ripeness. There are still some defaults of the traditional hydraulic hammer and pneumatic hammer, such as:
     (1) Electric hammer's working parameters can not be adjusted down hole
     If the traditional hammer down to the hole, the impacting energy and the impacting frequency would not be adjusted. The hammer would work as the station set on the ground, it could not be adjust as the stratum.
     (2) Can not be remote control
     When the mud pump (air compressor) is on, the hammer will also be on and can not be control from the ground. If there is some emergencies that need to close the hammer we have to close the mud pump (air compressor) which may cause some accidents.
     (3) Can not get the situation of down hole
     The traditional hammer can not get an accurate analysis of the situation such as:the empty impacting, waterways blocked, lock, etc. We just can judge these situations through experience. This situation can no longer meet the need of the drilling device's development.
     (4) Special requirements for mud pump
     The traditional hammers are usually driven by mud pump (air compressor). They need big mud pump (air compressor) pressure and flow to drive the hammers, the pressure and the flow are more than the normal using of the drilling. The big pressure and flow may cause some bad effects such as instability of the hole. There's also a special requirement for drilling fluid of the hydraulic hammer.
     (5) Limited application areas
     Influenced by the drilling fluid's gravity and other factors, the traditional hammers are usually used to vertical drilling, there are some limits when they are used to horizontal directional drilling and directional drilling. Because the hammers are driven by the drilling fluid or air, so it can not be used in some special drilling where has no use of drilling fluid.
     This dissertation combines the research project "Research of electric hammer and its correlative techniques" of China geological survey, research on the electric hammer's control system, performance test system, sealing system etc. The main contents of the dissertation are as follows.
     (1) System principle analysis and structural design of the electric hammer
     The electric hammer, electrokinetic cell powered, is based on electromagnetic theory, it can be remote control through the ground. The whole structure can be divided into 3 parts:MH/Ni cells capsule, control system capsule, electromagnetic percussion device capsule. The different capsules are connected by hermetically sealed cable etc.
     The electric hammer has no special requirements to the correlative devices and it is driven by MH/Ni cells, without special requirements for drilling fluid etc. So the electric hammer can be conveniently used to horizontal directional drilling and directional drilling. Especially, some place that can not using drilling fluid.
     (2) Remote control system of the electric hammer
     Research the application of mud pressure pulse in remote control system of the electric hammer. Take mud pressure pulse as ground-down-hole communication system's transmission channel. Design the coding system on ground and the decoding system down hole, establish the communication protocol and develop remote control system, which is based on the mud pressure pulse, of the electric hammer.
     (3) Calculate and analyze the electric hammer
     Building the model different mode of action of electromagnetic devices, simplified model, and make the relevant calculations. According to calculations, the double-acting electromagnetic devices can get a bigger impacting energy and higher impacting frequency. Therefore, the system use the double-acting electromagnetic devices as the final choice. Establish the kinetic model of the double-acting electromagnetic device and do the dynamic calculation and analysis of it. According to calculations, optimize the control system and get the formula of the impacting energy and impacting frequency. Simulate electromagnetic field distribution of the electromagnetic devices, as the result the magnetic field strength is much bigger in the center of the coil. While, at both end of the coil, the magnetic field strength decay quickly. So the Magnetism Material should be place in the center of the coil.
     (4) Design the Control system of the electric hammer
     Introduce hardware design and the remote control command's resolution process of the decoding system down-hole. The remote control command is made up of mud pressure pulse. Study the circuit theory and hardware design of the power supply module, USB module, detection module, CPU module, etc. These modules make up of the down-hole monitoring system. Design a full bridge circuit, which is based on IGBT, of the electromagnetic device. Design the driven circuit of the full bridge circuit, the driven circuit is based on IR2110 and the 555 timer. Do a detail analysis of the bridge circuit and the driven circuit. Design a signal processing circuit of the control system, which is used to avoid signal confusion and protect the bridge and the driven circuit. After test, the circuit can control the electromagnetic device well. Design the software of the control system.
     The control system can detect working conditions such as pressure, leakage, temperature, impacting frequency, etc of the electric hammer and save these parameters to the memory. Judge the down-hole accidents such as:system leakage, lock etc and deal these accidents. Make a great improvement of the system's automation.
