用户名: 密码: 验证码:
耐旱野生大豆MicroRNA的鉴定与表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小RNA(MicroRNA,miRNA)在转录后基因沉默过程中扮演重要角色,它可以介导具有同源序列的靶基因miRNA裂解或抑制其翻译。野生大豆(Glycine soja)是栽培大豆改良的重要遗传资源,对其开展miRNA的鉴定与功能研究,将进一步促进野生大豆资源在栽培大豆育种中的利用。本研究利用小分子RNA文库串联测序、Solexa高通量测序等技术,对抗旱野生大豆资源S101中的小分子RNA进行分离、鉴定,从中获得与抗旱相关的miRNA;结合靶基因裂解位点验证实验,通过构建miRNA表达载体、转化拟南芥,对miRNA的功能进行初步研究。
     本研究在野生大豆miRNA的分离、鉴定与功能分析等方面获得了大量重要信息,进一步拓宽了对植物miRNA的理解和认识。详细研究结果如下:
     1、小分子RNA文库串联测序数据分析
     通过构建小分子RNA文库并串联测序,共获得2,880条小分子RNA序列,序列分布图显示19~24 nt的序列为1,347条(1,022条单一序列),占46.8%;21nt小分子RNA表达丰度最高,占334条(223条单一序列)。
     ①与已知miRNA(miRBase_mature, Release 11.0)同源比对发现,有15条小RNA序列与植物已知miRNA一致或同源(≤2bp mismatches),其中14条序列与栽培大豆miRNA同源。它们分别隶属于8个保守家族:miR156、miR159、miR160、miR167、miR168、miR171、miR319和miR396。除了miR171家族以外,其他7个保守家族均已在大豆中报道;
     ②与栽培大豆EST数据库分析发现, 15个保守miRNA候选者中有9个可以在27条大豆EST序列中找到完全匹配的位点,其中gso-miR167对应的两条前体序列与大豆已知miR167前体序列不同,但能形成特征性的发卡环结构,说明miR167可能有两个新的候选者及其前体;
     ③在预测分析新miRNA的过程中发现,442条候选小RNA序列中有74条可以在407条大豆EST序列中找到完全匹配的位点,其中9条小RNA序列(8个家族)对应的22条EST序列具备miRNA前体特征;
     ④预测发现的15个保守miRNA和9个新miRNA候选者的长度均在20-22nt之间,多数5’端为尿嘧啶,符合miRNA的典型特征。
     2、小分子RNA文库高通量测序数据分析
     新一代测序技术为miRNA的分离、鉴定提供了高效的分析平台。利用Solexa高通量序列测定仪,分析了野生大豆小分子RNA文库,共获得高质量序列3,161,992条(1,282,308条单一序列)。
     ①与大豆基因组序列信息分析表明,12,734条小RNA对应的基因组序列能通过mFold和mirCheck检测,具备miRNA的特征性的发卡环结构,由此可见miRNA群体的复杂程度。经过进一步的复杂分析和严格筛选,共得到141个保守的miRNA和171个新miRNA;
     ②171个新miRNA中,53个新miRNA共预测到206个靶基因,其功能涉及到植物生长发育和环境响应的各个方面;
     ③分析结果还发现许多值得深入研究的现象。例如:在植物中普遍存在的miR159和miR319前体中发现了串联miRNA的现象、某些保守miRNA星号链的大量存在、大豆miRNA前体的正负链匹配等。
     3、miRNA功能的初步分析
     对小分子RNA文库串联测序获得的8个保守和8个新的miRNA家族进行了Nothern杂交、靶基因预测、转化拟南芥等初步的功能分析。
     ①Nothern杂交验证表明,8个保守和8个新的miRNA家族在野生大豆正常生长和干旱胁迫情况下都有表达,但表达丰度各异。其中,4个保守miRNA和3个新miRNA在干旱胁迫前后表现为不同程度的丰度变化。miR160、miR167、miR319、miR396和gso-miR2在干旱胁迫后明显下调表达;gso-miR1和gso-miR6干旱胁迫后上调表达。针对8个新发现的miRNA家族的组织特异性分析表明,所有miRNA在正常生长的野生大豆的根、茎、叶中的表达丰度均各有特点。多数表现为高度的组织特异性表达,并且倾向于在根中相对高丰度表达。
     ②靶基因预测分析发现,7个新的miRNA家族对应的32个靶基因多数为功能上已注释的抗病或抗性蛋白。靶基因裂解位点验证实验表明,其中gso-miR7对应的功能未知基因TC233731和gso-miR8对应的TC225607(R 9蛋白)的裂解位点与预测一致。
     ③通过构建miRNA表达载体、转化拟南芥,对gso-miR5、gso-miR6、gso-miR7和gso-miR8进行了miRNA功能的初步研究,发现gso-miR8对应的T1代植株表现出早开花的突变表型。
Small RNA (MicroRNA, miRNA) plays important roles in post-transcriptional gene silence bydirecting target mRNAcleavage or translational inhibition. Wild soybean (Glycine soja) is considered tobe the most important gene sources for genetic modification of domesticated soybean. Identification andfunctional analysis of miRNAin the Glycine soja will further promote the utilization of genetic resoursesfor soybean breeding. This study used two approaches to separate and identify miRNAin accession S101of drought-resistant wild soybean: concatenating cDNA fragments for sequencing and high throughputsequencing. Combining with examinations of putative miRNA-directed cleavage products, constructingartifical pre-miRNAs and transformation of Arabidopsis thaliana, we performed preliminary functionalresearch for novel miRNAs.
     This study obtained important information from separation and identification of miRNAin Glycinesoja, and broadened the current understanding and awareness of plant miRNAs. The detailed results areas follws:
     1.Data analysis of small RNAlibraryfrom concatenation forsequencing
     Through constructing a small RNA library and sequencing after concatenation, we obtained 2,880high quality small RNAsequences. The distribution map indicated that 1,347 (1,022 Unique) were 19-24nt in length, which composing 46.8%. The most abundant class was 21 nt, which contained 334sequences (223 unique).
