用户名: 密码: 验证码:
生态沟渠水生植物对农区氮磷面源污染的拦截效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业面源污染已成为水体氮、磷的重要污染源,因此构建流域源头农业面源污染的生态沟渠控制技术体系对减少下游水体氮、磷养分负荷、改善环境质量具有重要意义。沟渠,作为农业和农村生活污水的最初汇聚地,是农业面源污染物进入河流的通道。为有效拦截氮、磷等农业面源污染,本试验以亚热带红壤小流域沟渠系统作为主要研究区域,首先对以观赏植物水生美人蕉(Canna glauca)、铜钱草(Hydrocotyle vulgaris)、黑三棱(Sparganium stoloniferum)、狐尾藻(Myriophyllum verticillatum)和灯心草(Juncus effusus)等为试验植物的生态沟渠进行研究,通过对生态沟渠水、植物与底泥中氮、磷含量的监测、植物光合特性的测定、植物收割管理以及生态沟渠不同植物区与原自然沟渠底泥的磷吸附试验等,探讨了降雨时氮、磷在生态沟渠中的迁移转化规律以及生态沟渠对农业面源污染物氮磷的拦截效应。同时,还选择该区域的另外一条沟渠,即种植梭鱼草(Pontederia cordata)的飞跃沟渠,研究了梭鱼草的最佳收割期以及比较了梭鱼草沟渠的生态拦截与自然沟渠净化的效果,分析了降雨对飞跃沟渠水体中氮、磷污染物流失的影响,以此揭示降雨条件下氮、磷的迁移转化规律。最后,研究了收割后的水生植物覆盖茶园产生的生态和经济效益,为水生植物的资源化利用提供了新的途径和思路。主要研究结论如下:
     1.生态沟渠灌溉、降雨条件下水体污染物的变化规律及季节变化规律
     (1)水体中总氮、氨态氮含量在灌溉初期或雨后第3d达到最高,磷含量在灌溉初期或雨后第2d达到最高;降雨条件下总氮、总磷在沟渠中沿程呈递减变化;(2)水体季节变化中以冬季总氮、氨态氮和磷浓度最高;(3)生态沟渠对水体总氮去除率为64%,总磷为70%。
     2.生态沟渠中水生植物吸收和拦截泥沙全年可带走的污染物量
     (1)不同水生植物全年可带走氮和磷的范围20.34~109.12g.m-2、3.41~17.95g.m-2,其中狐尾藻、水生美人蕉吸收能力最强,其收割可带走的氮、磷也最多,狐尾藻和水生美人蕉可作为沟渠中的优选水生植物物种;(2)水生美人蕉、黑三棱和灯心草因根系庞大拦截泥沙效果好,铜钱草、狐尾藻也因走茎对泥沙具有很好的拦截效果,不同植物区每年拦截泥沙量与泥沙中全氮、全磷累积量分别为86.68-106.78kg.m-2、66.94-92.78g.m-2和24.51~47.23g.m-2。
     3.生态沟渠植物光合作用与氮磷去除效果的相关关系
     (1)铜钱草和水生美人蕉叶片净光合速率日变化出现不对称的双峰型,中午均出现光合“午休”现象,但净光合速率日均值水生美人蕉>铜钱草;(2)铜钱草净光合速率受光合有效辐射和气孔导度的影响较大,而气孔导度是影响水生美人蕉净光合速率的主要影响因子;(3)两种水生植物的净光合速率与生态沟渠氮的净化效果呈显著正相关,而与磷去除率相关性不明显;(4)基于上述规律,水生植物净光合速率(Pn)可作为沟渠水体净化植物选择的重要依据之一,故水生美人蕉可作为优选植物。
     4.生态沟渠植物收割对底泥和水体中氮磷污染物的影响
     (1)收割沟渠中水生植物(黑三棱除外)使收割区底泥的总氮、总磷含量以及pH值和有机质含量均低于未收割区,且各植物收割区的底泥氮、磷削减率一般在1月份时达到最大值;5种植物区的平均总氮、总磷削减率均依次为:水生美人蕉>狐尾藻>铜钱草>灯心草>黑三棱;(2)收割水生植物(黑三棱除外)也提高了生态沟渠流经水体中氮、磷的去除率。
     5.生态沟渠底泥属性与磷的吸附能力
     (1)与原来的自然杂草沟渠相比,生态沟渠底泥理化特性具有明显的垂直分布;水生美人蕉、铜钱草和狐尾藻能迅速增加生态沟渠底泥有机碳含量;(2) Freundlich方程模拟底泥吸附等温线优于Langmiur方程,种植铜钱草和狐尾藻后的底泥磷的吸附能力方面比其他三种研究植物有较高的Kf和Smax值;同时也证明生态沟渠底泥比自然沟渠底泥有较高的磷保留能力;(3)生态沟渠拦截磷的效应优于原自然沟渠,生态沟渠能消纳水体中磷负荷,水生植物在调节沟渠底泥磷吸附能力上能发挥重要作用,该结果表明沟渠中优选植物种植更有利于磷吸附和磷沉降,对降低农业面源污染中磷流失风险有更重要意义。
     6.梭鱼草对飞跃沟渠氮磷污染物的拦截效应
     (1)梭鱼草段与无植物段都能降低沟渠水中的氮磷含量,全氮、全磷含量的降低(3.37%-33.33%)一般要高于硝态氮、氨态氮的变化(-3.66%-7.14%),梭鱼草段拦截氮磷的能力(6.82%-33.33%)明显高于无植物段的自然净化(-3.66%-6.67%);(2)降雨后,沟渠水中全氮、硝态氮含量呈先增加后降低的变化趋势,氨态氮含量变化则不稳定,全磷含量在雨后第2天含量达到最高,然后趋于平稳;(3)梭鱼草氮磷含量以及生物量季节动态变化在10月份达到最高值,可确定此时为其最佳收割期,其氮磷含量分别为28.38g.kg-1、4.10g.kg-1,生物量为0.19kg·m-2。梭鱼草收割全年可从沟渠带走氮、磷分别为5.36g.m-2、0.78g.m-2。本研究结果对开发观赏植物在沟渠修复中的应用提供理论依据。
     7.收割后的水生植物资源化利用
     收割后的水生植物不仅每年带走大量的氮磷污染物,还可将这部分养分覆盖还田,循环利用,将其覆盖茶园:(1)覆盖后,改良了土壤理化性状。覆盖与对照茶园相比明显增加了土壤表层(0~20cm)有机质、全氮、全磷、碱解氮、有效磷的含量,也增加了土壤微生物量氮、磷含量,且其土壤各养分均随深度的增加而递减;(2)覆盖后,控制了杂草优势种群,减少了杂草种类,也降低了杂草的株高、密度和生物量;(3)覆盖后,通过改善茶园的生态条件,提高了茶叶品质和产量。