     (5) Design the performance test system of the electric hammer
     Study the general program of the performance test system and design the performance test system following the electric hammer's requirements.Syncretize the photoelectric method and the coefficient methods'characteristic and design a new method to accomplish the impacting energy's measurement. Design the impacting frequency's detecting method using proximity switch. Analyze the detecting methods of the temperature, speed, working voltage, working current, etc. Design the subordinate computer based on C8051F340 and host computer based VC, both of them connected through the USB bus. Introduce the software programming of the USB communication and design the communication protocol.
     (6) Performance test result of the electric hammer
     The electrokinetic cell of the electric can be continuous working about 100 minutes. The battery of the control system can continuously work about 540 minutes and can work about 760 minutes in standby mode. If surrounded by drilling fluid, temperature of the electromagnetic device may rise about 40℃after working 100 minutes. The electromagnetic device can still work normally in this situation. After working 100 minutes, temperature of the IGBT may rise about 25℃, it even has no influence to the property of the IGBT. The greatest stroke of punch of the electric hammer is about 30mm. The range of the impacting energy is from 3J to 11.8J. The range of the impacting frequency is from 5Hz to 8.5Hz.
     Through the study of this dissertation we can get the following innovation points:
     (1) Propose the electric hammer based on electromagnetic
     According the shortage of the traditional hammer in the actual using, propose the electric hammer which is based on electromagnetic theory. Design the performance test system of the electric hammer.
     (2) Adjust the impacting energy and the impacting frequency down hole
     The impacting energy and the impacting frequency can be adjusted down hole. It is the intrinsical difference between the electric hammer and the traditional hammer. The impacting frequency can be adjusted through changing the period of the power on. The impacting energy can be adjusted through changing the duty cycle. The electric hammer can work in different performance parameter, such as big impacting energy and high impacting frequency, big impacting energy and low impacting frequency, small impacting energy and high impacting frequency, small impacting energy and low impacting frequency. This is very important for the drilling of different hardness rocks.
     (3) Remote control
     The electric hammer's working state such as work on, closure, impacting energy's adjustment and impacting frequency's adjustment can be adjusted through the remote control command form the ground. It can improve the drilling efficiency in complex stratum.
     In conclusion, remote control system, control system, performance test system, machinery and mechanical seal system of the electric hammer all realize the desired effect and achieve the preplanned research targets, the electric hammer goes well. The impacting energy and the impacting frequency have large gaps between the electric hammer and the traditional hammer. Because the technology has just been involved in research so there is still tremendous development space and potential. Considering the technology has just been involved in research, there is still tremendous development space for the further development. Finally, according to the test results, several tips were brought forward for the continue study.
引文
[1]汤凤林,A.Γ.加里宁,杨学涵.岩心钻探学.武汉:中国地质大学出版社,1997.
    [2]李世忠.钻探工艺学(上册).北京:地质出版社,1992.
    [3]王人杰等,蒋荣庆,韩军智.液动冲击回转钻探.北京:地质出版社,1988年.
    [4]王人杰,苏长寿.我国液动冲击回转钻探的回顾与展望.探矿工程,1999,(增刊):140-145.
    [5]呼咏.钻头自回转型潜孔锤研究及仿真分析:[学位论文].吉林:吉林大学,2007.
    [6]卢春华.节水型回转冲击钻具结构设计与钻进机理研究:[学位论文].武汉:中国地质大学,2007.
    [7]陈家旺.射流式液动冲击器仿真计算与实验研究:[学位论文].吉林:吉林大学,2007.
    [8]苏长寿.液动潜孔锤技术现状及发展设想.探矿工程,2003,(1):28-30.
    [9]王雪,龚进,邹湘伏等.液压冲击器的研究状况和发展趋势.凿岩机械气动工具,2006,(3):19-23.
    [10]袁新梅,孙起昱,王爱芳,等.旋冲钻井技术及装备的发展现状和展望.石油矿场机械,2007,36(7):7-10.
    [11]ANTON M. KRIVTSOV, MARIAN WIERCIGROCH. Dry Friction Model of Percussive Drilling. Model of Percussive Drilling,1999,34:425-435.
