用户名: 密码: 验证码:
三角帆蚌多糖提取、纯化、生物活性及其结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三角帆蚌(Hyriopsis cumingii Lea)俗称河蚌、珍珠蚌等,为我国特有的淡水贝
     类,具有多种应用价值。其分布范围广泛、自然资源丰富,如何科学合理地开发利用这一宝贵资源是一个值得重视的研究课题。
     三角帆蚌自古以来就是药食同源动物之一。目前对三角帆蚌多糖(HCPS)的研究较少,而且不够深入。本论文对HCPS进行了较系统的研究,包括提取条件优化、分离纯化、理化性质、抗氧化活性、免疫调节活性以及结构等方面。主要结果如下:
     1三角帆蚌多糖提取条件优化
     运用热水浸提、乙醇沉淀、Sevag法脱蛋白、乙醇再沉淀的方法提取获得了三角帆蚌多糖,提取得率1.30-3.60%之间。
     选择提取温度、提取时间、水料比及提取次数4个因素分别进行单因素实验,在单因素实验基础上,选择提取温度、提取时间及水料比3个参数进行三因素三水平的Box-Behnken实验(BBD),对此3个参数的实验组合进行优化。得出三角帆蚌多糖的最优提取条件为提取温度80℃、提取时间4.5 h、水料比8ml/g、提取次数2次。
     选用5次优化的提取条件和5次随机设定的提取条件,对模型方程的适用性进行验证。结果表明实验值与模型方程的预测值间存在很好的相关一致性,说明优化出的提取条件是切实可行的。
     2三角帆蚌多糖分离纯化
     运用DEAE-纤维素-52和葡聚糖G-100色谱柱对HCPS粗品进行初步分离和进一步纯化,得到HCPS-1、HCPS-2和HCPS-3三个组分。三个组分HCPS-1、HCPS-2和HCPS-3的得率分别是26.91%、30.18%和3.93%。
     采用HPLC法对HCPS-1、HCPS-2和HCPS-3的纯度进行进一步鉴定,证明HCPS-1、HCPS-2和HCPS-3三者都是均一的多糖组分。
     3三角帆蚌多糖基本理化性质
     运用化学的、物理的方法分别测量分析了三角帆蚌粗多糖及其纯化产品HCPS-1、HCPS-2和HCPS-3的基本理化性质。
     对于粗HCPS、HCPS-1、HCPS-2和HCPS-3:总糖含量分别是76.43%、98.88%、96.60%和80.06%,蛋白质含量分别是1.36%、未检出、未检出和9.42%,糖醛酸含量分别是13.17%、16.66%、16.37%和17.25%,硫酸基含量分别是1.38%、0.38%、0.60%和6.29%,相对粘度分别是1.18、1.16、1.16和1.31。粗HCPS由6种单糖组成,鼠李糖、阿拉伯糖、岩藻糖、甘露糖、葡萄糖、半乳糖摩尔百分含量分别是5.71%、2.21%、1.69%、3.40%、82.21%和4.78%;HCPS-1由2种单糖组成,阿拉伯糖、葡萄糖摩尔百分含量分别是2.12%和97.88%;HCPS-2仅由1种单糖葡萄糖组成;HCPS-3由5种单糖组成,鼠李糖、岩藻糖、甘露糖、葡萄糖、半乳糖摩尔百分含量分别是13.80%、4.50%、7.70%、64.92%和9.07%。HCPS-1、HCPS-2和HCPS-3的相对分子质量分别是432.2、457.9和503.1 kDa。
     粗HCPS、HCPS-1、HCPS-2和HCPS-3含有多糖类物质的特征吸收峰、含有羧基的吸收峰、含有吡喃糖环的吸收峰。HCPS-3比粗HCPS、HCPS-1及HCPS-2含有较强的蛋白氨基吸收峰。HCPS-3比粗多糖、HCPS-1及HCPS-2含有较强的硫酸基特征吸收峰。
     4三角帆蚌多糖抗氧化活性
     运用化学方法分别测量分析了粗HCPS、HCPS-1、HCPS-2和HCPS-3的体外抗氧化活性。结果表明:粗HCPS、HCPS-1. HCPS-2和HCPS-3在体外能够清除过氧化氢(H2O2)、清除超氧阴离子自由基(O2·)、清除DPPH自由基、螯合亚铁离子(Fe2+)、还原铁离子(Fe3+),具有一定的体外抗氧化作用。HCPS-3比粗HCPS、HCPS-1和HCPS-2具有较高的体外抗氧化活性。