     ①Comparing these small RNAs with the mature miRBase (release 11.0) by BLASTN, we found15 conserved miRNAs homologs (≤2bp mismatches), in which 14 were conserved with domesticatedsoybean. The 15 conserved miRNA candidates can compose 8 families: miR156, miR159, miR160,miR167, miR168, miR171, miR319 and miR396. Except miR171, all these conserved families had beenpreviouslypredicted in domesticated soybean.
     ②Analysed combining the domesticated soybean EST database, 9 of the 15 homologs could findperfectly matched hits on 27 ESTs. 17 ESTs were consistent with the reported soybean miRNAprecursors except 10 ESTs (corresponding to miR167 homolog), which had been classified as novel twoputative gso-miR167 precursors after secondarystructure analysis.
     ③For novel miRNAprediction, 74 small RNAin 442 candidates could find perfect matching hitsin 407 soybean EST sequences. As a result, 22 ESTs corresponding to 9 small RNAs (8 families) wereidentified with characteristic hairpin structures, which were deemed as novel miRNAcandidates.
     ④All these miRNA candidates (15 conserved and 9 novel) were 20~22 nt in length and most oftheir 5’terminal nucleotides were uridine, which was consistent with the miRNAcharacteristic.
     2.Data analysis of small RNAlibraryfrom high throughput sequencing
     The next-generation sequencing technology (Solexa) afforded an effective approach foridentification of miRNAs. Using the Solexa sequencing technology, we constructed a small RNAlibraryand obtained 3,161,992 high quality reads (1,282,308 Unique).
     ①Combining the recent soybean genome database (Glyma1), bioinformatics analyses indicated that 12,734 miRNAcandidates passed RNAfold and MIRcheck evaluation, which shown the complexityof miRNA groups. Finally, 141 conserved miRNAs comprising 34 families and 171 novel miRNAscomprising 100 families were identified in wild soybean after strict screening and manual conformed.
     ②Among 171 novel miRNA candidates, 206 putative target genes with various functions werepredicted for 53 miRNAs, which were involved in varied aspects of environmental responses anddevelopmental processes in plants.
     ③Additionally, based on the high through-put advantage, some interesting phenomena wereobserved from further analysis. Such as: tandem patterns of miRNA in miR159 and miR319 precursors,some miRNA* accumulation, and querying the qualification of some gam-miRNAs which seemed to begenerated fromdouble strands.
     3. Preliminary functional analysis of miRNAs
     We performed preliminary functional analysis of 8 conserved and 8 novel miRNAfamilies obtainedfrom small RNA library. Such as, Nothern blot、target prediction and transformation of Arabidopsisthaliana.
     ①Northern blot analysis indicated that all the 8 conserved and 8 novel miRNA families weredetectable in wild soybean seedlings under normal or drought stressed conditions. Among them, fourconserved and three novel miRNAs displayed different abundance in respond to drought stress. miR160、miR167、miR319、miR396 and gso-miR2 were down-regulated, while gso-miR1 and gso-miR6 wereup-regulated. Aiming at the 8 novel miRNA families, Northern blot analysis were also performed in inroots, stems and leaves of wild soybean. Most of them were inclined to express in roots and exhibitedhigh tissue-specific expression, which suggested that the miRNAs’biogenesis and functions might bevaried in different organs.
     ②Target prediction found 32 genes as putative targets for 7 novel miRNAs. Except that part ofthese targets was not annotated, most of them were resistant proteins. We examined the presence ofputative miRNA-directed cleavage products by 5’-RACE experiments. Two of these potential targetswere validated, TC233731 for gso-miR7 and TC225607 for gso-miR8. Targets of gso-miR8 were afamilyof resistant proteins in whichTC225607 coding for an R 9 protein.
     ③Through constructing miRNAexpression vector and transformation of Arabidopsis thaliana, thepreliminary functional research (gso-miR5、gso-miR6、gso-miR7 and gso-miR8) indicated that mosttransgenic plantlets of gso-miR8 exhibited earlyflowering mutant phenotype.
引文
1. Adai A, Johnson C, Mlotshwa S, et al.. Computational prediction of miRNAs in Arabidopsisthaliana. Genome Res, 2005, 15: 78-91.
    2. Aharoni A, Dixit S, Jetter R, et al.. The SHINE clade of AP2 domain transcription factors activateswax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed inArabidopsis. Plant Cell, 2004, 16: 2463-2480.
    3. Aida M, Ishida T, Fukaki H, et al.. Genes involved in organ separation in Arabidopsis: an analysisof the cup-shaped cotyledon mutant. Plant Cell, 1997, 9: 841-857.
    4. Allen E, Xie Z, Gustafson A M, et al.. Evolution of microRNA genes by inverted duplication oftarget gene sequences in Arabidopsis thaliana. Nat Genet, 2004, 36: 1282-1290.
    5. AmbrosV. miRNAs : tinyregulators with great potential. Cell, 2001, 107 (7): 823-826.
    6. Arazi T, Talmor-Neiman M, Stav R, et al.. Cloning and characterization of microRNAs from moss.Plant J, 2005, 43: 837-848.
    7. Arteaga-Vazquez M, Caballero-Perez J, Vielle-Calzada J P. A family of microRNAs present inplants and animals. Plant Cell, 2006, 18: 3355-3369.
    8. Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a microRNAanditsAPETALA2-like target genes. PlantCell, 2003, 15: 2730-2741.
    9. Aung K, Lin S I, Wu C C, et al.. pho2, a phosphate overaccumulator, is caused by a non-sensemutation in a microRNA399 target gene. PlantPhysiol, 2006, 141(3): 1000-1011.
