用户名: 密码: 验证码:
数字化岩芯扫描仪关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国地质事业得到了长足发展,尤其是新技术新方法的应用推动了地质科研的进步。据调查,我国每年有上百万米的钻孔任务,产生大量岩芯,这些岩芯在编录后存入岩芯库房,利用率很低,造成大量的资源浪费。为了对岩芯进行分析和解决岩芯保存问题,对岩芯进行数字化扫描,将岩芯图像、岩芯光谱和元素含量等矿物数据和参数存储在计算机里,建成标准岩芯数据库,使用者可随时访问数据库进行地质信息分析,为地质研究和地质找矿提供便捷的方法。
     数字化岩芯扫描仪由自动样品控制台模块、图像采集模块、光谱采集模块、元素信息采集模块、软件模块、结构工艺模块等组成。自动样品台实现三维定点,样品自动对焦和自动传送;图像采集利用高清相机,采集岩芯的图像信息,并实现图像无缝拼接;光谱采集模块实现矿物的光谱信息在线采集;元素信息采集模块实现元素的在线检测;软件模块分为底层控制软件和数据处理软件,实现矿物信息提取,矿物数据反演、定性和定量分析等。本文研究所完成的工作如下:
     (1)宽谱段光纤光谱仪子系统的光学设计。通过对光谱测量方法的讨论和比较,确定了基于反射模式进行光谱测量的方法,合理地选择了光源;通过光纤将漫反射光导入单色器,设计了光锥与光纤的接口;光路采用水平对称光路,全息平面光栅作为分光元件,通过理论计算得到光栅每毫米刻线为177条,通过理论计算和仿真合理地设计了光路,并实现900nm处分辨率优于5nm,在2500nm处分辨率达到了6nm;考虑到目前单个CCD器件不能覆盖400~2500nm宽谱段,采用多块响应在不同波段的CCD器件,提出利用三个CCD传感器拼接成400nm-2500nm波长范围的宽谱段光谱测量方法;为了减少像平面拼接时的能量损失,将光谱面分为三个光谱区域:400~900nm、900~1700nm、1700~2500nm,采用了全反射光学拼接方式,将三个波段的反射光反射到分别布置在三个面上的CCD探测器,缩小了体积。
     (2)宽谱段光纤光谱仪子系统的电子学设计。根据不同的谱段合理地选择了CCD探测器,即探测器S3924-512Q探测波长范围400~900nm谱段,探测器G9214-512S探测波长范围900~1700nm谱段,探测器G9208-256W探测波长范围1700~2500nm谱段;采用CPLD设计了三个CCD的驱动电路;根据设计指标要求,设计了以AD9243为核心的ADC电路,通过合理布线和接地,采样值在8196~8199范围内时波动范围在±1.5位以内;由于图像的数据量庞大,设计了USB2.0的通讯系统,USB2.0通讯系统是以CY7C68013单片机为核心,进行了固件、驱动和应用程序接口的编程。最后对宽谱段光纤光谱仪子系统进行了测试。
     (3)通过对X射线光源和X射线探测器的分析和探讨,荧光仪子系统采用了微型X射线管MAGNUM,电制冷的Si-PIN探测器XR-100CR实现元素的定性和半定量测量;由于信号的动态范围大,同时为了实现放大器线性补偿的需要,设计了增益调节范围应为20到1000倍的宽带放大器,放大器采用低噪声JFET管,差动式结构输入,采用新型压控放大器AD603实现增益调节,通过合理的布线和补偿,放大器的增益实现20~1000连续可调、带宽优于5MHz、线性良好;设计了以AD9224模数转换器为核心的高速ADC电路,采样速率达到20Mbps。
     (4)X射线荧光仪子系统的高压电源设计。设计了采用VMOS功率场效应管作为开关元件,采用它激式高效逆变器,后级采用倍压整流,输出40KV、50 uA的高压电源;采用有源功率因数校正技术,将输入电流校正成为与输入电压同相位且不失真的正弦波,从而使功率因数接近1,提高了电源的效率;反馈补偿采用复合补偿方式,同时采用PID算法,达到高稳定电压输出。
     (5)X射线荧光仪子系统的多道脉冲幅度分析器设计。采用自顶向下的全新的设计思路,采用高速FPGA器件实现多道脉冲幅度分析器的设计,实现了脉冲成形、基线恢复、修正补偿等全数字化设计;设计了数字比较器、数字滞回比较器,采用多级缓存的流水模式实现脉冲幅度的提取;采用拉格朗日插值实现脉冲峰值的拟合,提高了能量分辨率。
     在研究和解决以上问题时,本文所提出的创新点如下:
     (1)本文提出采用光、机、电一体化技术,结合岩芯特点,对岩芯图像、矿物光谱信息和元素含量进行在线检测并数字化的全新设计思路。首次实现了将小荧光分析技术与岩芯扫描相结合,实现岩芯扫描的自动化。成功研制了我国第一台集图像采集、光谱采集、元素含量分析的全数字化岩芯扫描仪样机。