     运用动物模型实验研究分析了粗HCPS的体内抗氧化活性。结果表明:应用低剂量粗HCPS处理可克服D-半乳糖诱导的氧化损伤;应用高剂量粗HCPS处理可以显著地抑制肝脏和血清中脂质过氧化产物(MDA)的生成,显著地提高肝脏和血清中超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、谷光甘肽过氧化物酶(GSH-Px)活性以及非酶性抗氧化能力(TAOC),且这种变化与粗HCPS呈现剂量依赖关系。粗HCPS具有一定的体内抗氧化作用。
     5三角帆蚌多糖免疫调节活性
     运用细胞模型实验研究比较了粗HCPS、HCPS-1、HCPS-2和HCPS-3的体外免疫调节活性。结果表明:粗HCPS、HCPS-1、HCPS-2和HCPS-3在体外能够显著地促进脾细胞增殖、提高腹腔巨嗜细胞酸性磷酸酶活性、增强腹腔巨嗜细胞吞噬中性红能力,具有一定的体外免疫增强作用。HCPS-3比粗HCPS、HCPS-1和HCPS-2具有较高的体外免疫增强活性。
     运用动物模型实验研究分析了粗HCPS的体内免疫调节活性。结果表明:应用低剂量粗HCPS处理可以使因环磷酰胺(CPA)诱导产生的免疫功能低下得以恢复;应用高剂量粗HCPS处理可以显著地提高脾脏指数、胸腺指数、迟发型超敏反应(DTH)的耳肿胀度、血清中溶菌酶(LZM)的含量和活性,且这种变化与粗HCPS呈现剂量依赖关系。粗HCPS具有一定的体内免疫增强作用。
     6三角帆蚌多糖结构
     傅立叶变换红外光谱(FTIR)、核磁共振(NMR)技术研究表明:HCPS-1. HCPS-2和HCPS-3三个组分的糖环形式均为吡喃糖环;HCPS-1、HCPS-2的糖苷键构型均为α型,HCPS-3的糖苷键构型既有α型又有β型。
     高碘酸氧化、Smith降解、甲基化反应、气相色谱/质谱联用(GC/MS)以及NMR技术研究表明:HCPS-1、HCPS-2和HCPS-3三个组分中葡萄糖的连接方式都是以1→4糖苷键为主,存在1→4,6和1→3,4分支以及一些末端糖基(1→);HCPS-1中的阿拉伯糖和HCPS-3中的鼠李糖、岩藻糖、甘露糖、半乳糖绝大部分或全部都是以1→3糖苷键为主,穿插在葡萄糖主链和支链中。
     刚果红实验研究表明HCPS-1、HCPS-2和HCPS-3三个组分均不具有三股螺旋结构。稀碱水解反应研究表明HCPS-3上肽链与糖链的连接键型为O-型糖肽键。酸水解-柱前衍生化-HPLC法测量分析表明:HCPS-3中共检测出13种氨基酸,它们分别是天冬氨酸、谷氨酸、丝氨酸、甘氨酸、苏氨酸、丙氨酸、缬氨酸、酪氨酸、甲硫氨酸、苯丙氨酸、异亮氨酸、亮氨酸、赖氨酸,其中甘氨酸含量最高,占总氨基酸质量百分比为25.18%,苯丙氨酸含量最低仅为3.13%。
Hyriopsis cumingii, commonly called pearl mussel, belongs to freshwater bivalve mussel and has many applying value. Although Hyriopsis cumingii is endemic to China, there are extensively distribution and abundant resources of Hyriopsis cumingi in China. Thus, how to develop and utilize this precious resource scientifically and reasonably become a project deserving to research deeply.