    10. Axtell M J, Bartel D P. Antiquity of microRNAs and their targets in land plants. Plant Cell, 2005,17: 1658-1673.
    11. Baek D, Villen J, Shin C, et al.. The impact of microRNAs on protein output. Nature, 2008, 455:64-71.
    12. Baker C C, Sieber P, Wellmer F, et al.. The early extra petals1 mutant uncovers a role formicroRNAmiR164c in regulating petal number inArabidopsis. Curr Biol, 2005, 15: 303-315.
    13. Bao N, Lye K W, Barton M K. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAsare required for methylation of the template chromosome. Dev Cell, 2004, 7: 653-662.
    14. Bari R, Pant B D, Stitt M, et al.. PHO2, microRNA399, and PHR1 define a phosphate-signalingpathway in plants. Plant Physiol, 2006, 141(3): 988-999.
    15. Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116: 281-297.
    16. Bartels D, Sunkar R. Drought and salt tolerance in plants. Crit Rev Plant Sci, 2005, 24:23-58.
    17. Bass B L. Double-stranded RNAas a template for gene silencing. Cell , 2000, 101: 235-238.
    18. Batistic O, Kudla J. Integration and channeling of calcium signaling through the CBL calciumsensor/CIPKprotein kinase network. Planta, 2004, 219: 915-924.
    19. Baumberger N, Baulcombe D C. Arabidopsis Argonaute1 is an RNASlicer that selectively recruitsmicroRNAs and short interfering RNAs. Proc NatlAcad Sci, 2005, 102:11928-11933.
    20. Bazzini AA, Hopp H E, Beachy R N, et al.. Infection and coaccumulation of tobacco mosaic virusproteins alter microRNA levels, correlating with symptom and plant development. Proc Natl AcadSci USA, 2007, 104(29): 12157-12162.
    21. Beitzinger M, Peters L, Zhu J Y, et al. Identification of human microRNA targets from isolatedargonaute protein complexes. RNABiol, 2007, 4(2): 76-84
    22. Bernstein E, Caudy A A , Hammond S M, et al.. Role for a bidentate ribonuclease in the initiationstep of RNAinterference. Nature, 2001, 409: 363-366.
    23. Bieza K, Lois R. An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutivelyelevated accumulation of flavonoids and other phenolics. Plant Physiol, 2001, 126(3): 1105-1115.
    24. Bollman K M, Aukerman M J, Park M Y, et al.. HASTY, the Arabidopsis ortholog ofexportin5/MSN5, regulates phase change and morphogenesis. Development, 2003, 130: 1493-1504.
    25. Bonnet E, Wuyts J, Rouze P, et al.. Detection of 91 potential conserved plant microRNAs inArabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci, 2004,101: 11511-11516.
    26. Borsani O, Zhu J, Verslues P E, et al.. Endogenous siRNAs derived from a pair of naturalcis-antisense transcripts regulate salt tolerance inArabidopsis. Cell, 2005, 123: 1279-1291.
    27. Boutet S, Vazquez F, Liu J, et al.. Arabidopsis HEN1, A genetic link between endogenous miRNAcontrolling development and siRNA controlling transgene silencing and virus resistance. Curr Biol2003, 13: 843-848.
    28. Bowler C, Slooten L, Vandenbranden S, et al.. Manganese superoxide diamutase can reduce cellulardamage mediated byoxygen radicals in transgenic plants. EMBO J, 1991, 10(7): 1723-1732.
    29. Carrington J C, Ambros V. Role of microRNAs in plant and animal development. Science, 2003,301: 336-338.
    30. Chapman E J, Prokhnevsky A T, Gopinath K, et al.. Viral RNA silencing suppressors inhibit themicroRNApathwayat an intermediate step. Genes Dev, 2004, 18:1179-1186.
    31. Chen C C, Simard M J, Tabara H, et al.. A member of the polymerase beta nucleotidyltransferasesuperfamily is required for RNAinterference in C. elegans. Curr Biol, 2005a, 15: 378-383.
    32. Chen X, Liu J, Cheng Y, et al.. HEN1 functions pleiotropicallyin Arabidopsis development andactsin C function in the flower. Development, 2002, 129: 1085-1094.
    33. Chen X. A microRNA as a translational represser of APETALA2 in Arabidopsis flowerdevelopment. Science, 2004, 303: 2022-2025.
    34. Chen X. MicroRNAbiogenesis and function in plants. FEBS Lett., 2005b, 579: 5923-5931.
    35. Cheong YH, Kim K N, Pandey G K, et al.. CBL1, a calcium sensor that differentially regulates salt,drought, and cold responses inArabidopsis. PlantCell, 2003, 15: 1833-1845.
    36. Chiou T J, Aung K, Lin S I, et al.. Regulation of phosphate homeostasis by microRNA inArabidopsis. Plant Cell, 2006, 18(2): 412-421.
    37. Cogoni C, Romano N, Macino G. Suppression of gene expression by homologous transgenes.Antonie Van Leeuwenhoek, 1994, 65(3): 205-209.
    38. Cominelli E, Galbiati M, Vavasseur A, et al.. A guard-cell-specific MYB transcription factorregulates stomatal movements and plant drought tolerance. Curr Biol, 2005, 15: 1196-1200.
    39. Dezulian T, Palatnik J F, Huson D, et al.. Conservation and divergence of microRNA families inplants. Genome Biol, 2005, 6: P13.
    40. Dunoyer P, Lecellier C H, Parizotto E A, et al.. Probing the microRNA and small interfering RNApathways with virus-encoded suppressors of RNAsilencing. PlantCell, 2004, 16: 1235-1250.
    41. Easow G, Teleman AA, Cohen S M. Isolation of microRNAtargets by miRNP immunopurification.RNA, 2007, 13(8): 1198-1204.
    42. Ebhardt H A, Thi E P, Wang M B, et al.. Extensive 3’modification of plant small RNAs ismodulated by helper component-proteinase expression. Proc Natl Acad Sci, 2005, 102:13398-13403.
    43. Emery J F, Floyd S K, Alvarez J, et al.. Radial patterning of Arabidopsis shoots by class III HD-ZIPand KANADI genes. Curr. Biol, 2003, 13: 1768-1774.
