用户名: 密码: 验证码:
车内语言清晰度分析评价及其主动控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车内噪声是影响乘车人舒适性、听觉、语言清晰度以及对车内外各种声音讯号识别能力的重要因素。车内噪声水平已经成为汽车乘坐舒适性的重要性能指标之一,它的优劣直接影响汽车产品的竞争力和消费者的购车取向。现有汽车噪声法规和标准中,多采用A计权声压级作为汽车噪声水平的评价指标,其强制规定了汽车噪声允许达到的声压级限值,但是未深入考虑车内噪声特性。随着汽车工业的进一步发展,对汽车噪声水平和品质有了更高的要求,单一A计权声压级指标已经无法满足,车内噪声品质评价迅速发展起来,它指出了人对噪声的感受由人生理和心理共同影响,反映了噪声受众对噪声的主观感觉与评判。结合本课题组承担的国家自然基金项目《车内噪声品质分析评价及其自适应主动控制方法研究》(项目编号:50975119),开展了汽车噪声品质的分析评价,以及自适应主动控制方法和技术的研究。
     首先,针对不同车型在典型工况下的车内噪声,进行语言清晰度测试试验,研究用声学客观评价参量对车内语言清晰度进行建模,建立与试验结果相一致的车内语言清晰度客观评价模型。具体通过组织听音人对车内噪声环境背景下的语言清晰度进行实验室主观听音评价,得到车内噪声环境下语言清晰度测试试验结果。同时计算了车内噪声样本的声学客观评价参量,包括有语言清晰度指数、响度、尖锐度、粗糙度、两种不同计权声压级、PSIL、SIL、SIL(3)。采用回归分析方法,建立了与语言清晰度测试试验结果相一致的,以声学客观评价参量为变量的车内语言清晰度客观评价模型。对比分析了建立的多元线性回归和二次多项式车内语言清晰度模型之间的优劣,并进行了模型检验,最终验证了与语言清晰度指数相关的二次多项式车内语言清晰度客观评价模型,具有好的拟合优度和数据检验显著水平。
     其次,在分析车内噪声特性基础上,对车内噪声按照ERB进行了特征频带划分,利用参数化滤波技术对不同特征频带噪声声压级进行处理,得到了用于声学客观评价参量特征频带灵敏度分析的噪声样本,并计算了噪声样本的各声学客观评价参量,分析确定了不同特征频带噪声声压级的变化对声学客观评价参量的灵敏度,特别分析了车内语言清晰度特征频带灵敏度。语言清晰度指数敏感频带集中在特征频带5及其附近特征频带,其特征频带灵敏度相对变化率曲线呈“漏斗”状。优先改变这些特征频带噪声声压级可显著调节语言清晰度指数的数值大小与车内语言清晰度状况。心理声学客观评价参量响度、尖锐度、粗糙度、A计权声压级的敏感频带集中在前5个特征频带,前5个特征频带车内噪声声压级变化对上述车内噪声心理声学客观评价参量影响显著。
     为寻求车内语言清晰度主动控制最优目标,进一步分析了车内噪声中低频特征频带成分特性。设计了6个特征频带5种试验水平的试验,并提出了以语言清晰度指数和声音品质客观评价模型得分作为试验指标考察车内语言清晰度优化问题。对60km/h、100km/h、120km/h匀速行驶时车内噪声样本进行正交试验,运用极差分析方法,计算得到了语言清晰度指数和声音品质客观评价模型得分的各特征频带优水平和最优组合。依据试验指标各特征频带的最优组合,通过实验验证了最优组合控制在改善车内语言清晰度和声音品质方面的能力。
     然后,提出了以FSLLMS为核心的ANE主动控制算法,该算法以ERB进行特征频带划分,能实现选择性抵消或补充不同特征频带噪声声压级。在Matlab/Simulink仿真环境下构建了以该算法为核心的车内语言清晰度自适应主动控制系统模型。针对100km/h匀速行驶时车内噪声,利用车内语言清晰度主动控制系统进行了改进车内语言清晰度和声音品质的主动控制仿真。改进车内语言清晰度,使车内语言清晰度客观评价模型达到最优的主动控制,能有效降低噪声声压级,语言清晰度指数提高了14.3%;改进车内声音品质,使声音品质客观评价模型得分达到最优的主动控制,优化了声音品质的综合表现,优化率达到8.93%。
     最后,设计开发了具有自主知识产权的车内语言清晰度自适应主动控制器,编写了相应的控制程序,构建了车内语言清晰度自适应主动控制系统。进行了60km/h、100km/h、120km/h三种工况下的车内噪声实车控制试验,分析了控制前后车内语言清晰度和声音品质的变化情况。改进车内语言清晰度,使车内语言清晰度客观评价模型达到最优的主动控制,能有效地降低车内噪声的声压级和响度,提高车内语言清晰度,响度最大降低量达到7.14sone,语言清晰度指数最大提高了17.05%;改进车内声音品质,使声音品质客观评价模型得分达到最优的主动控制,能够改善车内声音品质,其最大改进率达到14.48%,同时车内语言清晰度指数也有所提高,最大改进率达到14.96%。该试验结果令人满意,证明了提出的主动控制算法能有效实现车内声音品质的改善。
Automotive interior noise can affect the performance of ride comfort, hearing damage,speech intelligibility. It also deprived occupant of identifying the wanted information fromvarious sound signals resulted from inside and outside the vehicle. The interior noise levelhas become one of the important performance indicators of ride comfort, and it directlyaffects the competitiveness and consumer orientation towards to the automotive products.The A-weighted sound pressure level (SPL) is almost used as a vehicle noise levelevaluation among current automotive noise regulations and standards. These laws andregulations set a limitation to SPL of automotive noise, but did not take the interior noisecharacteristics into considered in depth. The quicker development of the automotiveindustry is the higher requirements are put forward to automotive noise and sound quality.Sound quality evaluation has been developed rapidly