The agricultural non-point pollutants have become important source of nitrogen and phosphorus in water. For the purpose of reducing nutrient loads of downstream water and improving environmental quality, so it is necessary to construct the control technology system of ecological ditch on agricultural non-point source pollutants of catchment headwaters. Ditch, as the initial convergence of agricultural and rural sewage, is always the channel of the agricultural non-point pollutants into river.In order to effectively intercept the agricultural non-point source pollutants such as nitrogen and phosphorus, this experiment choosed the subtropical red soil watershed ditch system as the main study subject. First, did the research on the ecological ditch which planted ornamental aquatic plants of Canna glauca, Hydrocotyle vulgaris, Sparganium stoloniferum. Myriophyllum verticillatum. Juncus effusus. etc. Then, discussed transportation and transformation of nitrogen and phosphorus in ecological ditches in rainfall conditions and the effects of ecological ditch on interception of agricultural non-point pollutants by the monitoring of nitrogen and phosphorus changes in water-sediment-plant system.determination of plant photosynthetic characteristics, plant harvesting management and sediment phosphorus adsorption experiment of ecological ditches of different plant area and the original natural ditch. Meanwhile, did the research on the other ditch of this this area, which are Feiyue ditch which planted Ponlederia cordata, determined the best time of Pontederia cordata to harvest and compared the effect of purification water of Pontederia cordata ditch (eco-ditch) and natural ditch through analyzing the raining influence on the nitrogen and phosphorus losing, and revealed the transportation and transformation of the nitrogen and phosphorus in the ditch in rainfall conditions. At last, did the research on the ecological benefits and economic benefits which using the aquatic plant after harvesting to cover tea garden produced. It provided ways and thought for the utilization of Aquatic plants. The main conclusions were as follows:
     1. The changes of total nitrogen, total phosphorus content of ecological ditch in irrigation or raining condition and seasonal changes
     (1)The total nitrogen, ammonium nitrogen content were at their highest in irrigation or in3d after the rainfall, and phosphorus were content at their highest in irrigation or in2d after the rainfall. The total nitrogen, total phosphorus decreased gradually at different sections after the rainfall.(2)In the water seasonal change, the highest content of total nitrogen, ammonium nitrogen and total phosphorus is in winter.(3)The removal rates of total nitrogen and total phosphorus in water of ecological ditch were64%and70%. respectively.