    44. Fagard M, Boutet S, Morel J B, et al.. AGO1, QDE22, and RDE21 are related proteins required forpost-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals.Proc Natl Acad Sci USA, 2000, 97(21): 11650-11654.
    45. Fahlgren N, Howell M D, Kasschau K D, et al.. High-throughput sequencing of ArabidopsismicroRNAs: evidence for frequent birth and death of MIRNAgenes. PLoS ONE, 2007, 2: e219.
    46. Fire A, Xu S, Montgomery M K, et al.. Potent and specific genetic interference by double-strandedRNAin Caenorhabditis elegans . Nature, 1998, 391: 806.
    47. Floyd S K, and Bowman J L. Ancient microRNA regulation of gene expression in land plants.Nature, 2004, 428: 485-486.
    48. Fujii H, Chiou T J, Lin S I, et al.. A miRNA involved in phosphate-starvation response inArabidopsis. Curr Biol, 2005, 15(22): 2038-2043.
    49. Fujita Y, Fujita M, Satoh R, et al.. AREB1 is a transcription activator of novel ABRE-dependentABA-signaling that enhances drought stress tolerance in Arabidopsis, Plant Cell, 2005, 17:3470-3488.
    50. Furihata T, Maruyama K, Fujita Y, et al.. Abscisic acid-dependent multisite phosphorylationregulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA, 2006, 103:1988-1993.
    51. Gandikota M, Birkenbihl R P, Hohmann S, et al.. The miRNA156/157 recognition element in the 3’UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition inseedlings. Plant J, 2007, 49:683-693.
    52. Gong D, Zhang C, Chen X, et al.. Constitutive activation and transgenic evaluation of the functionof anArabidopsis PKS protein kinase. J Biol Chem, 2002, 277: 42088-42096.
    53. Goyal K, Walton L J, Tunnacliffe A. LEA proteins prevent protein aggregation due to water stress.Biochem J, 2005, 388: 151-157.
    54. Gregory R I, Yan K P, Amuthan G, et al.. The Microprocessor complex mediates the genesis ofmicroRNAs. Nature, 2004, 432(7014): 235-240.
    55. Grigg S P, Canales C, Hay A, et al.. SERRATE coordinates shoot meristem function and leaf axialpatterning inArabidopsis. Nature, 2005, 437: 1022-1026.
    56. Guo H S, Xie Q, Fei J F, et al.. MicroRNAdirects mRNAcleavage of the transcription factor NAC1to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell, 2005, 17:1376-1386.
    57. Guo S, and Kempheus K J. Par-1, a gene required for establishing polarity in C. elegans embryos,encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 1995, 81: 611-620.
    58. Haake V, Cook D, Riechmann J L, et al.. Tanscription factor CBF4 is a regulation of droughtadaptation inArabidopsis. Plant Physiol, 2002, 130: 639-648.
    59. Han M H, Goud S, Song L, et al.. The Arabidopsis double-stranded RNA-binding protein HYL1plays a role in microRNA-mediated gene regulation. Proc NatlAcad Sci, 2004, 101:1093-1098.
    60. HerrAJ.Pathways through the small RNAworld of plants. FEBS Lett, 2005, 579: 5879-5888.
    61. Hiraguri A, Itoh R, Kondo N, et al.. Specific interactions between Dicer-like proteins andHYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. Plant Mol Biol, 2005, 57:173-188.
    62. Hiratsu K, Matsui K, Koyama T, et al.. Dominant repression of target genes by chimeric repressorsthat include the EAR motif, a repression domain, inArabidopsis. Plant J, 2003, 34: 733-739.
    63. Hiratsu K, Mitsuda N, Matsui K, et al.. Identification of the minimal repression domain ofSUPERMAN shows that the DLELRL hexapeptide is both necessary and sufficient for repressionof transcription inArabidopsis. Biochem Biophy Res Commun, 2004, 321: 172-178.
    64. Huang J, Wang J F, Zhang H S. Structure and function of plant C2H2-type zinc finger protein.Hereditas (Beijing), 2004, 26(3): 414-418.
    65. Hutvagner G, Zamore P D. A microRNA in a multiple-turnover RNAi enzyme complex. Science,2002, 297(5589): 2056-2060.
    66. Hwang H W, Wentzel E A, Mendell J T. A hexanucleotide element directs microRNA nuclearimport. Science, 2007, 315:97-100.
    67. Hymowitz T, Singh R J. Taxonomy and Speciation. In: Wilcox RJ. Soybeans: Improvement,Production, and Uses. (2nd ed.)AgronomyMonograph, 1987, 16:23-48.
    68. Ibrahim F, Rohr J, Jeong W J, et al.. Untemplated oligoadenylation promotes degradation ofRISC-cleaved transcripts. Science, 2006, 314: 1893.
    69. JackT. Molecular and genetic mechanisms of floral control. Plant Cell, 2004, 16: S1-S17.
    70. Jacobsen S E, Running M, Meyerowitz E M. Disruption of an RNA helicase/RNAse III gene inArabidopsis causes unregulated Cell division in floral meristems. Development, 1999, 126:5231-5243.
    71. Jaglo-Ottosen K R, Gilmour S J, Zarka D G, et al.. Arabidopsis CBF1 Over expression lnducesCOR genes and enhances freezing tolerance. Science, 1998, 280: 104-106.
    72. Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets,including a stress-induced miRNA. Mol Cell, 2004, 14:787-799.
    73. Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu.Rev. Plant Biol, 2006, 57: 19-53.
    74. Jover G, Candela H, Ponce M R. Plant microRNAs and development. Int J Dev Biol, 2005, 49:733-744.
    75. Kagaya Y, Hobo T, Murata M, et al.. Abscisic acidinduced transcription is mediated byphosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell, 2002, 14:3177-3189.
    76. Kasschau KD, Fahlgren N, Chapman E J, et al.. Genomewide profiling and analysis of ArabidopsissiRNAs. PLoS Biol, 2007, 5:e57.