     Hyriopsis cumingii has been one of the animals used as medicine and food simultaneously since ancient times. However, little information about Hyriopsis cumingii polysaccharides (HCPS) is available at present. In this paper, HCPS was studied systemically, including optimization of extraction parameters, isolation and purification, physicochemical characterization, antioxidation activity, immunomodulation activity and structure of HCPS. Main results are listed as follows:
     1 Optimization of extraction parameters of HCPS
     HCPS was extracted by using methods of hot water lixiviation, ethanol precipitation, Sevag's deproteination and ethanol precipitation again. Extraction yield of HCPS was in the range of 1.30-3.60%.
     Extraction temperature, extraction time, ratio of water to raw material and extraction times were selected in single-factor experiments. Based on the single-factor experiments, combination of the extraction parameters (time, temperature and ratio of water to raw material) was optimized by using three-factor-three-level Box-Behnken design (BBD). The optimum conditions were extracting temperature 80℃, extracting time 4.5 h, ratio of water to raw material 8 ml/g and extraction times 2.
     Five optimized extraction conditions and five other extraction conditions were selected to certify applicability of model equation. There was no significant difference between experimental value and estimated value from the model equation. The optimized extraction condition was practicable.
     2 Isolation and purification of HCPS
     The crude HCPS was separated firstly through DEAE-cellulose 52 chromatography column and further purified through chromatography column of Sephadex G-100. Three fractions, named as HCPS-1, HCPS-2 and HCPS-3, were obtained. The recovery rates of HCPS-1, HCPS-2 and HCPS-3 based on the amount of crude HCPS were 26.91%,30.18% and 3.93% respectively.
     Purity of HCPS-1, HCPS-2 and HCPS-3 was further confirmed by using HPLC, and results showed that HCPS-1, HCPS-2 and HCPS-3 were purified polysaccharides respectively.
     3 Basic physicochemical characterization of HCPS
     Basic physicochemical characterization of crude HCPS, HCPS-1, HCPS-2 and HCPS-3 were determined by using the methods of chemistry and physics.
     As to crude HCPS, HCPS-1, HCPS-2 and HCPS-3, polysaccharides content was 76.43%,98.88%,96.60% and 80.06% respectively. Protein content was 1.36%, not detected, not detected and 9.42% respectively. Uronic acid content was 13.17%,16.66%, 16.37% and 17.25% respectively. Sulfuric radical content was 1.38%,0.38%,0.60% and 6.29% respectively. Relative viscosity was 1.18,1.16,1.16 and 1.31 respectively. The crude HCPS was composed of rhamnose, arabinose, fucose, mannose, glucose and galactose with a molar ratio of 5.71:2.21:1.69:3.40:82.21:4.78. HCPS-1 was composed of only arabinose and glucose with a molar ratio of 2.12:97.88. HCPS-2 was composed only of glucose. HCPS-3 was composed of rhamnose, fucose, mannose, glucose and galactose with a molar ratio of 13.80:4.51:7.70:64.92:9.07. The relative molecular weight of HCPS-1, HCPS-2 and HCPS-3 was 432.2kDa,457.9kDa and 503.1kDa respectively.
     In FTIR spectrum, characteristic absorptions of polysaccharides, carboxyl group and pyranose ring were observed in crude HCPS, HCPS-1, HCPS-2 and HCPS-3. Absorption peaks of amino group and sulfuric acid radicals in HCPS-3 were stronger than that in crude HCPS, HCPS-1 or HCPS-2.
     4 Antioxidant activities of HCPS
     Antioxidant activities in vitro of crude HCPS, HCPS-1, HCPS-2 and HCPS-3 were measured by using the chemical methods. Results showed that crude HCPS, HCPS-1, HCPS-2 and HCPS-3 could scavenge H2O2, scavenge free radicals of O2·and DPPH·, chelate Fe2+ and reduce Fe3+ in vitro. Crude HCPS, HCPS-1, HCPS-2 and HCPS-3 had some antioxidant activities in vitro. HCPS-3 exhibited much higher antioxidant activities than crude HCPS, HCPS-1 and HCPS-2.
