用户名: 密码: 验证码:
土壤通气—微生物降解耦合修复现场石油烃污染土壤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污染土壤的微生物修复技术具有费用低、处理效果好、无二次污染等优点,可用于被石油烃、重金属等污染物污染的土壤治理,但该技术存在修复周期长和特定高效降解菌难以获得等不利因素。土壤通气(Soil Venting,SV)技术是用于修复不饱和区域土壤中挥发性有机物的新兴修复技术,该技术包括土壤气相抽提(Soil Vapor Extraction,SVE)及其衍生技术如生物通风技术(Bioventing,BV)等,土壤通气技术对于土壤渗透性要求较高并且后期存在拖尾效应。实际修复工程中单一修复技术往往不能解决土壤的石油烃污染问题,因此对土壤通气(SVE/BV)-微生物降解耦合修复技术进行深入研究是十分必要的。
     对来自辽河油田污泥和天津开发区某现场被轻质油污染的土壤中的微生物进行了筛选、分离,得到了四株能够对原油和轻质油降解的高效微生物菌株,并确定了优势菌种适宜的生长条件。同时对石油降解菌株固定化载体的选择进行研究,综合考虑载体的吸菌量、持水能力及密度等特性,确定了实验条件下固态菌剂的最佳载体。
     以天津开发区现场具有代表性的粘性土壤-淤泥质粉质粘土夹粉砂为研究对象,通过吸附平衡实验和原油降解实验探讨了该类型土壤对原油的吸附性能以及高效石油降解菌对该土壤中原油的降解规律。通过吸附实验确定吸附常数等参数,探讨原油在土壤中的吸附机理。采用生物泥浆法考察了原油在现场粘性土壤中的降解规律,并且对一级降解动力学模型进行了改进。本文同时考察了表面活性剂对土壤中原油降解的影响,发现鼠李糖脂在降解初期能明显促进土壤中原油的降解。
     基于高效石油降解菌剂的自然通风技术在辽河油田的应用研究中,采用土壤自然通风(辅助以定期深翻)-微生物降解的异位修复方法,验证了添加微生物菌剂在油田油泥中的应用效果,该固态菌剂对土壤中原油的降解效果明显优于自然降解。现场试验条件下,微生物生长相对生长缓慢,仍符合一级生长动力学,但没有明显的延迟期及对数生长期等阶段。
     在天津开发区某轻质油污染场地建立原位修复试验体系,系统地研究了挥发性石油烃的土壤通气(SVE/BV)-微生物降解耦合修复的机理。单井稳态抽气试验,确定了SVE/BV过程的气相压力分布、不饱和区域土壤(粘性土壤)的空气渗透率、压力影响半径等重要参数。现场优势土著微生物(细菌)的原位自然驯化阶段(1~140天),考察了土壤含水量、 pH值以及土壤环境温度等因素对微生物生长的影响。
     现场条件下,土壤中挥发性石油烃(异辛烷)的去除经历了105天,以土壤通气开始时间为节点,划分为单纯微生物降解(33~132天)和土壤通气(SVE/BV)-微生物降解耦合过程(133~138天)两个阶段。通过单纯微生物降解试验,获得了生物降解动力学模型参数;通过单井稳态土壤通气试验研究了抽提尾气中的污染物去除机制,尾气中的异辛烷的去除符合幂函数关系。顶空法测定土壤固相中污染物(异辛烷)的初始质量百分比含量为0.30%,单纯生物降解阶段污染物的去除率为63.33%,而土壤通气(SVE/BV)-微生物降解耦合修复过程污染物的去除率达到了72.73%。现场试验证明采用土壤通气(SVE/BV)-微生物降解耦合修复技术,可有效去除不饱和区域土壤中的挥发性石油烃。
     在对土壤通气的气相流动方程和石油烃污染土壤微生物降解模型分析的基础上,提出了挥发性石油烃的土壤通气(SVE/BV)-微生物降解耦合修复传质模型,并对单井抽气系统的稳态流场下的传质模型进行了求解。模拟污染物(异辛烷)去除的模型计算结果与现场数据基本吻合,说明本文提出的数学模型能够对现场土壤通气-微生物修复过程进行正确预测。
     本文研究成果,特别是挥发性石油烃的原位土壤通气(SVE/BV)-微生物降解耦合修复的试验和理论研究成果可作为土壤修复中试或现场修复的基础数据和参考依据。
Microbial remediation technology of contaminated soil has the advantages oflow expense, high efficiency, and no secondary condamination, et al. So thistechnology could be used to treat the soil which is been contaminated by theprtroleum hydrocarbons, and the heavy metals, et al. But this technology also has thedisadvantages of long remediation circles and the requirement of specific excellentdegrading bacteria which is difficult to get. Soil Venting (SV) is gaining acceptance asa remediation technology for unsaturated soils contaminated with volatile organiccompounds (VOCs). This technology includes the technology of Soil VaporExtraction (SVE), and the technology of Bioventing (BV) which is derived from theSVE technology, etc. But the application of the SVE technology requires the highpermeability of the contaminated soil that is treated, and also this technology has taileffect. In the engineering project, the single remediation technology for thecontaminated soil is actually not enough to solve the problem of soil contaminationwith petroleum hydrocarbons completely. So the in-depth research on the couplingtechnology of SVE/BV technology and microbial remediation technology is verynecessary.