    77. Kasuga M, Liu Q, Miura S, et al.. Improving plant drought, salt, and freezing tolerance by genetransfer of a single stress-inducible transcription factor. Nat Biotechnol, 1999, 17: 287-291.
    78. Katiyar-Agarwal S, Gao S, Vivian-Smith A, et al.. Anovel class of bacteria-induced small RNAs inArabidopsis. Genes Dev, 2007, 21(23): 3123-3134.
    79. Katiyar-Agarwal S, Morgan R, Dahlbeck D, et al.. A pathogen-inducible endogenous siRNA inplant immunity. Proc NatlAcad Sci, 2006, 103: 18002-18007.
    80. Khvorova A, Reynolds A, Jayasena S D. Functional siRNAs and miRNAs exhibit strand bias. Cell,2003, 115: 209-216.
    81. Kim S H, Hong J K, Lee S C, et al.. CAZFP1, Cys2/His2-type zinc-finger transcription factorfunctions as a pathogen-induced early-defense gene in Capsicum annuum. Plant Mol Biol, 2004, 55:883-904.
    82. Kim V N. MicroRNAbiogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol, 2005, 6:376-385.
    83. Kloosterman W P, Wienholds E, Brujin E D, et al. Insitu detection ofmiRNAs in animal embryosusing LNA-modified oligonucleotide probs. Nature Methods, 2006, 3: 27-29.
    84. Kobayashi Y, Yamamoto S, Minami H, et al.. Differential activation of the rice sucrosenonfermenting 1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell,2004, 16: 1163-1177.
    85. Kurihara Y, Takashi Y, Watanabe Y. The interaction between DCL1 and HYL1 is important forefficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA, 2006, 12:206-212.
    86. Kurihara Y, Watanabe Y. Arabidopsis microRNA biogenesis through Dicer-like1 protein functions.Proc Natl Acad Sci, 2004, 101: 12753-12758.
    87. Lagos-Quintana M, et al.. Identification of novel genes coding for small expressed RNAs. Science,2001, 294: 853-858.
    88. Lakatos L, Csorba T, Pantaleo V, et al.. Small RNAbinding is a common strategy to suppress RNAsilencing byseveral viral suppressors. EMBO J, 2006, 25: 2768-2780.
    89. Lau N C, et al.. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditiselegans. Science, 2001, 294:858-862.
    90. Laufs P, Peaucelle A, Morin H, et al.. MicroRNA regulation of the CUC genes is required forboundarysize regulation control inArabidopsis meristems. Development, 2004, 131: 4311-4322.
    91. Lauter N, Kampania, Carlson S, et al.. microRNA172 down-regulates glossy15 to promotevegetative phase change in maize. Proc NatlAcad SciUSA, 2005, 102: 9412-9417.
    92. Leave C, Xie Z, Kasschau K D, et al.. Cleavage of Scarecrowlike mRNAtargets directed by a classofArabidopsis miRNA. Science, 2002, 297: 2053-2056.
    93. Lecellier CH,VoinnetO. RNAsilencing: no mercyfor viruses? Immunol Rev, 2004, 198: 285-303.
    94. Lee R C, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science, 2001,294: 862-864.
    95. Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAswith antisense complementarity to lin-14. Cell, 1993, 75:843-854.
    96. Lee Y, Ahn C, Han J, et al.. The nuclear RNaseⅢDrosha initiates microRNAprocessing. Nature,2003, 425: 415-419.
    97. Lee Y, Kim M, Han J. MicroRNA genes are transcribed by RNA polymeraseⅡ. EMBO J, 2004,23(20): 4051-4060.
    98. Li J, Yang Z, Yu B, et al.. Methylation protects miRNAs and siRNAs from a 3’-end uridylationactivity inArabidopsis. Curr Biol, 2005, 15: 1501-1507.
    99. Lim L P, Lau N C, Garrett-Engele P, et al. Microarray analysis shows that some microRNAsdownregulate large numbers of target mRNAs. Nature, 2005, 433:769-773.
    100.Lingel A, Simon B, Izaurralde E, et al.. Structure and nucleic-acid binding of the DrosophilaArgonaute 2 PAZ domain. Nature, 2003, 426(6965): 465-469.
    101.Liu B, Li P, Li X, et al.. Loss of function of OsDCL1 affects microRNA accumulation and causesdevelopmental defects in rice. Plant Physiol, 2005, 139: 296-305.
    102.Liu J, Carmell M A, Rivas F V, et al.. Argonaute2 is the catalytic engine of mammalian RNAi.Science, 2004, 305: 1437-1441.
    103.Liu Q, Fu H, Sun F, et al. miR-16 family induces cell cycle arrest by regulating multiple cell cyclegenes. NucleicAcids Res, 2008, 36(16): 5391-5404.
    104.Liu Q, Kasuga M, Sakuma Y, et al.. Two transcription factors, DREB1 and DREB2, with anEREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low- temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10:1391-1406.
    105.Llave C, Kasschau K D, Rector M A, et al.. Endogenous and silencing-associated small RNAs inplants. Plant Cell, 2002a, 14(7): 1605-1619.
    106.Llave C, Xie Z, Kasschau K D, et al.. Cleavage of Scarecrow-like mRNAtargets directed by a classofArabidopsis miRNA. Science, 2002b, 297: 2053-2056.
    107.Lobbes D, Rallapalli G, Schmidt D D, et al.. SERRATE: a new player on the plant microRNAscene.EMBO Rep, 2006, 7: 1052-1058.
    108.Lu S, Sun Y H, Shi R, et al.. Novel and mechanical stress-responsive MicroRNAs in Populustrichocarpa that are absent fromArabidopsis. Plant Cell, 2005, 17: 2186-2203.
    109.Lund E, Guttinger S, Calado A, et al.. Nuclear export of microRNA precursors. Science, 2004,303(5654): 95-98.