     Antioxidant activities in vivo of crude HCPS were determined by using the animal model experiments. Results indicted that administration of low dose crude HCPS could overcome oxidant injury induced by D-Gal, and treatment of high dose crude HCPS could inhibit significantly the formation of MDA, enhance significantly the activities of antioxidant enzymes (SOD, CAT and GSH-Px) and increase significantly the value of TAOC in livers and serums in a dose-dependent manner. Crude HCPS could exhibit some antioxidant activities in vivo.
     5 Immunomodulating activities of HCPS
     Immunomodulating activities in vitro of crude HCPS, HCPS-1, HCPS-2 and HCPS-3 were evaluated by using the cell model experiments. Results showed that crude HCPS, HCPS-1, HCPS-2 and HCPS-3 could promote proliferation of spleen cell, enhance activity of acid phosphatase in peritoneal macrophages and increase ability of devouring neutral red of peritoneal macrophages in vitro. Crude HCPS, HCPS-1, HCPS-2 and HCPS-3 had some immunoenhancing activities in vitro. HCPS-3 exhibited much higher immunoenhancing activities than crude HCPS, HCPS-1 and HCPS-2.
     Immunomodulating activities in vivo of crude HCPS were measured by using the animal model experiments. Results showed that administration of low dose crude HCPS could recovery weakened immune function induced by CPA, and treatment of high dose crude HCPS could increase significantly the index of spleen and thymus, the swelling rate of ear in DTH and the concentration and activity of LZM in serums in a dose-dependent manner. Crude HCPS could exhibit some immunoenhancing activities in vivo.
     6 Structure of HCPS
     Spectra of FTIR and NMR implied that there were pyranose rings in HCPS-1, HCPS-2 and HCPS-3. HCPS-1 and HCPS-2 showed feature of a-glycosidic bond, and HCPS-3 exhibited character of bothα-andβ-glycosidic bond.
     Results of periodate oxidation, Smith degradation, methylation analysis, GC/MS and NMR suggested that Glc in HCPS-1, HCPS-2 and HCPS-3 were linked to produce Glc backbone chain mainly by 1→4 glycosidic bond. Glc backbone chain were branched by 1→4,6 and 1→3,4 glycosidic bond in HCPS-1, HCPS-2 and HCPS-3. Ara in HCPS-1 and Rha, Fuc, Man and Gal in HCPS-3 were linked to Glc backbone chain or side chain mainly by 1→3 glycosidic bond.
     Congo red experiments suggested that there were not three-strand spiral structure in HCPS-1, HCPS-2 and HCPS-3. Linkage-bond between sugar chain and peptide chain, detected by using the method of alkaline hydrolysis, was O-glycopeptide linking bond in HCPS-3. Thirteen species of amino acid (Asp, Glu, Ser, Gly, Thr, Ala, Val, Tyr, Met, Phe, Ile, Leu and Lys) were detected by applying the method of acid hydrolysis-derivation-HPLC in HCPS-3. Content percentage of Gly to total amino acid was highest (25.18%), and that of Phe was lowest (3.13%).
引文
[1]刘月英,张文珍,王跃先,等.中国经济动物志(淡水软体动物)[M].北京:科学出版社,1979,83-85.
    [2]齐钟彦.中国经济软体动物[M].北京:中国农业出版社,1998,200-218.
    [3]大连水产学院主编.淡水生物学(上册)[M].北京:农业出版社,1982,212-219.
    [4]梁象秋,方纪祖,杨和荃.水生生物学(形态和分类)[M].北京:中国农业出版社,1996,249-259.
    [5]Hua D, Gu R B. Freshwater pearl culture and production in China [J]. Aquaculture Asia,2002,
    7(1):6-8.
    [6]张根芳,方爱萍,李家乐.淡水蚌类繁殖生物学研究进展[J].水产学报,2005,29(4):560-564.
    [7]蔡英亚,张英,魏若飞.贝类学概论[M].上海:上海科学技术出版社,1982.
    [8]陈蓝荪,李家乐.我国现代珍珠养殖产业的发展对策(上)[J].科学养鱼,2007, (1):3-4.
    [9]杨品红,张胜强,谢春华,等.春夏季三角帆蚌小蚌主要食物组成研究[J].湖南文理学院学报(自然科学版),2005,17(4):28-31.