     In this work, the microorganisms existing in the heavily contaminated soil fromLiaohe Oil Field and the lightly contaminated soil from some field of TEDA (TianjinEconomy and Development Area) was isolated and screened out. Four types of highperformance microbial bacteria which could be used to degrade the crude oil and lightoil was obtained. The suitable growth conditions for these dominant microbialbacteria were determined. Research on the selection of immobilized carriers for thesemicrobial bacteria was also conducted. In this research, the properties of bacteriaadsorption quantity, moisture performance, density of the immobilized carriers wereconsidered. So the best carrier for the soild bacteria under the experimental conditionswas determined.
     Using the typical silty clay from the TEDA field, the crude oil adsorptionperformance of this type of soil and the performance of crude oil biodegradation withthe dominant microbial bacteria was discussed via the crude oil adsorptionexperiments and the crude oil biodegradation experiments. The mechanism of theadsorption of crude oil in the soil and the parameters such as adsorption constants was determined with the crude oil adsorption equilibrium experiment. Using the biologicalmud method, the performance of the bidegradation of crude oil in the silty clay wasdetermined, and the first-order’s bidegradation kinetic model was corrected. Theboosting effect of surfactant on the biodegradation of crude oil in the soil was alsoobserved in this work. And it was found that the rhamnolipid could greatly acceleratethe rate of degradation of crude oil in the soil especially at the beginning ofbiodegradation. In the field application research of high performance petroleumhydrocarbons degradation soild bacteria, the good effect of microbial solid bacteria inthe treatment of oil soil from the Liaohe Oil Field was validated using the biodegradationoff-situ remediation approach of natural ventilation (with the timely excavation for thesoil) technology, so these microbial bacteria appears obvious advantages over thenatural degradation when used to treat the crude oil in the soil.
     The in-situ remediation experimental equipment system was set up in a TEDAfield which was lightly contaminated by light oil. Using this experimental equipmentsystem, the coupling treatment mechanism of in-situ microbial remediation andSVE/BV for the volatile petroleum hydrocarbons was systemically observed. Theimportant parameters such as the vapor pressure distribution, air permeability ofunsaturated area soil (silty clay), and the pressure influnce radius was determined viathe single steady state extracting experiments and the air respiration test.
     During the phase of in-situ natural domestication of the field dominant nativemicrobial bacteria, the effect of important factors such as soil moisture, pH value, andthe soil temperature on the growth of microbial bacteria were observed. Under thefield conditions, the treatment of volatile petroleum hydrocarbons (isooctane) in thesoil spanned about105days, with the boundary point marked by the start time ofSVE/BV, this could be divided to be the biodegradation stage(from33to132days)and the the coupling SVE/BV and microbial remediation stag(efrom133to138days).Using the experimental data from the biodegradation experiments, the degradationkinetic model parameters were obtained. The removal mechanism of contaminants inthe extraction emissions was studied via the single steady state soil extractingexperiments, and it was found that the removal of isooctane in the extractionemissions in the terms of time agreed well with the power function. The initial massweight of contaminant isooctane in the soil solid phase measured with the headspaceanalysis method was0.30%, and the contaminant removed percent at the end of thefirst stage was63.33%, while the contaminant removed percent at the end of the second stage was72.73%. The great performance of the coupling SVE/BV andmicrobial remediation technology that was applied to remove the volatile petroleumhydrocarbons was validated by the field experiments.
     Based on the equation of vapor flow of SVE/BV and the analysis of thebiodegradation kinetic model for the contaminated soil with petroleum, the masstransfer model of the coupling SVE/BV and microbial remediation for the treatmentof volatile petroleum hydrocarbons was proposed. Under steady state conditions, thecalculation results of the model of the single component and single extraction wellsystem agreed well with the field data, so the mathematical model that proposed inthis dissertation could be used to provide accurate data for the SVE/BV and microbialremediation treatment of field soil.