     (2)采用一套光路和三个探测器立体拼接实现波长范围为400nm-2500nm的宽谱段测量,这一谱段涵盖了可见光到近红外波长。由于采用一套光路、光纤传输及全反射光路设计,避免了透镜能量消耗,测量代表性强。特别是短波近红外能量损失较小,提高了整个波段的信噪比。
     (3)多道脉冲幅度分析实现全数字化设计,免除了在模拟信号阶段对脉冲的成形、基线恢复、死时间修正等的处理。脉冲幅度检测采用了二次插值方法,使在相同的ADC采样速率下提高了能量的分辨率,脉冲幅度分析全部由FPGA来实现,满足了高计数率测量要求。由于FPGA实现了对脉冲的实时处理,避免了由于脉冲速率波动对测量所带来的影响,提高了荧光仪的分析精度。
     在本文的研究成果基础上,成功试制出我国第一台集图像采集、光谱分析及元素信息采集于一体的数字化岩芯扫描仪样机。利用该岩芯扫描仪针对紫金山矿区钻孔ZK801的岩芯和德兴铜矿钻孔1902的岩芯进行实际扫描测试,重点分析了光谱仪子系统和X荧光仪子系统的应用情况,绘制了典型矿物的光谱曲线,建立了典型矿物的成矿模型。实测结果表明,数字化岩芯扫描仪在地质找矿和岩芯数字化管理领域具有较好的应用前景。
In recent years, geological industry has obtained rapid development in our country. Especially, the application of new technology and new methods promote the improvement of geological research. According to the survey, china has millions of meters task of drilling and products lots of core, which are stocked in the core ware house when they have complied, but the utilization is low, leading to lots of waste of resource. To solve the problem of analyzing and saving the core, a standard core database which contains the information of the core image, the core spectrum,the element content and is provides method for the geological study and prove and analyze the geological information established. The user can visit the databases anytime for searching studying work.
     The digital core scanners consist of the components such as automatic sample, the control module, the image acquisition module, the spectral collecting module the elements of information collection module etc. Automatic sample machine realizes the location in three dimensions automatically to find the sample's focus and transmit sample. The module of Image collection is designed to gather the image information of the core by using High Definition Camera and to realize the seamless link of images. The module of spectrum collection gains spectrum information of the mineral online.Software module contains two parts-the bottom controlling software and the data processing software, which competing the task of extracting the mineral's information, mineral inversion qualitative and quantitative analysis.