    [10]杨文鸽.三角帆蚌(Hyriopsis Cumingii)营养成分的分析[J].浙江水产学院学报,1997,16(3):201-207.
    [11]周海燕,刘振华,刘承初,等.采珠后三角帆蚌肉和外套膜的营养成分分析[J].食品工业科技,2006,27(11):170-173.
    [12]陈蓝荪,李家乐.我国现代珍珠养殖产业的发展对策(下)[J].科学养鱼,2007, (2):1-3.
    [13]唐·孟诜.食疗本草[M].北京:人民卫生出版社,1984,
    [14]明·李时珍.本草纲目(校点本第四册)[M].北京:人民卫生出版社,1981,2522-2524.
    [15]张志澄,吴皓,狄留庆,等.淡水珠蚌类的研究进展[J].中华中医药学刊,2007,25(1):121-123.
    [16]胡健饶,曹明富.三角帆蚌多糖抑瘤作用的实验研究[J].中国现代应用药学杂志,2003,20(1):11-13.
    [17]陈文星,吴皓,陆茵,等.珠蚌多糖对实验性移植肿瘤及NK细胞活性的作用[J].中国海洋药物,2007,26(2):30-33.
    [18]陈文星,吴皓,陆茵,等.三角帜蚌寒凉药性与多糖效应相关性研究[J].华夏医药,2008,(2):103-106.
    [19]项黎新,邵健忠.三角帆蚌对水体Cr, Pb和Cd的净化与吸收[J].浙江大学学报(理学版),2002,29(5):569-572.
    [20]费志良,潘建林,徐在宽,等.三角帆蚌对水体悬浮物和叶绿素a消除量的研究[J].海洋湖沼通报,2005, (2):40-45.
    [21]吴军,马楠,施丽丽,等.三角帆蚌对精养鱼塘水体主要水质因子的调控[J].南京师大学报(自然科学版),2005,28(3):92-96.
    [22]李应森,李家乐,刘仁杰,等.外荡养殖三角帆蚌对水体主要水质因子的影响[J].上海水产大学学报,2006,15(2):173-177.
    [23]张绍浩,邬红娟,崔博,等.利用三角帆蚌控制水华的初步研究[J].水生生物学报,2007,31(5):760-762.
    [24]A.瓦尔基[美],等(编),张树正,朱正美,王克夷,等(译).糖生物学基础[M].北京: 科学出版社,2003,570-575.
    [25]王镜岩,朱圣庚,徐长法.生物化学(第三版上册)[M].北京:高等教育出版社,2002,1-75.
    [26]姚滢,魏江洲,王俊,等.厚壳贻贝多糖的提取和免疫学活性研究[J].第二军医大学学报,2005,26(8):896-899.
    [27]王俊,徐红丽,张建鹏,等.贻贝多糖MPs的制备、组分鉴定和免疫学活性研究[J].第二军医大学学报,2006,27(1):12-16.
    [28]王俊,姚滢,张建鹏,等.牡蛎多糖的制备和生物学活性研究[J].医学研究生学报,2006,19(3):217-220.
    [29]湛孝东,王克霞,李朝品,等.蜗牛多糖的提取和免疫学活性研究[J].2006,17(11):2191-2192.
    [30]秦玉青.扇贝生殖腺糖蛋白的提取与组分分析[J].渔业现代化,2001, (6):39-40.
    [31]Volpi N, Maccari F. Purification and characterization of hyaluronic acid from the mollusc bivalve Mytilus galloprovincialis [J]. Biochimie,2003,85:619-625.
    [32]Maccari F, Tripodi F, Volpi N. High-performance capillary electrophoresis separation of hyaluronan oligosaccharides produced by Streptomyces hyalurolyticus hyaluronatelyase [J]. Carbohydrate Polymers,2004,56:55-63.
    [33]王长云,管华诗.海湾扇贝边中氨基多糖的研究[J].中国水产科学,1994,1(2):32-39.
    [34]陈倩超.鲍鱼多糖的提取及抗肿瘤试验[J].中国现代应用药学,1998,15(1):8-10.
    [35]顾谦群,王长云,方玉春,等.栉孔扇贝糖蛋白的制备及其抗肿瘤活牲的初步研究[J].海洋科学,1998, (5):63-64.