     The research results of this dissertation, especially the experimental andtheoretical conclusions of the research of the SVE/BV and microbial remediationin-situ treatment of volatile petroleum hydrocarbons, could be used as the basic dataand the reference for the pilot or field treatment of contaminated soil.
引文
[1]姚德明,许华夏,石油污染土壤生物修复过程中微生物生态研究,生态学杂志,2002,21(1):26~28
    [2]许华夏,张春桂,微生物降解石油污染的土壤,辽宁城乡环境科技,1998,18(6):22~24
    [3]程国玲,李培军,石油污染土壤的植物与微生物修复技术,环境工程学报,2007,1(6):91~96
    [4]宋新山,吴应玲,陈栋,基于MATLAB的对流弥散方程的不稳定源解,环境科学与技术,2008,31(11):31~34
    [5]何良菊,魏德州,土壤微生物处理石油污染的研究,环境科学进展,1999,7(3):110~115
    [6]张春桂,污染土壤恢复技术,生态学杂志,1997,16(4):52~58
    [7]汪嵘,赵颖怡,张云开,等,高密度培养基因工程菌的条件优化,广西农业生物科学,2002,21(1):58~61
    [8] Valentina M, Mikhail A B. Bioremediation of oil polluted aquatic systems and soilwith novel preparation. Bioremediation,2000,(11):385~389
    [9] Halmemies S, Grondahl S, Arffman M, et al. Vacuum extraction based responseequipment for recvery of fresh fuel spills from soil. Journal of HazardousMaterials,2003, B97:127~143
    [10]李凌,土壤气相抽提法(SVE)去除土壤中挥发性有机污染物的研究:[硕士学位论文],天津;天津大学,2002
    [11]姜昌亮,石油污染土壤的物理化学处理-生物修复工艺与技术研究:[博士学位论文],沈阳;中国科学院应用生态研究所,2001
    [12]李永涛,吴启堂,土壤污染治理方法研究,农业环境保护,1997,16(3):118~122
    [13]钱暑强,刘铮,污染土壤修复技术介绍,化工进展,2000,(4):10~12
    [14]廉景燕,杜永亮,张凯瑞,等,有机溶剂脱附法处理高浓度石油污染土壤的研究,现代化工,2008,28(8):60~63
    [15]于晓丽,落地原油对土壤污染及治理技术,农业环境与发展,2000,(3):28~29
    [16] USEPA,2010. Treatment technologies for site cleanup. Annual Status Report,Office of Solid Waste and Emergency Response (5103P),13th ed., United StatesEnvironmental Protection Agency.
    [17] Sa V H, Integrated in situ soil remediation technology: the Lasagna proceed.Environ. Sci. Technol.,1995,29(10):2528~2534
    [18]王庆仁,刘秀梅,崔岩山,等,土壤与水体有机污染的生物修复及其应用研究进展,生态学报,21(1):159~163
    [19]徐亚同,史家梁,张明,污染控制微生物工程,北京:化学工业出版社,2001,146~148
    [20]顾传辉,陈桂珠,石油污染土壤生物降解生态条件研究,生态科学,2000,19(4):67~72
    [21]孙铁珩,周启星,李培军,污染生态学,北京:科学出版社,2001:309~368
    [22] Susan C W. Bioremediation of soil contaminated with polynuclear aromatichydrocarbons (PAHs): a review. Environmental Pollution.1993,81:229~249
    [23] Hilberts, B. In site Technigues in Contaminated Soil. K Wilf. Kluwer AeddemicPublishers.1985.679~693
    [24]丁克强,孙铁珩,李培军,石油污染土壤的生物修复技术,生态学杂志,2000,19(2):50~55
    [25] Hwang H M. Interactions between subsurface microbial assemblages and mixedorganic and inorganic contaminant systems. Bull Environ Contam Toxicol,1994,53(5):771~778
    [26] Mills S A. Evaluation of phosphorus sources promoting bioremediation of dieselfuel in soil. Bull Environ. Contam.Toxicol.1994,53(2):280~284
    [27]郭江峰,孙锦荷,污染土壤生物治理的研究方法,环境科学进展,1995,3(5):62~68
    [28] Frodrickson J K. In-situ and on-site bioreclamation. Environ&Sci Technol,1993,27(9):1711~1716
    [29]孙铁珩,周启星,李培军,污染生态学,北京:科学出版社,2001,309~368
    [30] Morgan P, Watkinson R J. Hydrocarbon degradation in soil and methods for soilbiotreatment. Biotechnology,1989,8:305~333
    [31] Edward J, Calabrese. Principles and Practices for Petroleum contaminated Soils,CRC Press,1992
    [32] Atlas R M. Microbial hydrocarbon degradation-biodegradation of oil spills.Chem Tech Biotechnol,1991,52:149~156