because single A-weighted SPL hasbeen unable to fully meet task in automotive industry. It pointed out that people feel thenoise affected by human physiological and psychological, and reflect a subjective feelingand evaluation. Supported by National Natural Science Foundation project,“the analysisand evaluation of sound quality of interior noise and adaptive active control methods”(itemnumber:50975119), automotive sound quality are conducted to analyze the characteristicsof interior noise and the methods of adaptive active control are researched.
     Firstly, the test of speech intelligibility is carried out under interior noise when car isoperating at different conditions. The relationship between speech intelligibility andacoustics objective evaluation indexes is studied. And then the establishment of an objectiveevaluation model of speech intelligibility is consistent with the test results. The testingresults of speech intelligibility are obtained thought organizing many audients to do the subjective evaluation of the speech intelligibility in the vehicle interior noise background.At the same time, the acoustic objective evaluation indexes of the vehicle noise sampleshave been calculated, such as speech intelligibility index, loudness, sharpness, roughness,2different weighted SPL, PSIL, SIL, and SIL(3). Two objective evaluation models of speechintelligibility with the independent variable of acoustic objective index are established byregression analysis. These models are consistent with the testing result. The advantage ofmultiple linier regression and quadratic polynomial model has been compared. The resultshows that the quadratic polynomial objective evaluation model of speech intelligibility,related the SII, has better fitness and signification level.
     Secondly, the vehicle interior noise frequency band has been divided according to ERB,and the different special bandwidth noise has been processed with parametric filteringmethod and the processed noise samples are used to analysis the special bandwidthsensitivity of acoustic objective evaluation indexes. In addition, acoustic objectiveevaluation index of the all noise sample has been calculated, and the sensitivity of the SPLchange of different special bandwidth noise on the acoustic objective evaluation index hasbeen analyzed. And the special bandwidth sensitivity of speech intelligibility has beentechnically analyzed. The sensitive frequency bandwidth of speech intelligibility index isconcentrated at the5th and nearby special bandwidth and its relative gradient curve isfunnel-shaped. The change of the SPL in these special bandwidths can significantly adjustthe value of speech intelligibility index. The sensitive bandwidth of the psychologicalobjective evaluation indexes such as loudness, sharpness, roughness and A-weighted SPLare concentrated in the first5special bandwidths. So the change of the SPL in these specialbandwidths has been a dramatic influence on these indexes.