     2. Aquatic plants absorbing, intercepted sediment and the removal amounts of nitrogen and phosphorus the whole year in ecological ditch
     (1) Different aquatic plants could take away nitrogen and phosphorus scope20.34-109.12g.m-2、3.41~17.95g.m-2the whole year. Myriophyllum verticillatum and Canna glauca had the strongest absorbing capacity among them, especially during their harvest time, and they had been choose as the optimizing plant used in ditches.(2)Canna glauca, Sparganium stoloniferum and Juncus effusus had the strongest capacity on intercepting sediment as they have huge roots. Hydrocotyle vulgaris and Myriophyllum verticillatum also had the interception effect on sediment because of their stolon. Every year. The intercepted sediment cumulant and the cumulant of total nitrogen and total phosphorus of different plants have range of variation:86.68~106.78kg.m-2、66.94~92.78g.m-2and24.51~47.23g.m-2
     3. Correlated relationship between net photosynthetic rate and nitrogen and phosphorus removal efficiency in ecological ditch
     (1) the net photosynthetic rate of Hydrocotyle vulgaris and Canna glauca changed in a double-peak curve, both of them appears a photosynthetic "midday depressions" at noon; but the Canna glauca's net photosynthetic rate was greater than the Hydrocotyle vulgaris s.(2) stomatal conductance (Gs) and photosynthetically active radiation (PAR) were the important factors that affected the Hydrocotyle vulgaris's net photosynthetic rate, and the stomatal conductance(Gs) was the main affective factor for the Canna glauca's net photosynthetic rate.(3) Both plants' net photosynthetic rate had obviously positive correlation with ditch nitrogen's purifying effect, while had no obviously relationship with phosphorus removal rate.(4) Based on all the patterns above, the net photosynthetic rate of aquatic plants could be one of the important basis and the Canna glauca could be the best choice.
     4. The aquatic plants harvesting on affects of removal of nitrogen and phosphorus of ecological ditch sediment and water
     (1) In addition to Sparganium stoloniferum, the harvest could improve the removal rate of nitrogen and phosphorus in sediment of other aquatic plants. Compared with the non-harvested plot, the harvest could improve the removal rate of sediment total nitrogen and phosphorus in the following order:Canna glauca>Myriophyllum verticillatum> Hydrocotyle vulgaris> Juncus effusus>Sparganium stoloniferum.(2) In addition to Sparganium stoloniferum, cutting aquatic plants could improve the removal rate of TN and TP in water.
     5. The sediment physicochemical properties and phosphorus sorption capacities in ecological ditch
     (1) In compared with ditch soil in the original drainage ditch, the physicochemical properties of ditch soils from the novel constructed ditch had obvious vertical distribution; Among the five study plants, vegetation of Canna glauca, Hydrocotyle vulgaris and Myriophyllum verticillatum in the novel drainage ditch quickly increased TOC content of ditch soils.(2) The Freundlich equation modeled soil sorption isotherms was better than the Langmiur equation;P adsorption capacity in ditch soils with Hydrocotyle vulgaris and Myriophyllum verticillatum had higher KF and Smax than those with other three study plants.and ditch soils from the novel drainage ditch had higher P retention capacity than that from original drainage ditch.(3) The ecological ditch converted in agricultural area has better interception effect of the phosphorus loss than the natural ditch;The results indicated that the ditch soils vegetating with proper plants was available for further P adsorption and could be P sink, which had more significance for reducing P loss risk in agricultural headwater catchment.
     6. Interception effect of nitrogen and phosphorus of Pontederia cordata ditch in Feiyue ditch
     (1) Eco-ditch(Pontederia cordata ditch) and natural ditch could purify nitrogen and phosphorus contents of water, and reduction range (3.37%-33.33%) of total nitrogen and total phosphorus was higher than reduction range (-3.66%-7.14%) of nitrate and ammonium nitrogen, the interception capacity of eco-ditch (6.82%-33.33%) was obviously higher than natural purification of natural ditch (-3.66%-16.67%).(2) After raining the content of total nitrogen and nitrate nitrogen in ditch water had the tendency of increasing firstly and then declining, while the content of ammonium nitrogen was unstable, the content of total phosphorus reached highest values after raining the2nd, then tended to steadily.(3) Seasonal dynamics of the contents of aboveground nitrogen, phosphorus and biomass of Pontederia cordata reached highest values in October, so, it was the best time to harvest. The content of the aboveground nitrogen, phosphorus was28.38g.kg-1and4.10g.kg-1and biomass was0.19kg.m-2.The harvest of Pontederia cordata would remove5.36g.m-2of nitrogen and0.78g.m-2of phosphorus every year, the objective is to provide the theory basis for restoration application of the development ornamental plant in ditch.
     7. Resource recycling utilization of aquatic plant after harvest
     Aquatic plant after harvesting not only take a lot of nitrogen and phosphorus pollutants, but also may be this nutrient muching. recycling utilization and coverage of the tea plantation.(1) Covering Aquatic plants in the tea plantation could improve the physical and chemical properties of the soil, it obviously increased the content of the soil layer (0-20cm) organic material, total nitrogen, total phosphorus, alkali-hydro nitrogen and available phosphorus, meanwhile, increased the content of Soil microbial biomass nitrogen and phosphorus. The soil nutrient declined with the increase of the depth.(2) Covering Aquatic plants in the tea plantation could prevent the dominant species of weeds, significantly drop weed density and biomass, and reduce the competition effects between weeds and tea trees.(3) Covering Aquatic plants in the tea plantation could improve the growing and ecological conditions of tea garden and improve the quality and production of the tea.