    [36]周铭东,崔悦礼,陈静华,等.贝类多糖的组成及性质研究[J].云南大学学报(自然科学版)),1998,20(3):187-189.
    [37]沈鸿,窦昌贵.河蚌多糖提取工艺的优化[J].时珍国医国药,2006,17(3):380-381.
    [38]洪鹏志,章超拌,吴红棉,等.翡翠贻贝糖胺聚糖的制备及其生理活性初探[J].上海水产大学学报,2001,10(2):158-162.
    [39]马明华,易杨华,汤海峰.厚壳贻贝多糖MA的分离纯化、理化性质及活性研究(Ⅰ)[J].中国海洋药物,2004,23(4):14-18.
    [40]徐红丽,郭婷婷,郭一峰,等.贻贝水溶性多糖MP-Ⅰ的分离纯化及体外抗肿瘤活性研究[J].第二军医大学学报,2006,27(9):998-1001.
    [41]陈赛.牡蛎糖原的提取与抗疲劳活性研究[D].无锡:江南大学硕士学位论文,2005,10-24.
    [42]范秀萍,吴红棉,卞小丽.菲律宾蛤仔氨基多糖的分离纯化及化学性质[J].现代食品科技,2005,21(2):97-99.
    [43]吴红棉,范秀萍,雷晓凌,等.波纹巴非蛤氨基多糖的分离纯化及其理化性质的初步研究[J].
    食品与发酵工业,2005,31(7):133-136.
    [44]夏树华,王璋.螺蛳中几种糖类物质的提取与分析[J].食品与发酵工业,2005,31(8):107-111.
    [45]吴永霞,吴皓,狄留庆,等.两种淡水育珠蚌中多糖的含量测定[J].南京中医药大学学报,2006,22(2):99-100.
    [46]尹华,袁强,储云月.文蛤多糖的提取及含量测定[J].中国海洋药物杂志,2006,25(1):48-51.
    [47]刘亚,吴晓萍,章超桦,等.3种贝类糖胺聚糖的粗提及含量比较[J].湛江海洋大学学报,2006,26(3): 61-63.
    [48]Lavall R L, Assis O B G, Campana-Filho S P.β-Chitin from the pens of Loligo sp.:Extraction and characterization [J]. Bioresource Technology,2007,98:2465-2472.
    [49]Lopes-Lima M, Ribeiro I, Pinto R A, et al. Isolation, purification and characterization of glycosaminoglycans in the fluids of the mollusc Anodonta cygnea [J]. Comparative Biochemistry and Physiology, Part A,2005,141:319-326.
    [50]李苹苹,丁霄霖.紫贻贝多糖脱除蛋白质方法的研究[J].上海水产大学学报,2006,15(3):328-332.
    [51]胡水根,朱国平,吴萍萍,等.园背角无齿蚌抗肿瘤有效成份的研究HB-Ⅱ糖蛋白的分离鉴定[J].中国海洋药物,1997, (1):23-25.
    [52]祝雯,林志铿,吴祖建,等.河蚬糖蛋白对人肝癌细胞凋亡的影响[J].中国公共卫生,2004,20(6):674-675.
    [53]张铂,吴梧桐.抗肿瘤文蛤糖蛋白(MPG0405)的分离纯化及性质研究[J].中国天然药物,2006,4(3):230-233.
    [54]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999,1-260.
    [55]Okafor N. Isolation of chitin from the shell of the cuttlefish, Sepia officinalis L. [J]. Biochimica et Biophysica Acta (BBA)-Mucoproteins and Mucopolysaccharides 1965,101(2):193-200.
    [56]Srinivasan S R, Radhakrishnamurthy B, Dalferes E R, et al. Glycosaminoglycans from squid skin [J]. Comparative Biochemistry and Physiology,1969,28(1):169-172.
    [57]Moczar M, Moczar E. Structural glycoprotein from squid (Sepia officinalis) skin [J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,1976, 53(2):255-261.
    [58]Matsui M, Kakut M, Misaki A. Fine structural features of oyster glycogen:mode of multiple branching [J]. Carbohydrate Polymers,1996,31:221-235.