     Furthermore, the mid-low frequency band character of the vehicle interior noise hasbeen analyzed to acquire the optimal target of speech intelligibility. The speechintelligibility index and sound quality objective evaluating model’s score has been proposedas testing indexes, and a testing schedule with6special bandwidths and5testing levels hasbeen designed to evaluate the question of interior noise optimization. Do the orthogonally experiments on the interior noise sample of the working condition of60km/h,100km/h and120km/h, and the optimal combination of the optimal levels in each special bandwidthbased on the speech intelligibility and sound quality evaluating model has been obtainedthought the range analysis. The all results are validated to improve the sound quality byexperiments based on the conclusion from the combination of orthogonal experiments.
     Then, an ANE active control algorithm with the FSLLMS core is proposed. It canachieve selective counteract or supplement to the different special bandwidths’ SPL. Thespeech intelligibility adaptive active control model is established in MATLAB/Simulink. Dothe active control simulation on the interior speech intelligibility and sound qualityimprovement using interior active control system with the working condition of100km/h.To improve interior speech intelligibility, the target is to enable the objective evaluatingmodel reach optimal active control level which can effectively reduce the noise SPL andincrease the speech intelligibility index by14.3%. To improve the interior sound quality, thetarget is enable the objective evaluating model’s score reach the optimal strategy which canmake better sound quality comprehensive performance with improvement rate of8.93%.
     Finally, an adaptive active controller with proprietary intelligent property of the speechintelligibility is developed and the relative control program is written and the adaptiveactive control system of speech intelligibility is constructed. Do the real vehicle noisetesting in the working condition of60km/h,80km/h and120km/h, and analyze thedifference between the interior SPL before and after control. The adaptive active controlsystem of speech intelligibility is aimed to improve the performance of speech intelligibilitywhich can reduced the value of loudness with maximum reduction of7.14sones andenhance speech intelligibility with the maximum improvement rate of17.05%; the system isaimed to effectively improve the score of sound quality objective evaluation model whichcan achieve the biggest improvement rate of14.48%. Besides, the interior speechintelligibility index was also increased by14.96%. The satisfied test results can present that the proposed algorithm and corresponding control system is not only effective but also canachieve improvement in interior sound quality.
引文
[1] Blauert J. Product-sound design and assessment. An enigmatic issue from the point ofview of engineering?[C]. Proceeding of the1994International Congress on NoiseControl Engineering,1994,2:857-862
    [2] Fuller C. R., Silcox R. J. Acoustics1991: active structural acoustic control [J]. J.Acoust. Soc. Am.,1992,91(1):519
    [3] Fuller C. R., Elliott S. J., Nelson P.A. Book review: active control of vibration [J].Physics Today,1997,50(5):64