引文
白军红,邓伟,张玉霞,等.洪泛区天然湿地土壤有机质及氮素空间分布特征[J].环境科学,2002,.23(2):77-81.
    白军红,邓伟,朱颜明,栾兆擎,张玉霞.霍林河流域湿地土壤碳氮空间分布特征及生态效应.应用生态学报,2003,14(9):1494-1498.
    白明英.农业非点源污染及控制对策研究[J].安徽农业科学,2010,38(8):4228-4230.
    鲍全盛,曹利军,王华东.密云水库非点源污染负荷评价研究[J].水资源保护,1997(1):8-11.
    陈欣,唐建军,方治国,等.高温干旱季节红壤丘陵果园杂草保持的生态作用[J].生态学杂志,2003,22(6):38-42.
    陈海生,王光华,宋仿根,等.生态沟渠对农业面源污染物的截留效应研究.江西农业学报.2010.22(7):121-124.
    陈友媛,崔香.董滨.等.3种水培观赏植物净化模拟污水的试验研究[J].水土保持学报,2011.25(2):253-257.
    成水平,况琪军,夏宜埩.香蒲、灯心草人工湿地的研究—Ⅰ.净化污水的效果[J].湖泊科学,1997.9(4):351-357.
    成小英,王国祥,濮培民,等.凤眼莲腐烂分解对湖泊水质的影响[J].中国环境科学,2004,24(3):303-306.
    范英英,刘永,郭怀成,等.基于景观生态学的湖区沟渠保护研究[J].应用生态学报,2005,16(3):481-485.
    方云英,杨肖娥,常会庆,等.利用水生植物原位修复污染水体[J].应用生态学报,2008,19(2):407-412.
    付贵萍,朱闻博,李朝方,等.深圳观澜河清湖段生态修复工程研究[J].中国农村水利水电,2008,(5):58-61.
    付为国,李萍萍,卞新民,等.镇江北固山湿地芦苇光合日变化研究[J].西北植物学报.2006.26(3):496-501.
    高辉远,李卫军,徐江,等.北疆平原荒漠不同生长型芦苇光合作用与呼吸作用日变化的研究[J].中国草地.1995(5):53-59.
    郭鸿鹏,朱静雅,杨印生,等.农业非点源污染防治技术的研究现状及进展[J].农业工程 学报,2008,24(4):290-295.
    郭天财,王之杰,王永华.不同穗型小麦品种旗叶光合作用日变化的研究[J].西北植物学报,2002,22(3):554-560.
    郭晓云,杨允菲,李建东.松嫩平原不同旱地生境芦苇的光合特性[J].草业学报,,2003,12(3):16-21.
    国家环境保护总局.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社,2002.
    贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制[J].环境科学,1998,19(5):87-92.
    胡宏祥,朱小红,黄界颍,等.关于沟渠生态拦截氮磷的研究[J].水土保持学报,2010,24(2):141-145.
    胡绵好,奥岩松,杨肖娥,等.不同N水平的富营养化水体中经济植物净化能力比较研究[J].水土保持学报,2007.21(2):147-150.
    胡秋香,赵永军.任丽君,等.潜流型菖蒲人工湿地不同C/N对污染物的去除效率[J].生态学杂志,2010.29(3):473-478.
    黄道友,王克林,陈桂秋.等.红壤丘陵集水区集约经营的水土资源动态与土地持续生产力研究[J].中国农业科学,2004,37(1):92-98.
    黄娟,王世和,雒维国,等.人工湿地污水处理系统植物光合作用特性的研究[J].安全与环境工程,2006,13(2):55-57.
    黄娟,王世和,雒维国,等.植物光合特性及其对湿地DO分布、净化效果的影响[J].环境科学学报,2006.26(11):1829-1832.
    姜翠玲,范晓秋,章亦兵.非点源污染物在沟渠湿地中的累积和植物吸收净化[J].应用生态学报,2005,16(7):1351-1354.
    姜翠玲,章亦兵,范晓秋.沟渠湿地水体和底泥中有机质时空分布规律研究[J].河海大学学报(自然科学版),2004,32(6):618-621.
    姜翠玲,崔广柏,范晓秋,等.沟渠湿地对农业非点源污染物的净化能力研究[J].环境科学,2004,25(2):125-128.
    姜翠玲,范晓秋,章亦兵等.农田沟渠挺水植物对N、P的吸收及二次污染防治[J].中国环境科学.2004.24(6):702-706.