    110.Ma J B, Ye K, Patel D J. Structural basis for overhang-specific small interfering RNA recognitionbythe PAZ domain. Nature, 2004, 429: 318-322.
    111.Maher C, Stein L, Ware D. Evolution of Arabidopsis microRNAfamilies through duplication events.Genome Res, 2006, 16: 510-519.
    112.Mallory A C., Bartel D P, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXINRESPONSE FACTOR17 is essential for proper development and modulates expression of earlyauxin response genes. PlantCell, 2005, 17: 1360-1375.
    113.Mallory A C, Dugas D V, Bartel, D P, et al.. MicroRNA regulation of NAC-domain targets isrequired for proper formation and separation of adjacent embryonic, vegetative, and floral organs.Curr Biol, 2004, 14: 1035-1046.
    114.Matranga C, Tomari Y, Shin C, et al.. Passenger-strand cleavage facilitates assembly of siRNAintoAgo2-containing RNAi enzyme complexes. Cell, 2005, 123: 607-620.
    115.McElver J, Tzafrir I, Aux G, et al.. Insertional mutagenesis of genes required for seed developmentin Arabidopsis thaliana. Genetics, 2001, 159: 1751-1763.
    116.Megraw M, Baev V, Rusinov V, et al.. MicroRNApromoter element discovery in Arabidopsis. RNA,2006, 12: 1612-1619.
    117.Millar A A, Waterhouse P M. Plant and animal microRNAs: similarities and differences. FunctIntegr Genomics, 2005a, 5: 129-135.
    118.Millar A A and Gubler F. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, aremicroRNA-regulated genes that redundantly facilitate anther development. Plant Cell, 2005b, 17:705-721.
    119.Mittler R, Vanderauwera S, GolleryM, et al.. Reactive oxygen gene network of plants. Trends PlantSci, 2004, 9(10): 490-498.
    120.Mizoguch I T, Lch imura K, Shinozaki K. Environmental stress response in plants: the role ofmitogen activated protein kinase. Trends Biotechn, 1997, 15(1): 15-19.
    121.Molnar A, Schwach F, Studholme D J, et al.. miRNAs control gene expression in the single-cellalga Chlamydomonas reinhardtii. Nature, 2007, 447: 1126-1129.
    122.Monks D E, Aghoram K, Courtney P D, et al.. Hyperosmotic stress induces the rapidphosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation ofthe protein kinases SPK1 and SPK2. PlantCell, 2001, 13: 1205-1219.
    123.Motamedi M R, Verdel A, Colmenares S U, et al.. Two RNAi complexes, RITS and RDRC,physically interact and localize to noncoding centromeric RNAs. Cell, 2004, 119: 789-802.
    124.Nakagami H, Pitzschke A, Hirt H. Emerging MAPkinase pathways in plant stress signaling. TrendsPlant Sci, 2005, 10: 339-346.
    125.Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into letuniaresults in reversible co-suppression of homologous genes in trans. Plant Cell, 1990, 2: 279-289.
    126.Nath U, Crawford B C, Carpenter R, et al.. Genetic control of surface curvature. Science, 2003, 299:1404-1407.
    127.Navarro L, Dunoyer P, Jay F, et al.. A plant miRNA contributes to antibacterial resistance byrepressing auxin signaling. Science, 2006, 312(5772): 436-439.
    128.Nelson P T, Baldwin D A, Scearce L M, et al.. Microarray-based, high-throughput gene expressionprofiling of microRNAs. Nature Methods, 2004, 1: 1-7.
    129.Padmanabhan C, Ramachandran V, Fauquet C M. MicroRNA- binding viral protein interferes withArabidopsis development. Proc NatlAcad SciUSA, 2005, 102(29): 10381-10386.
    130.Palatnik J F, Allen E, Wu X, et al.. Control of leaf morphogenesis by microRNAs. Nature, 2003,425: 257-263.
    131.Papp I, Mette M F, Aufsatz W, et al.. Evidence for nuclear processing of plant microRNAand shortinterefering RNAprecursors. Plant Physiol, 2003, 132: 1382-1390.
    132.Park M Y, Wu G, Gonzalez-Sulser A, et al.. Nuclear processing and export of microRNAs inArabidopsis. Proc NatlAcad Sci, 2005, 102: 3691-3696.
    133.Park W, Li J, Song R, et al.. CARPELFACTORY, a Dicer homolog, and HEN1, a novel protein, actin microRNAmetabolismin Arabidopsis thaliana. Curr Biol, 2002, 12: 1484-1495.
    134.Parker J S, Roe S M, Barford D. Structural insights into mRNA recognition from a PIWIdomain-siRNAguide complex. Nature, 2005, 434: 663-666.
    135.Paul N D, Gwynn-Jones D. Ecological roles of solar UV radiation: towards an integrated approach.Trends Ecol Evol, 2003, 18(1): 48-55.
    136.Peragine A, Yoshikawa M, Wu G, et al.. SGS3 and SGS2/SDE1/RDR6 are required for juveniledevelopment and the production of trans-acting siRNAs in Arabidopsis. Genes Dev, 2004, 18:2368-2379.
    137.Qi Y, Denli A M, Hannon G J. Biochemical specialization within Arabidopsis RNA silencingpathways. Mol Cell, 2005, 19: 421-428.
    138.Qi Y, He X, Wang X J, et al.. Distinct catalytic and non-catalytic roles of Argonaute4 inRNA-directed DNAmethylation. Nature, 2006, 443: 1008-1012.
    139.Rajagopalan R, Vaucheret H, Trejo J, et al.. Adiverse and evolutionarily fluid set of microRNAs inArabidopsis thaliana. Genes Dev, 2006, 20: 3407-3425.
    140.Ramachandra-Reddy A, Chaitanya K V, Vivekanandan M. Drought-induced responses ofphotosynthesis and antioxidant metabolismin higher plants. Plant Physiol, 2004, 161: 1189-1202.