    [59]吴耀文,余志刚,胡谷平,等.鲍鱼多糖Hal-B的组成研究[J].中山大学学报(自然科学板), 2002,41(2):119-120.
    [60]李珊,刘赛.扇贝裙边中糖胺聚糖的气相色谱定性定量分析及红外光谱分析[J].中国海洋药物杂志,2004,23(6):8-11.
    [61]崔悦礼,赵翠兰,李开源,等.三种贝类多糖MPa.MPc和MPf药理作用的初步研究[J].云南大学学报(自然科学版),1998,20(3):172-174.
    [62]许东晖,王兵,许实波,等.鲍鱼多糖对荷瘤小鼠腹腔巨噬细胞活性及迟发型超敏反应的作用[J].中药材,1999,22(2):88-89.
    [63]许东晖,许实波,王兵,等.皱纹盘鲍多糖抗肿瘤药理作用研究[J].热带海洋,1999,18(4):86-90.
    [64]王兵,许东晖,许实波,等.鲍鱼多糖对环磷酰胺的增效减毒作用[J].中药材,1999,22(4):198-200.
    [65]窦昌贵,黄芳,黄罗生,等.文蛤多糖抗癌免疫药理作用的研究[J].中国海洋药物,1999,(2):15-19.
    [66]王兵,蒋建敏,许东晖,等.鲍鱼多糖对荷人鼻咽癌裸鼠抗癌作用的研究[J].中草药,2000,31(8):597-599.
    [67]顾谦群,方玉春,辛现良,等.栉孔扇贝糖蛋白的肿瘤抑制活性和对免疫功能的影响[J].营养学报,2001,23(3):200-202.
    [68]童朝阳,林福生,张守兰,等.褶纹冠蚌(Cristaria plicat)提取物抗肿瘤作用的实验研究[J].中国海洋药物,2003,22(3):20-24.
    [69]范秀萍,吴红棉,雷晓凌,等.菲律宾蛤仔氨基多糖的分离提取及其抗肿瘤活牲的初步研究明.食品工业科技,2003,24(9):73-76.
    [70]张铂,吴梧桐,吴杰连.文蛤糖肽(MGP0405)的抗肿瘤活性及稳定性研究[J].药物生物技术,2006,13(1):24-27.
    [71]雷云霞,仲娜,杨敏,等.扇贝糖蛋白及多糖对S180荷瘤小鼠的抑瘤作用[J].中国药师,2006,9(2):123-124.
    [72]胡婷,陈琼华.牡蛎多糖防治心血管病及其它生物活性[J].中国生化药物杂志,1998,(1):53-56.
    [73]崔悦礼,李开源,赵翠兰,等.河蚌多糖(MPa)对巨噬细胞吞噬能力的影响与抗炎作用[J].云南大学学报(自然科学版),1998,20(3):185-186.
    [74]陈文星,吴皓,金亦涛.珠蚌多糖的免疫调节作用研究[J].中药药理与临床,2001,17(5)16-18.
    [75]张建鹏,王俊,徐红丽,等.贻贝多糖对大鼠睾丸支持细胞增殖作用的研究[J].中国海洋药物杂志,2006,25(3):12-14.
    [76]张俊玲,刘赛,王瑞臣,等.扇贝裙边糖胺聚糖对OX-LDL致血管内皮细胞损伤的保护作用[J].中国药理学通报,2004,20(12):1389-1392.
    [77]张杰,刘赛,苏玉文,等.扇贝糖胺聚糖对氧自由基损伤血管内皮细胞的保护作用[J].中国海洋药物杂志,2004,23(6):18-22.
    [78]张杰,刘赛,苏玉文,等.扇贝糖胺聚糖对受氧化损伤的内皮细胞功能的影响[J].中国药学杂志,2006,41(13):990-993.
    [79]孙福生,刘赛.扇贝糖胺聚糖对平滑肌源性泡沫细胞形成及其功能的影响[J].医学研究生学报,2005,18(3):200-203.
    [80]王海桃,刘赛,鞠传霞,等.牡蛎糖胺聚糖对血管内皮细胞损伤的保护作用研究[J].现代生物医学进展,2006,6(9):3-5.