    姜翠玲.沟渠湿地对农业非点源污染物的截留和去除效应[D].南京:河海大学,2004.
    蒋跃平,葛滢,岳春雷,等.人工湿地植物对观赏水中氮磷去除的贡献[J].生态学报,2004,24(8):1720-1725.
    金洁,杨京平.从水环境角度探析农田氮素流失及控制对策[J].应用生态学报,2005,16(3):579-582.
    金卫红,付融冰,顾国维.人工湿地中植物生长特性及其对TN和TP的吸收[J].环境科学研究,2007,20(3):75-80.
    金相灿,刘鸿亮.中国湖泊富营养化[M].北京:中国环境科学出版社,1992.
    金相灿,卢少勇,胡小贞,等.入湖河流对受纳湖湾水质的影响[J].环境科学研究,2007,20(4):52-56.
    金鑫.农业非点源污染模型研究进展及发展方向[J].山西水利科技,2005(1):15-17.
    雷泽湘.太湖大型水生植被及其环境效应研究[D].广东:暨南大学,2006.
    李敏,韦鹤平,王光谦,等.长江口、杭州湾水域沉积物对磷吸附行为的研究[1J].海洋学报,2004.26(1):132-136.
    李芳柏,吴启堂.无土栽培美人蕉等植物处理生活废水的研究[J].应用生态学报,1997,8(1):88-92.
    历恩华.大型水生植物在浅水湖泊生态系统营养循环中的作用[D].武汉:中国科学院武汉植物园,2006.
    梁威,吴振斌,詹发萃,等.人工湿地植物根区微生物与净化效果的季节变化[.J].湖泊科学,2004,16(4):132-137.
    梁笑琼,李怀正,程云.沟渠在控制农业面源污染中的作用[J].水土保持应用技术,2011,(7):21-24.
    林金成,强胜.空心莲子草对南京春季杂草群落组成和物种多样性的影响[J].植物生态学报,2006,30(4):585-592.
    刘纪辉,赖格英.农业非点源污染研究进展[J].水资源与水工程学报,,2007,18(1).29-32.
    刘文祥.人工湿地在农业面源污染控制中的应用研究[J].环境科学研究,1997,10(4):15-19.
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    罗专溪,朱波,唐家良,汪涛,张剑,王振华.自然沟渠控制村镇降雨径流中氮磷污染的主要作用机制[J].环境科学学报,2009,29(3):561-568.
    雒维国,王世和,黄娟,等.植物光合及蒸腾特性对湿地脱氮效果的影响[J].中国环境科学,2006,26(1):30-33.
    马永生,张淑英,邓兰萍.氮、磷在农田沟渠湿地系统中的迁移转化机理及其模型研究进展[J].甘肃科技,2005,21(2):106-107.
    缪绅裕,陈桂珠,黄玉山,谭凤仪.人工污水中的磷在模拟秋茄湿地系统中的分配与循环[J].生态学报,1999,(02).
    倪九派等.缓冲带在农业非点源污染防治中的应用.环境污染与防治,2002,24(4):229-231
    裴昕,郭智,李建勇,等.刈割对龙葵生长和富集镉的影响及其机理[J].上海交通大学学报(农业科学版),2007,25(2):125-130.
    彭晚霞,宋同清,肖润林,等.亚热带丘陵区稻草覆盖对茶园土壤环境、茶叶品质改良及产量的影响[J].中国生态农业学报,2007,15(4):60-63.
    彭晚霞,宋同清,邹冬生,等.覆盖与间作对亚热带丘陵茶园生态的综合调控效果[J].中国农业科学,2008,41(8):2370-2378.
    全为民,严力蛟.农业面源污染对水体富营养化的影响及其防治措施[J].生态学报,2002,22(3):291-299.
    沈裕琥,黄相国,王海庆.秸秆覆盖的农田效应[J].干旱地区农业研究,1998,16(1):45-50.
    苏培玺,杜明武,张立新,等.日光温室草莓光合特性及对CO2浓度升高的响应[J].园艺学报,2002,29(5):423-426.
    孙璞.农村水塘对地块氮、磷流失的截留作用[J].水资源保护,1998,(1):1-4,12.
    汤显强,黄岁樑.人工湿地去污机理及国内外应用现状[J].水处理技术,2007,33(2):9-13.
    王栋,孔繁翔,刘爱菊,等.生态疏浚对太湖五里湖湖区生态环境的影响[J].湖泊科学,2005,17(3):263-268.
    王静,程积民,万惠娥,方锋,等.黄土高原芨芨草叶片蒸腾作用和光合作用的初步研究[J],草业学报,2003,12(6):47-52.
    王强,杨京平,陈俊.非完全淹水条件下稻田表面水体中三氮的动态变化特征研究[J].应用生态学报,2004,15(7):1182-1186.