     (1) The optical part design of wide-spectrum optical fiber & spectrum subsystem. Through the discussion and comparison the method of spectral measurement, the way of spectral measurement based on the reflected mode is determined and light resources are selected reasonably.Through the fiber, so the interface of the light cone and the fiber is designed; Adopted horizontal symmetric optical path, and path callus raster as the spectral components. To get the spectral raster every millimeter scribed line for 177 through theoretical computation and reasonably design of the light path through the theoretical computation and simulation, and it make it preferable prior to tell the 900nm place than to tell the 5nm place the resolution ratio in 2500 nm place get 6nm; Considering that the spectrum of the range from 400 to 2500 nm. The CCD device whose responses in different wavelengths, and propose using three CCD. In order to decrease the loss such as the conjunction the plan we divide the spectrum areas, from 400 to 900 nm from 900nm to 1700 nm, from 1700 to 2500 nm, we adopt the manner connectional of total optical reflection, this method the detectors which is built up on the surface of the three CCD devices, and narrow the volume.
     (2) Electronics part design of wide spectrum fiber spectrometer subsystem. According to the different spectrum, the CCD detector is selected reasonably. It is S3924-512 detector detect the wavelength range 400-900nm spectrum.And the G9214-512S detect the wavelength range 900-1700nm spectrum.And the G9208 detector detect the wavelength range 1700~2500nm spectrum; Through using the CPLD three CCD driving circuits are designed; According to the design requirements, the ADC circuit with AD9243 as the core is designed, and through the rational wiring and grounded, when the Samples values is at the range of 8196~8199, the fluctuation range will be controlled within±1.5;Because the image data quantity is enormous, so we design the communication system of USB2.0. The USB2.0 communication system which uses CY7C68013 SCM as the core can do the firmware, drivers and applications of programming interface. Finally, the Wide spectrum of fiber optic spectrometer sub-system is tested for validation.
     (3)Through the analysis and discussion for X-ray source and X-ray detector, fluorescence spectrometer sub-system adopts the micro X ray tube MAGNUM, and the electrical refrigeration Si-PIN detector XR-100CR can realize the elements of qualitative and quantitative analysis. Because of the signal, and dynamic range in order to realize the need of linear amplifier compensation, we design the gain control range from 20 to 1000 time broadband amplifier. Amplifier consists of Low noise JFET tube, differential input structure, and though adopting new pressure controlled amplifiers AD60 to realize gain control, at the same time through the wiring and reasonable compensation, the amplifier gain can achieve 10~1000 continuous adjustable and 5MHz superior, and the linear is good. And design the high ADC circuit with AD9224 as the core, the Sampling rate can reach 20Mbp.
     (4) The High-voltage power design of X-ray fluorescence spectrometer subsystem. The design adopt VMOS power mosfet as switch components, and adopts separate-excited efficient inverter, the backward stage adopt times pressure rectification, the output of the high voltage power can reach 40KV and 50uA. Corrected technique of active power factor is used to make the input current corrected as the input voltage phase with and really sine wave, and thus it can apply the Power factor to 1 to improve the efficiency of power; the feedback compensation usees the composite compensation mode, also adopts PID algorithm to reach high voltage output.
     (5) The multi-pulse amplitude analyzer design of X-ray fluorescence spectrometer subsystem. It adopts the top-down brand-new design, and adopt High-speed FPGA device to realize the design of more pulse amplitude parsers to realize the pulse-shaping, baseline restoring, and many other compensator complete the whole digital design; The digital comparator and digital hysteresis comparison are designed and the multi-level buffer water mode is used to realize the pulse amplitude; Lagrange interpolation is adopted to realize the fitting of pulse peak and improve energy resolution in the meantime.
     As studying and solving the above problem, this paper puts forward some innovational ideas as follow:
     (1)This article puts forward a entirely new design which adopt the unified technology of the optics, the mechanism, and the electricity to make the on-line examination and storage of the core's image, the spectrum information of the mineral and the element content, combined with the core's feature.It is the first time that the technology of small fluorescence analysis is used to core scanning and realize the automatic scanning of the core. The first prototype of digital scanner for the rock core, whose function contains the image collection and the spectrum collection and the analysis of element contents, has been successfully produced.