    141.Reinhart B J, Slack F A, Basson M, et al.. The 21 nucleotide let-7 RNA regulates developmentaltiming in Caenorhabditis elegans. Nature, 2000, 403(6772): 901-906.
    142.Reinhart B J, Weinstein E G, Rhoades M W, et al.. MicroRNAs in plants. Genes Dev, 2002, 16:1616-1626.
    143.Rhoades M W, Reinhart B J, Lim L P, et al.. Prediction of plant microRNA targets. Cell, 2002,110(4): 513-520.
    144.Ru P, Xu L, Ma H, et al.. Plant fertility defects induced by the enhanced expression ofmicroRNA167, Cell Res, 2006, 16: 457-465.
    145.Sakamoto H, Maruyama K, Sakuma Y, et al.. Arabidopsis Cys2/His2-type zinc-finger proteinsfunction as transcription repressors under drought, cold and high-salinity stress conditions. PlantPhysiol, 2004, 136: 2734?-2746.
    146.Sakuma Y, Maruyama K, Osakabe Y, et al.. Functional analysis of an Arabidopsis transcriptionfactor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 2006, 18(5):1292-1309.
    147.Schmid M, Uhlenhaut NH, Godard F, et al.. Dissection of floral induction pathways using globalexpression analysis. Development, 2003, 130: 6001-6012.
    148.Schwab R, Palatnik J F, Riester M, et al.. Specific effects of microRNAs on the plant transcriptome.Dev Cell, 2005, 8: 517-527.
    149.Schwarz D S, Hutvagner G, Du T, et al.. Asymmetry in the assembly of the RNAi enzyme complex.Cell, 2003, 115: 199-208.
    150.Selbach M, Schwanh?usser B, Thierfelder N, et al.. Widespread changes in protein synthesisinduced bymicroRNAs. Nature, 2008, 455(7209): 58-63.
    151.Shen B, Goodman H M. Uridine addition after microRNA-directed cleavage. Science, 2004, 306:997.
    152.Sieber P, Wellmer F, Gheyselinck J, et al.. Redundancy and specialization among plant microRNAs:role of the MIR164 family in developmental robustness. Development, 2007, 134: 1051-1060.
    153.Song J J, Smith S K, Hannon G J, et al.. Crystal structure of Argonaute and its implications forRISC slicer activity. Science, 2004, 305: 1434-1437.
    154.Souret F F, Kastenmayer J P, Green PJ. AtXRN4 degrades mRNAin Arabidopsis and its substratesinclude selected miRNAtargets. Mol Cell, 2004, 15: 173-183.
    155.Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNAregulatory element that stimulates transcription in response to low temperature and water deficit.Proc Natl Acad Sci USA, 1997, 94: 1035-1040.
    156.Sugano S, Kaminaka H, Rybka Z, et al.. Stress-responsive zinc finger gene ZPT2-3 plays a role indrought tolerance in petunia. Plant J, 2003, 36: 83?0-841.
    157.Sunkar R, Chinnusamy V, Zhu J H, et al.. Small RNAs as big players in plant abiotic stressresponses and nutrient deprivation. Trends Plant Sci, 2007, 12(7): 301-309.
    158.Sunkar R, Girke T, Jain P K, et al.. Cloning and characterization of microRNAs from rice. PlantCell, 2005, 17: 1397-1411.
    159.Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutasegenes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stresstolerance. PlantCell, 2006, 18(8): 2051-2065.
    160.Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs fromArabidopsis.Plant Cell, 2004, 16: 2001-2019.
    161.Takada S, Hibara K, Ishida T, et al.. The CUP-SHAPED COTYLEDON1 gene of Arabidopsisregulates shoot apical meristemformation. Development, 2001, 128: 1127-1135.
    162.Tang G, Reinhart B J, Bartel D P, et al.. A biochemical framework for RNA silencing in plants.Genes Dev, 2003, 17: 49-63.
    163.Umezawa T, Fujita M, Fujita Y, et al.. Engineering drought tolerance in plants: discovering andtailoring genes to unlock the future. Curr Opin Biotechnol, 2006a, 17: 113-122.
    164.Umezawa T, Okamoto M, Kushiro T, et al.. CYP707A3, a major ABA 80-hydroxylase involved indehydration and rehydration response in Arabidopsis thaliana. Plant J, 2006b, 46: 171-182.
    165.Umezawa T, Yoshida R, Maruyama K, et al.. SRK2C, a SNF1-related protein kinase 2, improvesdrought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. ProcNatl Acad Sci USA, 2004, 101: 17306-17311.
    166.Vaucheret H, Vazquez F, Crete P, et al.. The action of Argonaute1 in the miRNA pathway and itsregulation by the miRNA pathway are crucial for plant development. Genes Dev, 2004, 18:1187-1197.
    167.Vazquez F, Vaucheret H, Rajagopalan R, et al.. Endogenous trans-acting siRNAs regulate theaccumulation ofArabidopsis mRNAs. Mol Cell, 2004, 16: 69-79.
    168.Voinnet O. Induction and suppression of RNA silencing: insights from viral infections. Nat RevGenet, 2005, 6: 206-220.
    169.Vroemen C W, Mordhorst A P, Albrecht C, et al.. The CUP-SHAPED COTYLEDON3 gene isrequired for boundary and shoot meristem formation in Arabidopsis. Plant Cell, 2003, 15:1563-1577.
    170.Waditee R, Bhuiyan M N, Rai V, et al.. Genes for direct methylation of glycine provide high levelsof glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl AcadSci USA, 2005, 102: 1318-1323.
    171.Wang H, Ach R A, Curry B. Direct and sensitive miRNAprofiling from low-input total RNA. RNA,2007, 13: 151-159.
    172.Wang L, Wang M B, Tu J X, et al.. Cloning and characterization of microRNAs from Brassicanapus. FEBS Lett, 2007, 581: 3848-3856.
    173.Wang X J, Reyes J L, Chua N H, et al.. Prediction and identification of Arabidopsis thalianamicroRNAs and their mRNAtargets. Genome Biol, 2004, 5: R65.