    [4] Maillard J. P., Fuller C. R. Advanced time domain wave-number sensing for structuralacoustic systems I. Theory and design [J]. J. Acoust. Soc. Am.,1994,95(6):3252
    [5] Snyder S.D., Hansen C.H. Mechanisms of active noise control by vibration sources [J].Journal of Sound and Vibration,1991,147(3):519-525
    [6] Guicking D. On the invention of active noise control by Paul Lueg [J]. J. Acoust. Soc.Am.,1990,87(5):2251-2254
    [7]陈克安.有源噪声控制[M].北京:国防工业出版社,2003
    [8] Lueg P. Process of silencing sound oscillations: German Patent,DRP No.655508[P].1933
    [9] Lueg P. Process of silencing sound oscillations: US Patent No.2043416[P].1936
    [10]陈克安,马远良,孙进才.有源消声的理论进展与发展趋向[J].噪声与振动控制,1992,4:28-33
    [11]田静.三维空间有源噪声控制系统研究[D].中国科学院声学研究所博士学位论文,1991
    [12]刘恩泽,严济宽,陈端石.噪声主动控制系统研究概况及发展趋势[J].噪声与振动控制,1999,3:2-6
    [13]徐永成,温熙森,陈循,等.有源消声技术及应用评述[J].国防科技大学学报,2001,23(2):119-124
    [14]朱从云.主动吸声降噪理论与方法研究[D].湖北:华中科技大学博士学位论文,2005
    [15] Olson H. F., May E. G. Electronic Sound absorber [J]. J. Acoust. Soc. Am.,1953,25(4):1130-1136
    [16] Olson H. F. Electronic Control of Noise, Vibration, and Reverberation [J]. J. Acoust.Soc. Am.,1956,28(1):966-972
    [17] Conover W. B. Fighting Noise with Noise [J]. Noise Control Engineering Journal,1956,2:78-82
    [18] O’Keefe William. Fighting noise with noise: where the contest stands for powerplantapplications. Power,1994,138(7):44-49
    [19] Nelson P. A., Elliott S. J. Active Control of Sound [M]. London: Academic Press,1992
    [20] Schiffbanker Herbert., Brandl F. K., Thien G. E. Development and application of anevaluation technique to assess the subjective character of engine noise [C]. SAEInternational Paper,911081,1991
    [21] Brandle F. K., Biermayer Werner, Pfluger Martin. Objective assessment of vehicleinterior noise quality [J]. Sound and Vibration,1999,33(9):20-28
    [22] Matthias Schneider, Michael Wilhelm, Norbert Alt. Development of vehicle soundquality--targets and method [C]. SAE International Paper,951283,1995
    [23] Kousuke Noumura, Junji Yoshida. Perception modeling and quantification of soundquality in cabin [C]. SAE International Paper,2003-01-1514,2003
    [24] Hiroyuki Hishino, Noriyoshi Terazawa, etc. Evaluation of passenger car interiornoise-evaluation of sound components of passenger car interior noise [C]. SAEInternational Paper,958201,1995
    [25] Noriyoshi Terazawa, Yoshihiko Kozawa, Tatsuo Shuku. Objective evaluation ofexciting engine sound in passenger compartment during acceleration [C]. SAEInternational Paper,2000-01-0177,2000
    [26] Kyung-Hoon Lee, Dong-Chul Park, etc. Characteristics of the luxury sound quality ofa premium class passenger car [C]. SAE International Paper,2009-01-2183,2009
    [27] Miller K, Brand C, Heathcote N, Rutter B. Quality function deployment and itsapplication to automotive door design [C]. Proceeding of the institution of mechanicalengineers, Part D: Journal of Automobile Engineering,2005,219(12):1481-1493
    [28] Norm Otto, Scott Amman, Chris Eaton. Guidelines for jury evaluations of automotivesounds [C]. SAE International Paper,1999-01-1822,1999
    [29] David Scholl, Mike Blommer. Wavelet-based modification of impulsive soundcharacter and application to diesel sound quality [C]. SAE International Paper,2005-01-2271,2005