     (2) The stereo link of the light and the three detectors is used to realize the wide spectrum measurement, whose wavelength ranges form 400nm to 2500nm and covers from the visible spectrum to the near-infrared wavelength. Owing to use an all-in-one design of the optical path, the optical fiber transmission and the reflection of the optical path, it can avoid the consumption of the lens's energy and has a strong representative in the measurement. Especially the shortwave near-infrared energy's loss is lesser, it also improve the signal-to-noise ratio of the entire band.
     (3) The entire digital design realizes the analysis of the multi-pulse amplitude, and avoids processing of the pulse forming, the baseline recovery, and the dead time correction etc. in the stage of the analog signals. The detection of the pulse amplitude adopts the triple interpolation method, which increases the energy resolution ratio in the same ADC sampling rate. FPGA is used to realize the all of analysis of the pulse height, and meet the requirements of the high count-rate measurement. Due to the FPGA which realizes the real-time manage to the pulse, it avoids having the impact that comes form the pulse rate's fluctuation on the result of measurement, and improve the accuracy of analysis of the luminoscope.
     (4) On the base of the research achievement, the first prototype of digital scanner for the core, whose function contains the image collection of the element information has been successfully trail-produced. By using the scanner of this core, it can measure the core of the drill Z801 in ZI JIN SHAN Mine, and the drill hole 1902 in De Xing Copper Mine practically, and depict the spectrum curve to establish the mineralization module for typical core by analyzing the application of the spectrograph subsystem and X luminoscope.Test results show that the application of core digital scanner in geological prospecting and core digital management field has a good prospect.
引文
[1]胡述龙.一种岩芯表面和剖面图像采集仪的开发[J].江汉石油学院学报,2002,24(4):79-80.
    [2]杨玉臣,马玉忠.岩芯图像扫描技术的开发及应用[J].录井技术,2002,13(2):43-46.
    [3]范世福.光谱技术和仪器的新发展[J].光学仪器,2000,22(4):35-40.
    [4]宁红娜,倪旭翔.彩色密度计的发展现状及趋势[J].光学仪器,2003,25(4):90-95.
    [5]齐晓,韩建国,李曼莉.近红外光谱分析仪器的发展概况[J].光谱学与光谱分析,2007,27(10):2022-2026.
    [6]Mallat S.IEEE Trans,1989,PAMI-11(7):674-693.
    [7]Daubechies I.IEEE Trans,1990,IT-36(5):961-1005.
    [8]鞠挥,吴一辉.微型光谱仪的发展现状[J].光学精密工程,2001,9(4):372-375.
    [9]E.Vincent and R.Laganiere.Matching feature for telerobotics[C].In IEEE International Workshop on Haptic Virtual Environments and Their Application,2002,13-18.
    [10]M.Martin and A.Bell.New Image Compression Techniques using Multiwavelets and Multiwavelet Packets[J].IEEE Transactions on Image Processing,2001,10(4):500-510.
    [11]刘宁,陈攀峰.岩芯扫描图像分析及其应用研究[J].石油实验地质,2005,26(5):39-41.
    [12]H.Li,B.Manjunath and S.Mitra.A contour-based approach to multisensor image registration[J].IEEETransactions on Image Processing,1995,04(03):320-334.
    [13]李志刚.边界重叠图像的一种快速拼接算法[J].计算机工程,2000,26(5):37-38.
    [14]S.Chen.Quick Time VR:An Image based Approach to Virtual Environment Navigation[C].Computer Graphics Proceedings,1995,29-38.
    [15]修连存,郑志忠,俞正奎,黄俊杰等.便携式近红外矿物分析仪研究报告.南京:南京地质矿产研究所,2005.
    [16]Youichi S,Johji T.A color sheme supporting method in a color design system[J].SPIE, 1995,2411:25-33.
    [17]陆婉珍,袁洪福,徐广通等.现代近红外分析技术[M].北京:中国石化出版社,2000.
    [18]张宗贵,王润生,郭大海等.光谱成像岩石识别技术[M].地质出版社,2006.
    [19]徐之海,李奇.现代成像系统[M].北京:国防工业出版社,2001.
    [20]甘甫平,王润生.遥感岩矿信息提取基础与技术方法研究[M].北京:地质出版社,2004.