    王岩,王建国,李伟,等.三种类型农田排水沟渠氮磷拦截效果比较[J].土壤,2009,41(6):902-906.
    王岩,王建国,李伟,等.生态沟渠对农田排水中氮磷的去除机理初探[J].生态与农村环境学报,2010,26(6):586-590.
    王云跃,黄学文.农业排水沟渠水质影响因素分析及管理对策[J].水土保持应用技术,2009,4:35-36.
    吴金水.城郊环境保育农业理论与实践[M].北京:科学出版社,2011.
    吴瑞云.欧美杨杂交种“中嘉8”净光合速率与若干生态因子的相关分析[J].亚热带植物科学,2007,36(4):16-19.
    郗敏,吕宪国,刘红玉.人工沟渠的生态环境效应研究综述[J].生态学杂志,2005,24(12):1471-1476.
    夏立忠,杨林章.太湖流域非点源污染研究与控制[J].长江流域资源与环境.2003,12(1):45-49.
    项学敏,宋春霞,李彦生,等.湿地植物芦苇和香蒲根际微生物生物特性研究[J].环境保护科学,2004,124(30):35-38.
    肖润林,彭晚霞,宋同清,等.稻草覆盖对红壤丘陵茶园的生态调控效应[J].生态学杂志,2006,25(5):507-511.
    肖润林,王久荣,汤宇,等.长江流域丘陵茶园生态问题研究[J].农业环境科学学报,2005,24(3):585-589.
    肖润林,向佐湘,徐华勤,等.间种白三叶草和稻草覆盖控制丘陵茶园杂草效果[J].农业工程学报,2008,24(11):183-187.
    谢红梅,朱波.农业生态系统中N素在土水界面的迁移转化研究进展[J].中国生态农业学报,2004,12(4):122-125.
    徐红灯,王京刚,席北斗,等.降雨径流时农田沟渠水体中氮、磷迁移转化规律研究[J].环境污染与防治,2007,29(1):20-21.
    徐红灯,席北斗,王京刚,蔡洋.水生植物对农田排水沟渠中氮、磷的截留效应[J].环境科学研究,2007,20(2):84-88.
    徐红灯,席北斗,翟丽华.沟渠沉积物对农田排水中氨氮的截留效应研究[J].农业环境科学学报,2007,26(5):1924-1928.
    徐红灯.农田排水沟渠对流失氮、磷的截留和去除效应[D].北京:北京化工大学硕士学位论文,2007,1-71.
    徐华勤,肖润林,宋同清,等.稻草覆盖与间作三叶草对丘陵茶园土壤微生物群落功能的影响[J].生物多样性,,2008,16(2):166-174.
    徐亚同.pH值、温度对反硝化的影响[J].中国环境科学,1994,14(4):308-313.
    薛峰,颜廷梅,乔俊,等.太湖地区稻田减量施肥的环境效益和经济效益分析[J].生态与农村环境学报,2009,25(4):26-31,51.
    杨林章,周小平,王建国,等.用于农田非点源污染控制的生态拦截型沟渠系统及其效果[J].生态学杂志.2005,24(11):1371-1374.
    易文利,王圣瑞,杨苏文,等.有机质腐解对穗花狐尾藻生长及生理的影响[J].中国环境科学,2011,31(10):1718-1724.
    殷小锋,胡正义,周立祥,等.滇池北岸城郊农田生态沟渠构建及净化效果研究[J].安徽农业科学,2008,36(22):9676-9679.
    尹澄清.用生态工程技术控制农村非点源水污染[J].应用生态学报,2002,13(2):229-232.
    袁东海,任全进,高士祥,等.几种湿地植物净化生活污水COD、总氮效果比较[J].应用生态学报,2004,15(12):2337-2341.
    曾林慧,李松,徐国勋,等.无土栽培植物对农村生活污水的净化特性研究[J].环境科学与技术,2009,32(8):48-52.
    翟丽华,刘鸿亮,席北斗,等.沟渠系统氮、磷输出特征研究[J].环境科学研究,2008,21(2):35-39.
    张凤娥,张雪,刘义.新型植物对河道受污染水体中TN、TP去除效果的研究[J].中国农村水利水电,2010,(6):56-58.
    张荣社,李广贺,周琪,等.潜流湿地中植物对脱氮除磷效果的影响中试研究[J].环境科学,2005,26(5):83-86.
    张树楠,肖润林.余红兵.等.水生植物刈割对生态沟渠中氮、磷拦截的影响[J].中国生态农业学报.2012,20(8):1066-1071.
    张维理,冀宏杰.Kolbe H,等.中国农业面源污染形式估计及控制对策Ⅱ:欧美国家农业面源污染状况及控制[J].中国农业科学,2004.37(7):1018-1025.
    张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策Ⅰ:21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008-1017.