    [12]Tianye ZHU, Qingyan WANG,Kun YIN,et al. Development and application of simulation technique for hydrokinetic hammer. Global Geology,2007,10(2):196-202.
    [13]杨顺辉.液动射流式冲击器的研究现状与发展方向.石油机械,2009,37(2):73-76.
    [14]李国华.液动冲击器功率传递理论分析及应用研究.石油钻探技术,2003,31(6):1-4.
    [15]张云连. 冲击旋转钻井工具的发展现状及应用研究.石油矿场机械,2001,30(5):12-14.
    [16]鄢泰宁,吴翔,卢春华.球体冲击器及其在回转冲击钻进中的应用研究.地质与勘探,2008,44(2):97-100.
    [17]陆洪智,鄢泰宁,季锋.新型钢球冲击器及其试验效果.煤田地质与勘探,2008,36(3):78-80.
    [18]鄢泰宁,H.Γ.叶戈罗夫,蒋国盛等.用于回转冲击钻进的钢球冲击器结构分析及其试验研究.探矿工程,2005,(增刊):229-232.
    [19]索忠伟,曾义金,陶兴华等.射流冲击器仿真分析研究现状及发展趋势.西部探矿工程,2009,(4):76-79.
    [20]Shi Yong-Quan. Development of the type CX-120 down hole hammer coring tool. Journal of the Chengdu Institute of Technology,2002,29(5):578-580.
    [21]田晓华.潜孔锤钻进在地质勘查中的应用.中国煤炭地质,2008,20(8):72-73.
    [22]苏长寿.液动潜孔锤的现状及用于石油钻井应注意的几个问题.探矿工程,2002,(6):30-31.
    [23]菅志军,张玉霖,王茂森等. 冲击旋转钻进技术新发展.地质与勘探,2003,39(3):78-83.
    [24]Kun YIN, Jianming PENG, Maosen WANG. FGC-15D large-diameter DTH air hammer drilling system and its application in offshore rock-socketed pile hole drilling. Global Geology,2006,9(2):138-140.
    [25]刘广志.潜孔锤的研制与发展.地质与勘探,1994,30(2):71-75.
    [26]瓜景云.可控式气动冲击器.矿山机械,2006,(6):22-23.
    [27]陈丽霞,刘清友,单代伟.气动冲击器研究现状及发展趋势.石油矿场机械,2007,36(6)19-22.
    [28]王晓凤,潘文厚,杨茂君.物探钻井气动冲击器的发展研究.物探装备,2008,18(1):18-21.
    [29]黄园月.冲击类工具冲击频率测试仪的研制.凿岩机械气动工具,2006,(4):33-35.
    [30]李国琳,彭枧明,殷琨等.应用音频工具软件测量冲击器的冲击频率.凿岩机械气动工具,2004,(4):38-40.
    [31]熊青山,彭振斌,殷琨等.一种侧冲频法简介.矿山机械,2004,(11):13-15.
    [32]孟庆鑫,刘贺平,王立权等.自反馈式水下液压冲击器冲击频率的确定.哈尔滨工程大学学报,2005,26(2):179-183.
    [33]菅志军,桑路,王保丰等.液动射流式冲击器性能参数影响规律的研究.煤田地质与勘探,2002,30(5):58-60.
    [34]菅志军,殷琨,蒋荣庆等.增大液动射流式冲击器单次冲击功的试验研究.长春科技大学学报,2000,30(3):303-306.
    [35]熊青山,王越之,殷琨等.阀式液动射流冲击器的研制.石油钻探技术,2007,35(3):63-65.
    [36]赵洪激,董家梅.阀式反作用液动冲击器参数计算及性能分析.中国海上油气(工程),1995,7(3):21-26.
    [37]黄麓升,丁问司.冲击器性能的气压测试法.煤矿机电,2001,(4):19-21.
    [38]李常春.DA110型冲击器的设计及性能参数测试.探矿工程,2008,(7):60-63.
    [39]黄志强,宋嘉宁,卜艳等.冲击器性能测试方法研究现状与发展.凿岩机械气动工具,2008,(4):1-5.
    [40]吴忠杰,林君,彭枧明等.液动射流式冲击器冲击功测量方法及仪器研制.仪器仪表学报,2006,27(9):1307-1340.