    [33] Pritchard P H. EPA’ s Alaska oil spill biodegradation project. Env Sci Tech,1991,25:372~379
    [34]顾传辉,陈桂珠,石油污染土壤生物修复,重庆环境科学,2001,23(2):42~45
    [35]郑远扬,石油污染生化治理的进展,国外环境科学技术,1993,(3):46~50
    [36]张海荣,李培军,孙铁珩,等,四种石油污染土壤生物修复技术的研究,农业环境保护,2001,20(2):78~80
    [37] Zappi M E, Rogers B A, Teeter C L, et al. Bioslurry treatment of a soilcontaminated with low concentrationsof total petroleum hydrocarbons. Journalof Hazardous Materials,1996,46(1):1~12
    [38] Flathman P E, Lanza G R. Phytoremediation, current views on an emerging greentechnology. Journal of Soil Contamination,1998,7:415~432
    [39]龚月桦,王俊儒,高俊风,植物修复技术及其在环境保护中的应用,农业环境保护,1998,17(6):268~270
    [40]孙铁衍,宋玉芳,许华夏,等,植物法生物修复多环芳烃和矿物油污染土壤的调控研究,应用生态学报,1999,10(2):225~229
    [41] Cunningham S D, Berti W R, Huang J W. Phytoremediation of contaminatedsoils.Trend in Biotechnology,1995,13(9):393~397
    [42]丁克强,骆永明,多环芳烃污染土壤的生物修复,土壤,2001,4:169~176
    [43]徐亚同,史家梁,张明,污染控制微生物工程,北京:化学工业出版社,2001,146~148
    [44]唐世荣,利用植物修复污染土壤研究进展,环境科学进展,1996,4(6):10~17
    [45]宋玉芳,许华夏,任丽萍,两种植物条件下土壤中矿物油和多环芳烃的生物修复研究,应用生态学报,2001,12(1):108~112
    [46] Flathman P E, Lanza G R. Phytoremediation, current views on an emerging greentechnology. Journal of Soil Contamination,1998,7:415~432
    [47]卢丽丽,石油污染土壤的植物修复研究:[硕士学位论文],西安;西安建筑科技大学,2008
    [48]郭书海,张海荣,张春桂,农业环境科学学报,陈化石油污染物降解菌的筛选,2005,24(1):161~164
    [49]魏小芳,张忠智,罗一菁,石油烃优势降解菌株在处理含油污泥中的应用,石油化工高等学校学报,2005,18(4):8~11
    [50]苏荣国,牟伯中,王修林,微生物对石油烃的降解机理及影响因素,化工环保,2001,21(4):205~208
    [51]顾传辉,陈桂珠,石油污染土壤生物降解生态条件研究,生态科学,2000,19(4):67~72
    [52] Dibble J T. Effect of environmental parameters on the biodegradation of oilsludge, Appl Environ Microbial,1979,37:729~739
    [53]王辉,赵春燕,李宝明,等,石油污染土壤中细菌的分离筛选,土壤通报,2005,36(2):237~239
    [54]齐永强,王红旗,刘敬奇,土壤石油微生物降解影响因子的正交实验分析,地球学报,石油污染物生物降解试验研究,2003,24(3):279~284
    [55]李莉,施春雨,李景新,石油污染物生物降解试验研究,油气田环境保护,2004,11(1):42~44
    [56]李晔,陈新才,王焰新,石油污染土壤生物修复的最佳生态条件研究,环境科学技术,2004,27(4):17~19
    [57] Atlas R M. Microbial hydrocarbon degradation-bioremediation of oil spills.Chem Tech Biotechnol,1991,52:149~156
    [58]徐玉林,石油污染土壤降解与土壤的环境关系,农机化研究,2004,6:86~88
    [59] Joseph G L. Microbial degradation of hydrocarbon in the environment. MicrobialReviews,1990,54(3):305~315
    [60] Verstraete W R. Modelling of the breakdown and the mobilization ofhydrocarbons in unsaturated soil layers. In: Sharpley J M and Kaplan A M, eds.Proceedings of the Third international. Biodegradation symposium,1976,99~112
    [61]金文标,宋莉晖,油污土壤微生物治理的影响因素,环境保护,1998,(10):27~28
    [62] WALFER J D. Microbial utilization of crude oil. Appl. Microbiol.,1972,(23):1082~1089
    [63]丁明宇,黄健,李永祺,海洋微生物降解石油的研究,环境科学学报,2001,21(1):84~88
    [64] Leahy JG, Colwell R. Microbial degradation of hydrocarbons in the environment,Microbiol. Rev.,1990,54:305~315
    [65]贾建丽,李广贺,钟毅,油污土微生态环境非生物因子与微生物活性关系,环境科学,2004,25(3):110~114
    [66]郑义平,易绍金,石油烃类降解菌在不同矿化度下的生长规律及去油效果研究,油气田环境保护,2005,15(2):32~34
    [67]牛明芬,韩晓日,郭书海,生物表面活性剂在石油污染土壤生物预制床修复中的应用研究,土壤通报,2005,36(5):712~715
    [68] Fiebig R, Schulze D, Chung JC, et al. Biosurfactants from marinemicroorganisms, Biodegradation, l997,8:67