    174.Wang Y, Ying J, Kuzma M, et al.. Molecular tailoring of farnesylation for plant drought toleranceand yield protection. Plant J, 2005, 43: 413-424.
    175.Williams L, Grigg S P, Xie M, et al.. Regulation of Arabidopsis shoot apical meristem and lateralorgan formation by microRNA miR166g and its AtHD-ZIP target genes. Development, 2005, 132:3657-3668.
    176.Wise M J. LEAping to conclusions: a computational reanalysis of late embryogenesis abundantproteins and their possible roles. BMC Bioinformatics, 2003, 4: 52.
    177.Wu F, Yu L, Cao W, et al.. The N-terminal double-stranded RNA binding domains of ArabidopsisHYPONASTIC LEAVES1 are sufficenit for pre-microRNA processing. Plant Cell, 2007, 19:914-925.
    178.Xie Z, Johansen L K, Gustafson A M, et al.. Genetic and functional diversification of small RNApathways in plants. PLoS Biol, 2004, 2: E104.
    179.Xie Z, Kasschau K D, Carrington J C. Negative feedback regulation of Dicer-Like1 in ArabidopsisbymicroRNA-guided mRNAdegradation. Curr Biol, 2003, 13: 784-789.
    180.Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell,2002, (Suppl.): S165-S183.
    181.Yamaguchi S K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved inresponsivenessto drought, low-temperature or high-salt stress. Plant Cell, 1994, 6: 251-264.
    182.Yamisaki H, Abdel-Ghany S E, Cohu C M, et al.. Regulation of copper homeostasis by microRNAinArabidopsis. J Biol Chem, 2007, 282(22): 16369-16378.
    183.Yang J H, Han S J, Yoon E K, et al.. Evidence of an auxin signal pathway,microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells, NucleicAcids Res, 2006a, 34(6): 1892-1899.
    184.Yang L, Liu Z, Lu F, et al.. SERRATE is a novel nuclear regulator in primary microRNAprocessinginArabidopsis. Plant J, 2006b, 47: 841-850.
    185.Yang Z, Ebright Y W, Yu B, et al.. HEN1 recognizes 21-24 nt small RNA duplexes and deposits amethyl group onto the 2’OH of the 3’terminal nucleotide. NucleicAcids Res, 2006c, 34: 667-675.
    186.Yao YY, Guo G G, Ni ZY, et al.. Cloning and characterization of microRNAs fromwheat (Triticumaestivum L.). Genome Biol, 2007, 8:R96.
    187.Yoshida R, Umezawa T, Mizoguchi T, et al.. The regulatory domain of SRK2E/OST1/SnRK2.6interacts with ABI1 and integrates ABA and osmotic stress signals controlling stomatal closure inArabidopsis. J BiolChem, 2006, 281(8): 5310-5318.
    188.Yoshikawa M, Peragine A, Park M Y, et al.. Apathway for the biogenesis of transacting siRNAs inArabidopsis. Genes Dev, 2005, 19: 2164-2175.
    189.Yu B, Chapman E J, Yang Z, et al.. Transgenically expressed viral RNA silencing suppressorsinterfere with microRNAmethylation inArabidopsis. FEBS Lett, 2006, 580: 3117-3120.
    190.Yu B, Yang Z, Li J, et al.. Methylation as a crucial step in plant microRNA biogenesis. Science,2005a, 307: 932-935.
    191.Yu I, Yu X, Shen R, et al.. HYL1 gene maintains venation and polarity of leaves. Planta, 2005b,221: 231-242.
    192.Zhang J Z. Overexpression analysis of plant transcription factors. Curr Opin Plant Biol, 2003, 6:430-440.
    193.Zhang X, Yuan Y R, Pei Y, et al.. Cucumber mosaic virus-encoded 2b suppressor inhibitsArabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev, 2006, 20:3255-3268.
    194.Zhang Y. miRU: an automated plant miRNA target prediction server. Nucleic Acids Res, 2005, 33:W701-704.
    195.Zhao B, Liang R, Ge L, et al. Identification of drought-induced microRNAs in rice. BiochemBiophys Res Commun, 2007a, 354(2): 585-590.
    196.Zhao T, Li G, Mi S, et al.. A complex system of small RNAs in the unicellular green algaChlamydomonas reinhardtii. Genes Dev, 2007b, 21: 1190-1203.
    197.Zhou X F, Wang G D, Zhang WX. UV-B responsive microRNAgenes in Arabidopsis thaliana. MolSyst Biol, 2007, 3(103): 1-10.
    198.Zilberman D, Cao X, Jacobsen S E. Argonaute4 control of locus-specific siRNA accumulation andDNAand histone methylation. Science, 2003, 299: 716-719.
    199.Zimmermann P, Hirsch-Hoffmann M, Hennig L, et al.. GENEVESTIGATOR: ArabidopsisMicroarrayDatabase andAnalysis Toolbox. Plant Physiol, 2004, 136: 2621-2632.
    200.Zdobnov E M, Apweiler R. InterProScan--an integration platform for the signature-recognitionmethods in InterPro. Bioinformatics, 2001, 17:847-848.
    201.杨庆凯.目前大豆生产面临的挑战及对策.大豆通报, 1999, 6: 7-8.
    202.李建兵.认清我国大豆产业形势,提升大豆产业竞争力.中国食物与营养, 2008, 11:4-6.
    203.庾莉萍.价格“失控”为我国大豆产业安全敲响警钟.饲料博览, 2008, 10: 6-10.
    204.赵爱玲.大豆产业告急!.中国对外贸易, 2008, 10: 64-66.
    205.李福山.大豆起源及其演化研究.大豆科学, 1994, 13: 61-66.
    206.庄炳昌.中国野生大豆研究二十年.吉林农业科学,1999, 24: 3-4.
    207.王克晶,李福山.我国野生大豆(G.soja)种质资源及其种质创新利用.中国农业科技导报, 2000,2: 69-72。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700