    [41]王克雄,翟应虎,蔡镜仑.冲击力法测试液动冲击器单次冲击功的研究.振动与冲击,1996,15(3):83-87.
    [42]丁问司,杨襄璧,刘忠.液压冲击器冲击性能新型测试方法研究.凿岩机械气动工具.2000(4):50-57.
    [43]李国琳,彭枧明.射流式液动锤冲击功非接触测量系统的改进.石油机械.2008,36(7):56-58.
    [44]彭枧明,吴忠杰,韦建荣.射流式液动锤冲击功非接触测量系统.石油矿场机械.2006,35(1):48-51.
    [45]U Deulsch, C Marx, H. Rischmuller. Evaluation of hammer drilling potential for KTB in super-deep drilling and deep geophysical sounding. Springer-Veerlag, Heidelberg, Germany, 1995:310-320.
    [46]李国琳,彭枧明.射流式液动锤冲击功非接触测量系统的改进.石油机械.2008,36(7):56-58.
    [47]刘玉民,韩玉安,孙艳龙等.XC-82型液力旋冲钻具及配套钻头的性能测试.石油机械,1999,27(5):20-23.
    [48]祝效华,李红岩,刘清友等.石油钻井工程中液动冲击器的性能参数测试.断块油气田.2004,11(3):64-66.
    [49]魏海菊,岳媛媛,曲庆利.钻井用液动冲击器的参数测试系统.石油仪器.2002,12(6):24-26.
    [50]李运升,王耀邦.冲击器回转试验台冲击功的计算机测量方法.中国水运.2007,7(11):72-73.
    [51]代常友,石永泉,李酉.阀式正作用液压冲击器的冲击功和冲击频率.煤矿机械,2006,27(10):35-39.
    [52]辜华良.冲击器频率的声波测试法.长春科技大学学报,2000,30(2):204-205.
    [53]索忠伟,曾义金,王志刚等.基于LabVIEW测射流冲击器冲击功及冲击频率.断块油气田,2008,15(5):85-87.
    [54]原宏壮,陆大卫,张辛耘等.测井技术新进展综述.地球物理学进展,2005,20(3):786-795.
    [55]Stephen Prensky. Recent Developments in Logging Technology. Petrophysics, 2002,43(3):197-216.
    [56]Halliburton, LWD/MWD services, http://www.halliburton.com.
    [57]刘修善,苏义脑.地面信号下传系统的方案设计.石油学报,2000,21(6):88-92.
    [58]刘修善,苏义脑.井眼轨迹闭环控制系统的信号下传技术.2000,32(1):1-3.
    [59]MeDonald W J, Ward C E. Borehole telemetry system is key to continuous down hole drilling measurement.011 & Gas J.,1975,73(37):111-118.
    [60]MeDonald W J. Four different systems used for MWD.011 & Gas J.,1978,76(14):115-124.
    [61]DeGauque p,Grudzinski R. Propagation of electromagnetic waves along a drillstring of finite conductivity. SPE Drilling Engineering,1987,2(2):127-134.
    [62]Spinner T G, Stone F A. Mud pulse logging while drilling system design, development, and demonstration. IADC/CAODC Drill. Tech. Conf, Houston, Tex.1978,(03):313-327.
    [63]李琪,彭元超,张绍槐等.旋转导向钻井信号井下传送技术研究.2007,28(4):108-111.
    [64]Lurie P.Philip, H.Smith J E. Smart drilling with electric drill-string. SPE/IADC 79886,2003:19-21.
    [65]岳春宏.智能钻杆——将引发一场井下信号传输技术革命.石油科技论坛,2008,(4):34-36.
    [66]Perry A Fischer. Real real-time drill pipe telemetry:A step-change in drilling. World oil, 2003,(10).
    [67]尚海燕,周静,付钢.闭环钻井由地面向井下通讯的一种实现方法.西安石油学院学报,2002,17(2):70-73.
    [68]周静,尚海燕,李长星等.钻井时从地面向井下通讯系统的解码方法.西安石油学院学报,1999,14(2):27-30.