    [69] Auger. Products from the Incomplete Metabolism of Pyrene by PolycyclicAromatic Hydrocarbon-Degrading Bacteria, Hazard Mater.,1995,43(3):263
    [70]傅海燕,曾光明,土壤石油降解菌筛选及其特性的研究进展,高技术通讯,2005,15(9):96~100
    [71]叶为民,孙凤慧,石油污染土壤的微生物治理研究进展,上海地质,2002,84(4):22~25
    [72] Aronstein B N, Alexander M. Effect of a nonionic surfactant added to the soilsurface on the biodegradation of aromatic hydrocarbons within the soil, ApplMicrobiol. Biotechnol.,1993,39(3):386
    [73]魏德洲,泰煜民,土壤石油降解菌筛选及其特性的研究进展,东北大学学报,1998,19(2):125~127
    [74]张丽芳,姜承志,李东辉,表面活性剂对不同石油降解菌除油影响的研究,沈阳工业学院学报,2001,30(4):79~83
    [75]张丽芳,肖红,魏德洲,表面活性剂对土壤石油污染物微生物降解的影响,辽宁化工,2002,31(12):509~513
    [76]李晔,陈新才,王焰新,石油污染土壤生物修复的最佳生态条件研究,环境科学技术,2004,27(4):17~19
    [77]袁红莉,杨金水,王占生,降解石油微生物菌种的筛选及降解特性,中国环境科学,2003,23(2):157~161
    [78] Baskys E V, Grigiskis S, Vilutis K, Method of decontamination of ahydrocarbon-polluted environment by the use of bacterial compositions, Vilnius,SU,210/611, US Patent5494580,1996
    [79] Lal B, Khanna S J. Evaluation of Inoculum Addition To Stimulate In SituBioremediation of Oily-Sludge-Contaminated Soil, Appl. Bacteriol.,1996,81(4):355~362
    [80]李丽,张利平,张元亮,石油烃类化合物降解菌的研究概况,微生物学通报,2001,28(5):89~92
    [81] Garbisu C, Alkorta I. Utilization of genetically engineered microorganisms(GEMs) for bioremediation, Chem. Technol. Biotechnol.,1999,74:599~606
    [82]孟庆云,张鹏,MC2109菌株对石油污染土壤中石油降解的研究,北京化工大学学报,1998,25(1):95~98
    [83] Barabas G, Vargha G, Szabo I M, et al. n-Alkane uptake and utilization byStreptomyces strains, Antonie van Leeuwen-hoek,2001,79:269~276
    [84]丁克强,孙铁珩,李培军,等,真菌对石油污染土壤的降解研究,微生物学杂志,1999,19(4):25~34
    [85]王洪君,吴任钢,王嘉麟,生物技术处理冀东油田含油土壤,环境科学研究,2000,13(5):20~23
    [86] America Petroleum Institute. The Land Treatability of Appendix Ⅶ Weshington,D.C.1984
    [87] Leahy J G. Microbial degradation of hydrocarbons in the environment, In:Microbial,1990,54:305~315
    [88]李希明,微生物降解含油废水,重庆环境科学,1998,20(1):16~19
    [89] Fedorak R M, Westlake D W. Microbial degradation of aromatics and saturates inPrudhoe Bay crude oil as determined by glass capillary gas chromatography, In:Microbial,1981,27:432~443
    [90] Richard B. Biotechnology of Petroleum PollBioutant degradation, Microb. Ecol.,1986,12:155~172
    [91]许华夏,张春桂,微生物降解石油污染的土壤,辽宁城乡环境科技,18(6):22~25
    [92] Kincannon C B. The management of wastewater from the petroleum refiningindustry. In: Proceedings of Open Forum on Management of Petroleum RefineryWastewater,1977:257
    [93]刘期松,污灌土壤中多环芳烃的微生物效应,环境科学学报,1984,4(2):185~192
    [94]魏开湄,吴维中,石油烃在沈抚灌区土壤中的生物降解模拟,环境科学报,1983,3(2):156~164
    [95]郑西来,钱会,包气带石油污染的生物降解作用研究,地质工程与水资源新进展,西安:陕西科学技术出版社,1997
    [96]孙清,陆秀君,梁成华,土壤的石油污染研究进展,沈阳农业大学学报,2002,33(5):390~393
    [97] Conney J J. Factors influencing hydrocarbon degradation in three fresh waterlakes. Microb Ecol1985,(11):127~137
    [98] Fedorak P M. Microbial degradation of aromatics and saturates in Pruhoe baycrude oil as determined by glass capillary gas chromatography. Can. J. Microbial,1981,(27):423~443
    [99]赵荫薇,石油污染地表水的微生物处理-应用研究,应用生态学报,1998,9(2):209~212
    [100]金文标,宋莉晖,油污土壤微生物治理的影响因素,环境保护,1998,(10):27~28