    [21]Calibrating the W avelength of the Spectrometer. OceanOp tics Inc.
    [22]张铁强,郑咏梅.CCD光谱谱线标定方法研究[J].光学技术,2002,28(3):257-258.
    [23]徐海松,项震.基于SPD的物体色快速分光测试系统设计[J].光电工程,2002,29(3):39-42.
    [24]李宏光,吴宝宁,施浣芳.几种颜色测量方法的比较[J].应用光学,2005,26(3):60-63.
    [25]蒋月娟.分光测色仪的设计与研究[J].光学技术,2001,27(3):281-283.
    [26]郭福生,辜骏如.能谱特征参数Th/U与Th/U之差比较及古铀量计算公式的修正[J].铀矿地质,1997,13(6):356-3581.
    [27]唐斌兵,陈团强,王正明.基于小波变换的图像配准方法[J].计算机应用.2007,27(9):2103-2105.
    [28]李建林,俞建成,孙胜利.像素级的图像融合方法[J].红外,2007,28(11):9-13.
    [29]张玉钧等.光谱仪的在线检测[J].光电子技术与信息.1999,12(3):30-32.
    [30]靳丽红等.以Hg光源为标准谱对可见至近红外区域光谱定标的研究[J].四川大学学报,1998,36(5):546-550.
    [31]张广军.光电测试技术[M].北京:中国计量出版社,2003.
    [32]马宪民,呙铭黎.多元素拟合算法在EDXRF技术中的应用[J].西安科技学院学报,20021(22):43-451.
    [33]曹利国,丁益民,黄志琦.1能量色散X射线荧光方法[M].成都:成都科技大学出版社,1998.
    [34]葛良全,周四春,赖万昌.原位x辐射取样技术[M].成都:四川科技出版社,1997.
    [35]刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,2003.
    [36]李昌厚.仪器学理论与实践[M],北京:科学出版社,2008.
    [37]严衍禄等.近红外光谱分析基础及应用.北京:中国轻工出版社,2004.
    [38]李加,张存洲,朱箭等.光纤光谱仪简介[J].现代科学仪器,1998(4):15-16.
    [39]Harbert Kaplan,Practical Applications of infrared thermal sensing and imaging equipment, USA:SPIE Optical Engineering Press 1999.
    [40]R.Petit,"Electromagmetic Theory of Gratings",Springer-Verlag,Berlin,1980.
    [41]郑宝华,程德福,郑志忠,修连存.宽谱段光纤光谱仪[J].光谱学与光谱分析.2010,30(05):1417-1421.
    [42]胡昌华,张军波,夏军等.基于MATLAB的系统分析与设计——小波分析.西安:西安电子科技大学出版社,1999.217-225.
    [43]蔡红星,肖亚飞,邵桢等.CCD光纤光谱仪结构研究[J].电子测试,2007,8:29-36.
    [44]大舟.微型光谱仪[J].光机电世界,1993,10(10):39-40.
    [45]R.Petit,"Etude theorique de la diffraction d"une onde plane et monochromatique par un reseau metallique infiniment conducteur",Applied Optics,vol.4,No.12,dec,1983.
    [46]Diffraction Gratings Ruled and Holographic Handbook,published by Jobin Yvon Inc,Edison,New Jersey 08820 USA and JobinYvon div.d'IZnstrumentsd SA.,1618 Rue du Canal 91160 Longjumeau,france.
    [47]Thevenon,A.,Flamand,J.,Laude,J.P.,Touzet,B.,and Lerner,J.M.,"Aberration Corrected Plane Gratings",SPIE Proe 815,136145,(1987).
    [48]Erwin Loewen,Diffraction Grating Handbook,5th Edition,published by Richardson Grating Laboratory New York 14605 USA.April 2000.
    [49]MATLAB7.0从入门到精通[M].人民邮电出版社,2006.
    [50]薛圆圆.USB应用与开发大全[M].人民邮电出版社,2007.