    [69]Dubinsky V S H and Henneuse HP. Surface monitoring of down hole vibrations:Russian, European and American Approaches. SPE 24969,1992
    [70]尚海燕,周静,付鑫生.JYGJ--1下行通道仪的硬件实现.西安石油学院学报,1999,14(1):30-32.
    [71]中国地质大学(武汉). 一种基于蓄电池供电的电动冲击钻探装置:中国,CN101148972[P].2008-03-26.
    [72]苏金明,阮沈勇.MATLAB实用教程.北京:电子工业出版社,2008.
    [73]石博强,赵金.MATLAB数字计算与工程分析范例教程.北京:中国铁道出版社,2005.
    [74]孙东奎,董绍华. 钻井液正脉冲井底信号传输系统分析. 石油机械,2007,35(11):49-51.
    [75]易波.现代通讯导论.长沙:国防科技大学出版社.1998.
    [76]卢春华,张涛,李海东.泥浆脉冲随钻测量系统研究.地质科技情报,2005,24(增刊):30-32.
    [77]张伟,师奕兵,卢涛.小波神经网络在无线随钻测量系统在泥浆信号检测中的应用研究.电子测量与仪器学报,2008,22(6):43-46.
    [78]童进,吴昭同,严拱标旋转机械信号采集中的一种脉冲剔除方法.振动、测试与诊断,2000,20(3):216-217.
    [79]郭建军,刘海军,权景明.无线随钻系统噪声信号分析与控制.石油矿场机械,2008,37(9):10-13.
    [80]赵建辉,王丽艳,盛利民等.去除随钻测量信号中噪声及干扰的新方法.石油学报,2008,29(4):596-600.
    [81]Noureldin A, Irvine-Halliday D, Mintchev M P. Measurement-while-drilling surveying of highly inclined and horizontal well sections utilizing single-axis gyro sensing system. Measurement Science and Technology,2004,15(12):2426-2434.
    [82]浅析无线随钻仪脉冲信号信噪比.石油仪器,2001,(10):50-52.
    [83]ANALOG DEVICES, AD623 Data Sheet, http://www.analog.com.
    [84]李峰飞,严延,吴国军.旁压试验监测系统研究.工程勘察.2009,(11):20-22.
    [85]DALLAS SEMICONDUCTOR, DS18B20 Data Sheet, http://www.maxim-ic.com.
    [86]洪晶科技,STC12C5410AD系列单片机数据手册,http://www.MCU-memory.com.
    [87]Philips Semiconductors, PCF8563 Data Sheet, http://www.semiconductors.philips.com
    [88]ATMEL Corporation 24C1024 Data Sheet, http://www.atmel.com.
    [89]黄万志,林元华.冲击回转钻具的能量传递和参数选择.西南石油学院学报,1997,19(4):74-79.
    90] LUO Chunhong, ZHENG Zhichuan, CAO Pinlu. Study on drilling mechanism and optimization of percussion-extruding DTH hammer bit. Global Geology, 2009,12(1):36-39.
    91] WANG Siyil,WANG Qingyan. Dynamic simulation of hydrokinetic hammer based on virtual prototyping technology.2009,12(1):22-27.
    92] Li Pengcheng, Wu Baosheng, Zhou Jianjun, et al. Application of a Numerical Model of Solid-Liquid Hammer in Pipeline Transport. Engineering Sciences,2004,2(3):53-59.
    93]陶兴华.液动射流式冲击器工作数学模型建立.石油钻探技术,2005,33(1):44-47.
    [94]刘晓旭,林元华,刘德平等.液动冲击器工作动力学模拟研究.石油钻采工艺,2008,30(5):10-14.
    [95]YUAN Guang-jie, YAO Zhen-qiang, CHEN Ping, et al. Experimental and Parametric Design of Petroleum Back-Pressured Hydraulic Impactor. Journal of DoongHua University. 2005,22(5):100-106.
    [96]吴京秋.IGBT应用于固态断路器中的关键技术研究[学位论文].南京:南京理工大学,2007.
    [97]彭智刚,金新民,童亦斌等.IGBT驱动电路.电子产品世界.2007,(2):122-130.
    [98]INTERNATIONAL RECTIFILER, IR2110 Data Sheet, http://www.irf.com.
    [99]陈维,李敏远.IR2110的功能及其在高频感应加热电源中的应用.常德师范学院学报(自然科学版),2000,12(1):57-64.