    [101] Dibble J T. Effect of environmental parameters on the biodegradation of oilsludge. Appl. Environ. Microbial,1979,(37):729~739
    [102] Weber W J. A distributed reactivity model for sorption by soils and sediments.Environ. Sci. Technol.,1992,26(10):1955~1962
    [103] Wu S. Sorption kinetics of hydrophobic organic compounds to naturalsediments and soils. Environ. Sci. Technol.,1986,20(7):717~725
    [104] Grathwohl P. Impact of heterogeneous aquifer materials on sorption capacitiesand sorption dynamics of Organic contaminants. International Conference onGroudwater Quality,1995
    [105] Grathwohl P. Desorption of trichlorethylene in aquifer material: Rate limitationat the grain scale. Environ. Sci. Technol.,1993,27(12):2360~2366
    [106] Larsen T. Sorption of hydrophobic hydrocarbons on threee aquifer materials in aflow through system. Chemosphere,1992,24:439~451
    [107]赵文谦,泥砂吸附石油的数学模型与试验研究,水利学报,1997(2):50~57
    [108]李崇明,赵文谦,罗麟,河流泥沙对石油的吸附、解吸规律及影响因素的研究,中国环境科学,1997,17(1):23~25
    [109]郑西来,土壤中油-水驱机理研究,环境科学学报,1999,(2):218~221
    [110]郑西来,地下水中石油污染物的迁移与相间转,长春科技大学学报,1998(1):52~55
    [111]王青海,郑军芳,贾海红,等,阻滞系数及其测试方法分析,辐射防护,2008,28(4):215~220
    [112]高拯民,土壤-植物系统污染生态研究,北京:中国科学技术出版社,1981
    [113]袁维富,磁性粉末净化含油污水,环境化学,1991,(4):13~17
    [114]覃晶晶,江小林,污水处理中Monod方程的简化及其线性化方程,市政技术,2006,24(2):75~80
    [115] Bailey J E, Ollis D F. Biochemical engineering fundamentals,2nd Edition. NewYork: McGrawl-Hill Book Company,1986
    [116] Han K, LevensPiel O. Extended model kinetics for substrate Production andinhibition, Bioteeh.Bioeng.1988,32:430~438
    [117] Viniegra G. Symmetic branching model for the kinetics of mycelial growth,Biotechnol Bioeng,1994,42:1~10
    [118] Bekins B A, Warren E, Godsy E M. A comparison of zero-order, first-order andMonod biotransformation moders, Ground Water,1998,36(2):261~268
    [119] Chiang C Y, Salanitro J P, Chai E Y, et al. Aerobic biodegradation of benzene,toluene and xylene in a sandy aquifer-data analysis and computer modelling.Ground Water,1989,27(6):823~834
    [120] Rashid M, Kaluarachchi J J. A simplified numerical algorithm for oxygen-andnitrate-based biodegradation of hydrocarbons using Monod expressions,1999,40:53~77
    [121] Leahy J G, Colwell R R. MicroBial Degradation of Hydrocarbons inEnvironment. Microbiol. Rev.,1990,54:305~315
    [122] Monod J. The growth of bacterial cultures. Annu. Rev. Microbiol.1949,3:371~394
    [123] Kelly W R, Hornberger G M, Herman J S, et al. Kinetics of BTXbiodegradation and mineralization in batch and column systems. Journal ofcontaminant Hydrology.1996,23:113~132
    [124] Guha S, Jaffé P R. Determination of Monod kinetic coefficients for volatilehydrophobic organic compounds. Biotecnol. Bioeng.,1996,50:693~699
    [125] Richards L A. Capillary conduction of liquids through porous medium. J.Physics.,1931,1:318~333
    [126] Genuchten V. A closed form equation for prediction the hydraulic conductivityof unsaturated soils. Soil Sci. Soc. Am.,1980,44:892~898
    [127] Brooks R H, Corey A T. Hydraulic Propertics of Porous Midia, Colorado StateUniv.Hudrol. Paper, No.3,1964