    [51]钱峰.EZ-USB FX2单片机原理、编程及应用[M].北京航空航天大学出版社,2006.
    [52]张熙康,郑志忠,修连存,段红梅.基于USB2.0的全谱段光纤光谱仪测控通讯系统的实现[J].现代科学仪器,2009(01):12-14.
    [53]Cypress Semiconductor Corporation.EZ-USB FX2 Technical Reference Manual (Version 2.1),www.cypress.com,2001.
    [54]Analog Device,Inc.Complete 14-Bit 3.0 MSPS Monolithic A/D Converter [Z].
    [55]伍骁迪,黄用韬,马兴坤.CCD测光谱波长的数据处理的实验研究和程序编制[J].实 验技术与管理,2007,24(4):48-51.
    [56]阮新波,严仰光.脉宽这调制DC/DC全桥变换器的软开关技术[M].科学出版社,2001.
    [57]郑宝华,程德福,修连存.X-射线衍射仪3kW高频高压电源设计[J].电子技术应用.2008,34(10):71-77.
    [58]郑宝华,程德福,修连存.适用于XRD的12kW高频高压电源系统研究[J].电源技术.2010,34(06):575-577.
    [59]田健,郭会军,王华民,李朝阳.大功率IGBT瞬态保护研究[J].电力电子技术,2000,(4):29-31.
    [60]贾贵玺,徐欣东.IGBT缓冲电路的设计[J].电气传动,1998(3):54-55.
    [61]戴杰敏.关于伽玛能谱特征参数的讨论[J].铀矿地质,2002118(1):52-55.
    [62]张家骅,徐君权,朱节清.放射性同位素X射线荧光分析[M].北京:原子能出版社,1981.
    [63]葛良全,赖万昌,周四春等.原位快速测定矿石品位的X辐射取样技术[J].金属矿山,1997(2):12-16.
    [64]章晔.X射线荧光探矿技术[M].北京:地质出版社,1984:17-36.
    [65]Bury F,Ennodeb N, Petit J M, et al.Nucl Instrum Methods in Phys Res,1996, A383: 527-588.
    [66]周凌宏,贺志强.便携式高频X线机的研制[J].医疗卫生装备,2004(7):19-21.
    [67]C.Cremer,N.Emeis et.al."Monolithically integrated DWDM receiver",IEE PROCEEDINGS-J,Vol.140,nr.1,feb.1993.
    [68]张占松,蔡宜三.开关电源的原理与设计[M].北京:电子工业出版社,2004.
    [69]陈坚.电力电子学[M].北京:机械工业出版社,2002.
    [70]高晋占.微弱信号检测[M].北京:清华大学出版社,2004.
    [71]王培清,李迪译.电子系统中噪声的抑制与衰减技术[M].北京:电子工业出版社,2003.
    [72]杨克俊.电磁兼容原理与设计技术[M].北京:人民邮电出版社,2004.
    [73]王经瑾.核电子学[M].北京:原子能出版社,1983,73-88.
    [74]Hampton C V, Lian B.Nucl Instrum Methods in Phys Res,1994,A353:280-284.
    [75]俞海珍,冯浩.电磁兼容技术及其在PCB设计中的应用[J].电子机械工程,2004(20):28-32.
    [76]杨晓惠,杨永健.基于FPGA的EDA\SOPC技术与VHDL[M].国防工业出版社,2007.
    [77]郑宝华.基于FPGA的高速数据采集及处理系统设计[J].吉林化工学院学报.2008,25(04):36-39.
    [78]陈雪松,滕立中.VHDL入门与应用[M].人民邮电出版社,2000.
    [79]徐中民,禹秉熙.对PC2000-PC/104型光谱仪的波长定标[J].光学精密工程,2004,12(1):11-14.
    [80]修连存,郑志忠,俞正奎,黄俊杰,陈春霞等.近红外分析技术在蚀变矿物鉴定中的应用[J].地质学报,2007,81(11):1584-4590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700