    [30] Zhang Lijian. A sensory approach to develop product sound quality criterion [C]. SAEInternational Paper,1999-01-1818,1999
    [31] Auken M Van, Zellner J W., Kunkel D T. Correlation of Zwicker's loudness and othernoise metrics with drivers' over-the-road transient noise discomfort [C]. SAEInternational Paper,980585,1998
    [32] Smita Shivle, Gyan Arora. Methodology of road noise analysis and improvementstrategy for passenger car [C]. SAE International Paper,2006-01-1094,2006
    [33] Kuo S. M., Kuo Kevin, et al. Active noise control: Open problems and challenges [J].Journal of Low Frequency Noise Vibration and Active Control,2010,29:161-173
    [34] Kuo S. M., Liu Lichuan. Development and application of audio-integrated ANCsystem for infant incubators [J]. Noise Control Engineering,2010,58:163-175
    [35] Pedersen, Benjamin. Temporal weights in the level discrimination of time-varyingsound [J]. J. Acoust. Soc. Am.,2008,123:963-972
    [36] Pedersen, Ville Pekka. Directional loudness in an anechoic sound field head-relatedtransfer function and binaural summation [J]. J. Acoust. Soc. Am.,2006,119:2965-2980
    [37] Zwicker E., Terhardt E. Automatic speech recognition using psychoacoustic models[J]. J. Acoust. Soc. Am.,1979,65:487-498
    [38] Zwicker E., Fastl H. On the dependence of forward masking on masker duration [J].Acoustica,1976,36:336-343
    [39] Weber Peinhard, Mellert Volker. Psychoacoustic analysis of sound in the cabin ofpassenger aircrafts [J]. Acta Acustica united with Acustica,2003,89:10-13
    [40] Tanaka Nobuo. Active noise control using a steerable parametric array loudspeaker [J].J. Acoust. Soc. Am.,2010,127:3526-3537
    [41]毛东兴,俞悟周,王佐民.声品质成对比较主观评价的数据检验及判据[J].声学学报,2005,30(5):468-472
    [42]申秀敏,左曙光,何容,等.燃料电池轿车声品质客观评价参量的权重[J].振动与冲击,2011,30(1):91-94
    [43]焦风雷,刘克,毛东兴.基于非度量多维尺度分析的噪声声品质主观评价研究[J].声学学报,2005,6:521-529
    [44]邓江华,夏洪兵.汽车车门关闭声声品质客观评价[J].噪声与振动控制,2011,5:58-61
    [45]蒋伟康,张伟.基于掩蔽特性的噪声品质评估研究[J].声学学报,2005,30(2):184-188
    [46]舒歌群,刘宁.车辆及发动机噪声声音品质的研究与发展[J].汽车工程,2002,24(5):403-407
    [47]刘宗巍,王登峰,等.用主动噪声控制法改善车内声品质[J].吉林大学学报(工学版),2008,38(2):258-262
    [48]王登峰,刘宗巍,等.车内噪声品质的主观评价试验与客观量化描述[J].吉林大学学报(工学版),2006,36(增刊2):41-45
    [49] French N. R., Steinberg J. C. Factors governing the intelligibility of speech sound [J].Acoustical Society of America,1947,19:90-119
    [50] Kryter K. D. Methods for the calculation and use of the articulation index [J].Acoustical Society of America,1962,34:1689-1697
    [51] Kryter K. D. Validation of the articulation index [J]. Acoustical Society of America,1962,34:1698-1706
    [52] ANSI S3.5-1969. Methods for Calculation of the Articulation Index [S]. AmericaNational Standards Institute, Inc.1430Broadway, New York, USA,1969
    [53] ANSI S3.5-1997. Methods for Calculation of the Speech Intelligibility Index [S].America National Standards Institute, Inc, New York, USA,1997
    [54] Houtgast T., Steeneken H. J. M. Evaluation of speech transmission channels by usingartificial signals. Acoustica,1971,25:355-367
    [55] IEC60268-16(2011). Sound system equipment-Part16: Objective rating of speechintelligibility by speech transmission index [S]. IEC Press,2011