    [128] Gardner W R. Some steady state solutions of the unsaturated moisture flowequation with application to evaporation from a water table. Soil Sci.,1958,85:228~232
    [129]李海龙,焦赳赳,海潮引起的滨海地区包气带气压周期性变化的数值模拟,地球科学-中国地质大学学报,2003,28(5):505~509
    [130] Binning P. Modeling unsaturated zone flow and contaminant transport in the airand water phases. Ph.D, Thesis, Department of civil engineering and operationsresearch, Princeton University, Princeton New Jersey,1994
    [131] Binning P. A finite volume Eulerian-lagrangian localized adjoint method forsolution of the contaminant transport equations in two-dimensional multiphaseflow systems. Water Resourse Research,1996,32(1):103~114
    [132] Sleep B E, Sykes J F. Compositional simulation of groundwater contaminant byorganic compounds:1. Modeling development and verification. Water ResourseResearch,1993,29(6):1697~1708
    [133] Celia M A, Philip B. A mass conservative numerical solution for two-phaseflow in porous media with application to unsaturation flow. Water ResourseResearch,1992,28(10):2819~2818
    [134] Kaluarchchi J J, Parker J C, An efficient finite element method for modelingmultiphase flow. Water Resourse Research,1989,25(1):43~54
    [135] Rajasekhar L, Corapcioglu M Y. Two-dimensional analytical solutions for atwo-pump free product recovery system. Waste Management, Vol.15:1995,315~323
    [136] Arriola L M, Pinder G F, Water R. Multiphase approach to the modeling ofporous media contamination by organic compounds. I. Equation development,Vol.21(1):1985,11~18
    [137]王洪涛,石油污染物在土壤中运移的数值模拟初探,环境科学学报,2000,20(6):755~760
    [138] Elkadi A I, Ling G. The Courant and Peclet number criteria for the numericalsolution of the Richards equation. Water Resour. Res.,1993,29(10):3485~3494
    [139]郑西来,王秉忱,佘宗莲,土壤-地下水系统石油污染原理与应用研究,北京:地质出版社,2004
    [140] Warrick A W, Biggar J W, Nielsen D R. Simultaneous solute and water transferfor an unsaturated soil. Water Resour. Res.,1971,7(5):1216~1225
    [141]黄元仿,区域土壤氮素行为与土壤水、氮管理:[博士学位论文],北京;中国农业大学,1996
    [142] Addiscott T M, Wagenet R J. Concepts of solute leaching in soils: a review ofmodeling approaches. J of Soil Sci.,1985,36:411~424
    [143]隋红建,饶纪龙,土壤溶质运移的数学模拟研究现状及展望,土壤学进展,1992,(5):1~7
    [144]李文鹏,地下水水动力弥散方程中处理固相与液相间转化量的三种方法,水文地质工程地质,1993(2):31~34
    [145] Das, B S, Kluitenberg, G J. Moment analysis to estimate degradation rateconstants from leaching experiments. Soil Sci. Am. J.,1996,60:1724~1731
    [146]薛强,石油污染物在地下环境系统中运移的多相流模型研究:[博士学位论文],沈阳;辽宁技术工程大学,2003
    [147]贝尔,多孔介质流体动力学,北京:中国建筑工业出版社,1983,372~373
    [148] Demond, A H, Roberts P V. Estimation of two-phase relative permeabilityrelationships for organic liquid contaminants. Water Resour. Res.,1993,29(4):1081~1090
    [149]常士骠,张苏明,工程地质手册(第三版),北京:中国建筑工业出版社,1994,132~133
    [150] Cooper H H, Jacob C E. A generalized graphical method for evaluatingformation constants and summarizing well field history. Transactional AmericanGeophysical Union.1946,27:526~34
    [151]黄国强,土壤气相抽提(SVE)中有机污染物的运移与数学模拟研究:[博士学位论文],天津;天津大学,2002
    [152]李兴伟,石油类有机污染物在土壤中迁移数值模拟:[硕士学位论文],大庆;大庆石油学院,2005
    [153] Jonge H D. Relation between bioavailability and fuel oil hydrocarboncomposition in contaminated soils. Environ. Sci. Technol.,1996,30(5):215~224