    张维理,徐爱国,冀宏杰,等.中国农业面源污染形势估计及控制对策Ⅲ.中国农业面源污染控制中存在问题分析[J中国农业科学.2004.,37(7):1026-1033.
    张鑫,史奕,赵天宏,等.我国农业非点源污染研究现状及控制措施[J].安徽农业科学.2006,34(20):5303-5305.
    张志剑,董亮,朱萌湄.水稻田面水氮素的动态特征、模式表征及排水流失研究[J].环境科学学报.2001,21(4):475-480.
    郑涛,程环珍,黄衍初,等.非点源污染控制研究进展[J].环境保护,2005(2):31-34.
    郑一,王学军.非点源污染研究的进展与展望[J].水科学进展,2002,13(1):105-110.
    周俊、朱祖.合肥近郊旱地十几壤径流养分流失途径的研究[J].应用生态学报.2001,12[3):391-394.
    周小平.河网区稻田流失氮磷的植物生态拦截技术研究[D].南京:中国科学院南京土壤研究所,2005:64-77.
    周晓红.王国祥.杨飞.等.收割对生态浮床植物黑麦草光合作用及其对氮磷等净化效果的影响[J].环境科学2008,29(12):3393-3399.
    朱铁群.我国水环境农业非点源污染防治研究简述[J].农村生态环境.2000,16(3):55-57.
    朱兆良David Norse,孙波.中国农业面源污染控制对策[M].北京:中国环境科学出版社.2006.
    Bao Q H.Progress in the research in aquatic environmental nonpoint source pollution in China [J] Journal of Enviromental Sciences,1997(3):329-336.
    Berry JA,DowtonW J S.Environmental regulation of photosynthesis[J].Govind J ed Photosythesis.1982, Ⅱ:263.
    Boers P C M. Nutrient emissions from agriculture in the nether-lands, causes and remedies[J]. Water Science and Technology,1996,33 (4/5):183-189.
    Bouldin J.L.J.L. Farris.M.T. Moore and C. M. Cooper,2004. Vegetative and structural characteristics of agricultural drainages in the Mississippi Delta landscapes. Environmental Pollution.132:403-411.
    Braskerud B C Factors affeeting Phosphorus retention in small constructed wetlands treating agricultural non-Point source pollution.Eeological Engineering,2002, 19:41-61.
    Brix H. Do macrophytes play a role in constructed treatment wetlands?. Water Science& Technology,1997,35(5):11-17.
    Calheiros C S,Duque A F,Moura A.et al. Changes in the bacterial community structure in two-stage constructed wetlands with different plants for industrial wastewater treatment[J]. Bioresource Technology,2009.100:3228-3235.
    Cardina J. Crop roration and tillage system effects on weed seedbanks[J]. Weed Science.2002.50:448-460.
    Chescheir G M.Skaggs R W.Gilliam J W. Evaluation of wetland buffer areas for treatment of pumped agricultural drainage water[J]. Transactions of the Asae,1992,35(1): 175-182.
    Chichester F W.Sediment and nutrient loss from clay soils asaffected by tillage[J].Environ Qual,1995(21):587-590.
    Cooper P F and Findlater B C.Constructed wetlands in waterpollution control [M].Perganmon Press.1990:77-96.
    Daniel T C,Sharpley A N.Lemunyon J L. Agricultural phosphorus and eutrophication:A symposium overview. Journal of Environment Quality,1998,27(1):251-257.
    David L R Dodd and Derek H Bone. Nitrate reduction by denitrifying bacteria insingle and two stage continuous flow reactors [J]. Water Res.1975.9:323-328.
    David V C.Peter J S. Spatial and temporal variations of water quality in drainage ditches within vegetable farms and citrus groves[J]. Agricultural Water Management,2004,65: 39-57.
    Derrick Y F,Kin C L. Phosphorus sorption by sediments in a subtropical constructed wetland receiving stormwater runoff [J]. Ecological Engineering,2009,35(5): 735-743.
    Donahoe R J,Liu Chongxuan. Pore water geochemistry near thesediment water interface of a zoned,freshwater wet land in thes outheastern United States [J]. Environment Geology,1998,33 (2-3):143-153.
    Dunne E J.Culleton N.Donovan G,et al. Phosphorus retention and sorption by constructed wetland soils in Southeast Ireland[J]. Water Research,2005,39(18):4355-4362.
    Eileen C.Mackay D S. Effects of distribution-based parameter aggregation on a spatially distributed agricultural non-point source pollution mode [J].Journal of Hydrology,2004,(295):211-224.
    Eriksson P G and Weisner S E B.Nitrogen removal in a wastewater reservoir:The importance of denitrification by epiphytic biofillms on submersed vegetation[J]. Environ.Qual.,1997,26:905-910.
    Froelich P. Kinetic control of dissolved phosphate in natural rivers and estuaries:a primer on the phosphate buffer mechanism[J]. Limnology and Oceanography,1988.33(4): 649-668.