    [56] Peutz V. M. A. Articulation loss of consonants as a criterion for speech transmission ina room [J]. Journal of the Audio Engineering Society,1971,19(11):915-919
    [57] Klein W. Articulation loss of consonants as a basis for the design and judgment ofsound reinforcement systems [J]. Journal of the Audio Engineering Society,1971,19(11):920-922
    [58]李齐勋,骆学聪,陈怀民.人民大会堂的扩声系统[J].电声技术,1996,9:30-32
    [59] David Queiroz de Sant’Ana, Paulo Henrique Trombetta Zannin. Acoustic evaluationof a contemporary church based on in situ measurements of reverberation time,definition, and computer-predicted speech transmission index [J]. Building andEnvironment,2011,46:511-517
    [60] Nijs L., Rycharikova M. Calculating the optimum reverberation time and absorptioncoefficient for good speech intelligibility in classroom design using U50[J]. ActaAcustica united with Acustica,2011,97:93-102
    [61] Abdel Alim O., Mokhtar M. A., Ezz-EI-Arab M. A. Speech enhancement in thecommunication between vehicles [J]. IEEE Vehicular Technology Conference,1989,2:897-901
    [62] Parizet Etienne. Influence of speech important function upon articulation indexcomputation in cars [J]. Noise control Engineering Journal,1992,2(38):73-79
    [63] Parizet Etienne. Speech intelligibility mappings in a car compartment [J].International Journal of vehicle design,1993,14(2-3):132-144
    [64] Alfred Zeltler, Peter Zeller. Psychoacoustic modeling of sound attributes [C]. SAEInternational Paper,2006-01-0098,2006
    [65] Michel Viktorovitch. Implementation of a new metric for assessing and optimizing thespeech intelligibility inside cars [C]. SAE International Paper,2005-01-2478,2005
    [66] Helcio Onusic, Edgar L B, Marcelo M. H. Using SIL/PSIL to estimate speechintelligibility in vehicles [C]. SAE International Paper,2005-01-3973,2005
    [67] Samardzic Nikolina, Novak Colin. In-vehicle speech intelligibility for differentdriving conditions using the speech transmission index [J]. Noise Control EngineeringJournal,2011,4(59):397-407
    [68] Samardzic Nikolina, Novak Colin. In-vehicle application of common speechintelligibility metrics [J]. International Journal of Vehicle Noise and Vibration,2011,4(7):328-346
    [69] Lu Jun, Pyper Jay. New windshield improves vehicle interior cabin noise andarticulation index. Sound and vibration,2003,37(12):6-12
    [70]郑郧.用RASTI方法测量汽车内语言清晰度[J].声学技术,1993,3:40-42
    [71]郑郧. RASTI方法及其对轿车内噪声的评价[J].汽车科技,2000,1:21-25
    [72] Wang deng-feng, Tan gang-ping et al. Research on speech intelligibility of sound fieldinside passenger car [C]. Advanced Material Research, Part: MEMS NANO andSmart System,2012,403:5214-5219
    [73] Joseph E., Hawkins, et al. Human ear [M]. Encyclopedia Britannica, Britain,1992.
    [74] Stenstrom J. Sten, Grabb W. C. Plastic surgery [M]. Boston: Little, Brown andCompany,1979
    [75]贾利增,等.现代医学,中国大百科全书(第二版)[M].北京:知识出版社,2009
    [76] Anson, Donaldson. Surgical anatomy of the temporal bone (4thedition)[M]. RavenPress,1992
    [77] Zwicker E., Fastl H. Psychoacoustics Facts and Models [M]. German: Springer VerlagBerlin Heidelberg,1999
    [78] Elliott L. L. Development of auditory narrow-band frequency contours [J]. J. Acoust.Soc. Am.,1967,42:143-153
    [79]尹晓萍.试论汉语普通话与英语发音[J].山西农业大学学报,2007,6(6):144-145