    [154] Andrews J F.1968. A mathematical model for the continuous culture ofmicroorganisms utilizing inhibitory substrates. Biotechnol Bioeng.,10:707~723
    [155]谢重阁,环境中石油污染物的分析技术,北京,中国环境科学出版社,1987
    [156]刘子宇,李平兰,郑海涛,等,微生物高密度培养的研究进展,中国乳业,2005,(12):47~51
    [157] Sheridan B A, Curran T P, Dodd V A. Assessment of the influence of mediaparticle size on the biofiltration of odorous exhaust ventilation air from a piggeryfacility. Bioresource Technology.2002,84(2):129~143
    [158] National Academy of Sciences, Oil in the sea-inputs, fates and effects inWashington DC, National Academy press,1985
    [159] Dupont R R. Operating mode impacts on bioventing system performance. Insitu bioremediation of petroleum hydrocarbon and other organic compounds.Battelle press,1997:183~188
    [160] Petersen L W, Rolston D E, Moldrup P. Volatile vapor diffusion and adsorptionin soils. J Environ. Qual.,1994,23:799~805
    [161]李韵珠,李保国,土壤溶质运移,北京:科学出版社,1998
    [162]孔丽春,张小平,活性炭纤维吸附有机废气的动态研究,沈阳农业大学学报,2006,37(4):663~665
    [163]时钧,传质学,北京:化工出版社,1988
    [164] Admason A W. Physical Chemistry of Surfaces. Interscience Pub., New York.1967
    [165] Sparks D L, Kinetics of Soil Chemical Processes. Academic Press, London,1989
    [166] Hougen O A, Marshall W R. Adsorption from fluid stream flowing through astationary granular bed. Chem. Eng. Prog.,1974,43:197~206
    [167] Peker S, Helvaci S, Ozdemir G. Interface-subphase interactions of rhamnolipidsin aqueous rhamnose solutions. Langmuir.2003,19(4):5838~5845
    [168] Jin D.Y, Jiang X, Jing X, et al. Effects of concentration, head group, andstructure of surfactants on the degradation of phenanthrene. Journal of HazardousMaterials.2007,144(1-2):215~221
    [169]胡佩,蒲万芬,胡星琪,油田污染土壤微生物治理现状及研究趋势,皮革科学与工程,2004,14(6):44~45
    [170]候钊,陈环,天津软土地基,天津:天津科学技术出版社,1987
    [171]常士骠,张苏明,工程地质手册(第三版),北京:中国建筑工业出版社,1994,928~929
    [172] Johnson P C, Stanley C C, Kemblowski M W, et al. A practical approach to thedesign, operation, and monitoring of in situ soil-venting systems, GWMR.,199010(2):159~178
    [173] McMillen S J, Newland M, In situ bioventing of a diesel fuel spill. In: In situand on-site bioremediation,4Battelle press, Columbus,297~308
    [174李铁民,马溪平,刘宏生,等,环境微生物资源原理与应用,北京:化工工业出版社,2005,102~104
    [175]徐玉林,石油污染土壤降解与土壤的环境关系,农机化研究,2004,6:86~88
    [176]陈玉成,土壤污染的生物修复,环境科学动态,1999,2:7~11
    [177] Wilkins M D, Abriola L M, Pennell K D. An experimental investigation ofrate-limited nonaqueous phase liquid volatilization in unsaturated porous media:stead state mass transfer.Water Resour.Res.,1995,31(9):2159~2172
    [178] Bouwer H, Groundwater H Mcgraw H, New York,1978:100~103
    [179] Johnson P C, Kemblowski M W, Colthart J. Quantitative analysis for thecleanup of hydrocarbon-contaminated soils by in-situ soil venting. In: GroundWater,1990,28(3):413~429
    [180] Parker J C, Lenhard R J, Kuppusamy T. A parametric model for constitutiveproperties governing multiphase flow in porous media, In: Water ResourcesResearch,1987,23:618~624

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700