    Gill S L,Spurlock F C,Goh K S. Vegetated ditches as a management practice in irrigated alfalfa[J]. Environmental Monitoring and Assessment,2008,144:261-267
    Hai-yong Xia and Kairong Wang.2009. Effects of soil organic matter on characteristics of phosphorus adsorption and desorption in calcareous yellow fluvo-aquic soil and lime concretion black soil. Plant Nutrition and Fertilizer Science,15(6):1303-1310 (in Chinese)
    Hans Brix. Do macrophytes play a role in constructed treatment wetlands[J]. Wat. Sci. Tech.,1997,35(5):11-17.
    Howard W C. Cycling and retention of nitrogen and phosphorus in wetlands:a theoretical and applied perspective[J]. Freshwater Biology,1985,15:393-398.
    Johannes Laber.Constructed wetland system for storm water treated[J].Environ. Sci. Health,2000,35(8),1279-1288.
    Jorgenson S E,Nielsen S N.Application of ecological engineering principles in agriculture[J].Eco]ogica Engineering,1996,7:373-381.
    Kroger R,Holland M M,Moore M T. Agricultural drainage ditches mitigate phosphorus loads as a function of hydrological variability[J]. Journal of Environmental Quality,2008,37:107-113.
    Kronvang B,Grsboll P,Larsen S E,et al. Diffuse nutrient lossesin denmark[J].Water Science and Technology,1996,33 (4/5):81-88.
    Lai,D.Y. and K.C. Lam,2009. Phosphorus sorption by sediments in a subtropical constructed wetland receiving storm water run off[J]. Ecological Engineering.35: 735-743.
    Luo Z X,Zhu B,Tang J L,et al. Phosphorus retention capacity of agricultural headwater ditch sediments under alkaline condition in purple soils area,China[J].Ecological Engineering,2009,35(1):57-64.
    Madsen.J.D.,P.A. Chambers,W.F. James,E.W. Koch and D.F. Westlake.2001.The interaction between water movement,sediment dynamics and submersed macrophytes. Hydrobiologia,444:71-84.
    Meyer J. The role of sediments and bryophytes in phosphorus dynamics in a headwater stream ecosystem[J]. Limenology and Oceanography.1979.24(2):365-375.
    Mosley M P.Subsurface flow velocities through selected forest soil [J].South Island New Zealand. J Hydro,1982,55:65-92.
    Moustafa M Z. Analysis of phosphorus retention in free-water surface treatment wetlands [J]. Hydrobiology,1999.392:41-53.
    Needeman.B.A.,P.J.A. Kleinman,J.S. Strock and A.L. Allen.2007. Improved management of agricultural drainage ditches for water quality protection:An overview[J]. Journal of Soil and Water Conservation,62:171-178.
    Nguyen.L. and J. Sukias,2002. Phosphorus fractions and retention in drainage ditch sediments receiving surface runoff and subsurface drainage from agricultural catchments in the North Island.New Zealand[J]. Agriculture Ecosystems & Environment.92:49-69.
    Olli G,Darracq A.Destouni G. Field study of phosphorous transport and retention in drainage reaches[J]. Journal of Hydrology,2009.365(1-2):46-55.
    Paresh L.Bill F. Relationships between aquatic plants and environmental factors along a steep Himalayan altitudinal gradient [J]. Aquatic Botany.2006.84:3-16.
    Reddy K R. Fate of nitrogen and phosphorus in wastewater retention reservoir containing aquatic macrophytes[J]. Journal of Environmental Quality,1983,12(1):137-141.
    Ryan E C,Taylor M D.Stephen J K. Mechanisms of nutrient attenuation in a subsurface flow riparian wetland[J]. Journal of environmental quality.2001,30(5):1732.
    Senzia M A,Mashauri D A.Mayo A W.Suitability of constructed wetlands and waste stabilization ponds in wastewater treatment:nitrogen transformation and removal [J].Physics and Chemistry of the Earth.2003.28:1117-1124.
    Smith D R.Haggard B E,Warnemuende E A.et al. Sediment phosphorus dynamics for three tile fed drainage ditches in Northeast Indiana[J]. Agricultural Water Management. 2005,71(1):19-32.
    Tanner C C.Su Kias J P S,U Psdell M P. Relationships between loading rates and pollutant removal during maturation of gravel-bed constructed wetland [J]. J. Environ. Qual.,1998.27:448-458.
    Vaughan R E,Needelman B A,Kleinman P J,et al. Vertical distribution of phosphorus in agricultural drainage ditch soils[J] Journal of Environmental Quality,2007,36(6): 1895-1903.
    Wang Q.Cui Y,Dong Y.Phytoremediation of polluted waters potentials and prospects of wetland plants[J].Acta Biotech-nologica.2002.22(1/2):199-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700