    [80]陈妍,邱小军.母语为汉语的听者听英语时的空间去掩蔽现象研究[J].声学学报,2011,36(2):231-238
    [81]彭健新,吕永鑫,刘小俊,路晓东.汉语母语听音人的室内汉语与英语语言清晰度比较[J].华南理工大学学报(自然科学版),2011,39(3):130-134
    [82] Beranek L. L. Airplane quieting II-specification of acceptable noise levels [J]. Trans.Americal of Society, Mech. Eng.,1947,69:97-100
    [83] Webster J. C. Updating and interpreting the speech interference level [J]. Journal ofthe Audio Engineering Society,1970,18(2):114
    [84] ANSI S3.14-1977. Rating noise with pespect to speech interference [S]. AmericaNational Standards Institute, Inc, New York, USA,1977
    [85] ANSI S12.65-2006. Rating noise with pespect to speech interference [S]. AmericaNational Standards Institute, Inc, New York, USA,2006
    [86] Houtgast T., Steeneken H. J. M. Modulation transfer function in room acoustics as apredictor of speech intelligibility [J]. Acustica,1973,28(1):66-73
    [87]祝培生,莫方朔,路晓东,胡沈健.语言清晰度客观评价方法[J].电声技术,2012,36(05):40-45
    [88] Fletcher H., Munson W. A. Loudness, its definition, measurement and calculation [J].J. Acoust. Soc. Am.,1933,5:82-108
    [89] Stevens S. S. Calculation of the loudness of complex noise [J]. J. Acoust. Soc. Am.,1956,28(5):807-832
    [90] Zwicker E., Scharf B. A model of loudness summation [J]. Psychol. Rev.,1965,72:3-26
    [91] International Standard. Acoustics-Method for calculation loudness level [S].ISO532-1975
    [92] Moore B. C. J., Glasberg B. R., Baer T. A model for the prediction of thresholds,loudness and partial loudness [J]. Journal of Audio Engineering Society.1997,45:224-240
    [93]何琳,朱海潮,邱小军,杜功焕.声学理论与工程应用[M].北京:科学出版社,2006:321-323
    [94]孟子厚.音质主观评价的实验心理学方法[M].北京:国防工业出版社,2008:16-26
    [95] Pariaet Etienne, Koehl Vincent. Application of free sorting task to sound qualityexperiments [J]. Applied Acoustics,2012, January,73(1):61-65
    [96] Marshall A. H., Gottlob D., Alrutz H. acoustical conditions preferred for ensemble [J].J. Acoust. Soc. Am.,1978,64(5):1437-1442
    [97] Yamaguchi K. multivariate analysis of subjective and physical measures of hallacoustics [J]. J. Acoust. Soc. Am.,1972,52(5):1271-1279
    [98] Osgood C. E., Suci G. J., Tannenbaum P. H. The measurement of meaning [M].University of Illinois Press,1975
    [99]庞剑,谌刚,何华.汽车噪声与振动----理论与应用[M].北京:北京理工大学出版社,2008
    [100] Hellman R, Zwicker E. Why a decrease in dB(A) produce an increase in loudness?[J]J. Acoust. Soc. Am.,1987,82(5):1700-1705
    [101] Joyce Van de Vegte著,侯正信等译.数字信号处理基础[M].北京:电子工业出版社,2003
    [102]张承云,蔡阳生.频响范围对语言清晰度的影响[J].声频工程,2007,31(11):20-23
    [103] Serry Ahmed M. Y., Lee P. C., Park C. B., Atalla N. Application of novel viscoelasticmicrocellular foams for passive noise control in automotive body structures [C]. SAEInternational Paper,2006-01-0707,2006
    [104] Han Xu, Guo Yongjin, Zhao Yan’e, Zhu Ping. Structure-borne noise reduction in thecompartment of passenger car using power-based transfer path analysis [J].International Journal of Vehicle Noise and Vibration,2008,4(2):169-187
    [105] Holal Johannes Sebastian, Sextro Walter. Simulation of the dynamical behavior ofelastic multi-body systems with bolter, rough contact interfaces [C]. SAEInternational Journal of Passenger Cars-Mechanical Systems,2010,3(1):929-935