    100]贾贵玺,吴晓花,闫建三.自举式IR2110驱动集成电路在SRD系统中的应用.新特器件应用,2007,9(9):17-20.
    101]陶海敏,何湘宁.IR2110在驱动大中功率IGBT模块中的应用.电工技术杂志,2009,(9):44-46.
    102]吴胜华,张成胜,钟炎平等.高压悬浮驱动器IR2110的原理和扩展应用.电源技术应用,2002,5(7):348-351.
    103]刘开绪,邹立君.用IR2110设计的静电高压直流电源电路.长春工业大学学报(自然科学版),2005,26(3):246-249.
    104]楚斌.IR2110功率驱动集成芯片应用.电子工程师,2004,30(10):33-35.
    105]孙鸿祥,郑丹,祝典.基于IR2110的驱动电路应用和设计技巧.科技创新导报,2008,35(12):42.
    [106]INTERNATIONAL RECTIFILER,应用手册-高压浮动MOS栅极驱动集成电路.AN978,2002.
    [107]严延,李峰飞,吴国军.基于电荷泵的IR2110全桥驱动电路研究.机械与电子,2009,(11):49-52.
    [108]郝建强,张建.IR2110在电机驱动中的应用.微电机,2007,41(6):51-52.
    [109]龚志广,于江利,顾勇等.基于UC3637和IR2110的直流调速电路.河北建筑工程学院学报,2008,26(2):92-94.
    [110]蒋卓勤,邓玉元.Multisim 2001及其在电子设计中的应用.西安:西安电子科技大学出 版社,2003.
    [111]彭珞丽,彭端.GAL器件在IGBT综合保护逻辑电路中的应用.电力电子技术,1997,(4):86-87.
    [112]臧利林,贾磊,丁新.基于GAL器件的步进电机控制器的研究与设计.电子技术应用,2004,(4):28-30.
    [113]LATTICE SEMICONDUCTOR CORPORATION, GAL16V8 Data Sheet, http://www.latticesemi.com.
    [114]邓重一.接近开关原理及其应用.自动化博览,2003,(5):31-35.
    [115]周睛,李文旭.接近开关的原理及应用.电子元器件应用,2007,9(6):18-20.
    [116]安玉红,高静,苗国英.接近开关的应用.电气时代,2005,(7):110-111.
    [117]钱金川,朱守敏.接近开关在自动化控制中的应用.江苏电器,2006,(5):30-35.
    [118]任立志.接近开关的选型方法.电工技术,2000,(10):69-75.
    [119]李海波,丛培田.C8051F340单片机在轴承故障诊断中的应用.沈阳理工大学学报,2008,27(4):13-15.
    [120]Silicon Laboratories Inc, C8051F340 Data sheet, http://www.silabs.com.
    [121]Silicon Laboratories Inc, USBXPRESS PROGRAMMER'S GUIDE, http://www.silabs.com.
    [122]朱磊,刘东.C8051F340与Labview基于API的USB通信.单片机与嵌入式系统应用,2007,(11):35-37.
    [123]姚新涛,范蟠果.USB技术在智能仪器中的应用.工业仪表与自动化装置,2008,(2):54-56.
    [124]刘国立,王一丁.基于C8051F340的EEG信号采集系统的设计[J].自动化与仪表,2008,(9):44-47.
    [125]朱磊,基于C8051F340的低成本数据采集器设计.国外电子元器件,2008,(4):6-8.
    [126]朱望纯,高海英.基于USB和单总线的温度场测试.仪表技术与传感器,2008,(2):40-41.
    [127]Silicon Laboratories Inc, C8051F34X DEVELOPMENT KIT USER'S GUIDE, http://www.silabs.com.
    [128]李峰飞,张鑫平,李爱朝等.泥浆泵参数监测系统研究.矿山机械,2008,36(23):78-81.
    [129]王晓宁.基于C8051F340单片机的USB数据采集系统.医疗卫生装备,2009,30,(7):111-113.
    [130]Philips Semiconductors,74HC123 Data Sheet, http://www.semiconductors.philips.com
    [131]刘宗平.冲击凿岩工具及其理论基础.北京:地质出版社.1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700