    [106] Kuo S. M., Yenduri R. K. A. Gupta. Frequency-domain delayless active sound qualitycontrol algorithm [J]. Journal of Sound and Vibration,2008,318:715-724
    [107] LPR de Oliveira, Janssens K., Gajdatsy P., H Van der Auweraer, et al. Active soundquality control of engine induced cavity noise [J]. Mech. Syse. Signal process,2009,23:476-488
    [108] Joachim Scheuren, Ulrich Widmann, Jens Winkler. Active noise control and soundquality design in motor vehicles [C]. SAE International Paper,1999-01-1846,1999
    [109]饶伟.车内声品质评价模型的建立及应用研究[D].吉林:吉林大学学位论文,2008
    [110] Handbook of Acoustics [M]. America, Wiley-Interscience Publication,1998
    [111] Widrow B., Stearns S. D. Adaptive signal processing [M]. Englewood cliffs, NJ:Prentice-Hall,1985
    [112] Widrow B. On the speed of convergence of adaptive algorithms [C]. Conferencerecord-Asilomar conference on circuits, system&computers14th,1981:239-242
    [113] Burgress J. C. Active adaptive sound control in a duct: a computer simulation [J]. J.Acoust. Soc. Am.,1981,70(3):715-726
    [114] Bitmead R. R., Anderson B. D. O. Performance of adaptive estimation algorithms independent random environments [J]. IEEE Transactions on Automatic Control,1980,25:788-794
    [115] Monson H. Hayes. Statistical digital signal processing and modeling [M]. New York:John Wiley&Sons, Inc.,1996
    [116] Simon Haykin.,郑宝玉译.自适应滤波器原理(第四版)[M].北京:电子工业出版社,2003
    [117] Bershad N. J. Behavior of epsilon normalized LMS algorithm with Gaussian inputs[J]. IEEE Transactions on Acoustic, Speech, and signal processing,1986,35(5):633-644
    [118] Douglas S. C., Meng Teresa H. Y. Normalized data nonlinearities for LMS adaptation[J]. IEEE Transactions on Signal Processing,1994,42(6):1352-1365
    [119] Gangping Tan, Dengfeng Wang, Shuming Chen. Active noise control methodconsidering auditory characteristics [C]. SAE International Paper,2012-01-0993,2012
    [120]林耀荣.自适应滤波理论及其中回波消除中的应用研究[D].广东:华南理工大学学位论文,1999
    [121] Feng J. W., Gan W. S. Adaptive active noise equalizer [J]. IEEE Electronics Letters,1997,33(18):1518-1519
    [122] Kuo S. M., Ji M. J. Development and analysis of an adaptive noise equalizer [J]. IEEETransactions on Speech and Audio Processing,1995,3:217-222
    [123] Mallu S. Integration and optimization of active noise equalizer with filtered error leastmean square algorithm [J]. MS Thesis, Northern Illinois University,2005
    [124] Kuo S. M., Ji M. J. Passband disturbance reduction in adaptive narrowband noisecontrol systems [J]. IEEE Transactions on Circuits System I,1999,46:220-223
    [125] Kuo S. M., Abhijit Gupta, Sridevi Mallu. Development of adaptive algorithm foractive sound quality control [J]. Journal of Sound and Vibration,2007,289(1-2):12~21
    [126]刘宗巍.车内噪声声品质建模分析与自适应主动控制研究[D].吉林:吉林大学博士学位论文,2007
    [127]周涌麟,李树珉等编著.汽车噪声原理、检测与控制[M].北京:中国环境科学出版社,1992
    [128]马大猷主编.噪声与振动控制工程手册[M].北京:机械工业出版社,2002,9
    [129]何渝生主编.汽车噪声控制[M].北京:机械工业出版社,1999
    [130]常振臣,王登峰.神经网络方法在车内噪声信号预测中的应用[J].农业机械学报,2003,34(1):21-24
    [131]孙强.基于人工神经网络的汽车声品质评价与应用研究[D].吉林:吉林大学博士学位论文,2010
    [132]孙惠春.神经网络技术在车内噪声预测上的应用研究[D].吉林:吉林工业大学硕士学位论文,1998
    [133] Kuo S. M., Morga D. R. Active noise control: a tutorial review [J]. Processing ofIEEE,1999,87:943-973

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700