    [81]Amornrut C, Toida T, Imanari T, et al. A new sulfated β-galactan from clams with anti-HIV activity[J]. Carbohydrate Research,1999,321:121-127.
    [82]张超,李朝品,刘群红.天螺多糖抑制HBV复制的体外实验研究[J].中国实验方剂学杂志,2004,10(4):63-64.
    [83]王克霞,湛孝东,李朝品,等.江西巴蜗牛多糖对乙肝病毒复制的抑制作用研究[J].中国药理学通报,2006,22(3):378-379.
    [84 Miller T E, Dodd J, Ormrod D J, et al. Anti-inflammatory activity of glycogen extracted from Perna canaliculus(NZ green-lipped mussel)[J]. Inflammation Research,1993,38(2):139-142.
    [85]杜丽平,肖冬光.生物活性多糖的研究现状与展望[J].化工时刊,2005,19(4):31-35.
    [86]胡庭俊,陈灵然,程富顺.多糖生物学研究概况[J].兽药与饲料添加剂,2005,10(5):26-29.
    [87]赵国华,陈宗道,李志孝,等.活性多糖的研究进展[J].食品与发酵工业,2001,27(7):45-48.
    [88]黄卉,王弘,刘欣.多糖的构效关系研究进展[J].广州食品工业科技,2004,20(3):159-162.
    [89]诸葛健,赵振锋,方慧英.功能性多糖的构效关系[J].无锡轻工大学学报(食品与生物技术),2002,21(2):209-212.
    [90]聂凌鸿,宁正祥.活性多糖的构效关系[J].林产化学与工业,2003,23(4):90-95.
    [91]王兆梅,李琳,郭祀远,等.活性多糖构效关系研究评述[J].现代化工,2002,22(8):18-22.
    [92]王晓娟,魏传晚,徐淑永,等.生物活性多糖结构与功效关系的研究进展[J].广州化工,2004,32(1):6-10.
    [93]李艳辉,王琦.真菌多糖的生物活性与构效关系研究评价[J].吉林农业大学学报,2002,24(2):70-74.
    [94]Krizkov L, Durackov Z, Sandula J, et al. Antioxidative and antimutagenic activity of yeast cell wall mannans in vitro [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2001,497(1-2):213-222.
    [95]袁建国,程显好,侯永勤.冬虫夏草多糖组分研究及药理实验[J].食品与药品,2005,7(01A):45-48.
    [96]冯慧琴.灰树花子实体多糖和菌丝体多糖的比较分析[J].华东师范大学学报(自然科学版),2001, (3):91-96.
    [97]Mashishi K N, Lange W. Immunotherapectic of infection diseases [J]. Berlin:Springeer-Verlag, 1990,9(5):23-51.
    [98]Misaki A, Kakuta M, Sasaki T, et al. Studies on interrelation of structure and antitumor effects of polysaccharides:Antitumor action of periodate-modified, branched (1→3)-β-glucan of auricularia auricula-judae, and other polysaccharides containing (1→3)-glycosidic linkages [J]. Carbohydrate Research,1981,92(1):115-129.
    [99]Demleitner S, Karus J, Franz G. Synthesis and anti-tumor activities of derivatives of curdlan and lichenan branched at C6 [J]. Carbohydrate research,1992,226(2):239-246.
    [100]Matsuzaki K, Yamamoto I, Sato T, et al.13C-NMR investigations of synthetic branched polysaccharides [J]. Carbohydrate Polymers,1986,6(2):155-163.
    [101]Perret J, Bruneteau M, Michel G, et al. Effect of growth conditions on the structure of β-glucans from Phytophthora parasitica dastur, a phytopathogenic fungus [J]. Carbohydrate Polymers,1992, 17(3):231-236.
    [102]Bohn J A,& BeMiller J N. (1→3)-β-Glucans as biological response modifiers:a review of structure-functional activity relationships [J]. Carbohydrate Polymers,1995,28(1):3-14.
    [103]Yang J, Du Y, Huang R, et al. Chemical modification, characterization and structure-anticoagulant activity relationships of Chinese lacquer polysaccharides [J]. International Journal of Biological Macromolecules,2002,31(1-3):55-62.
    [104]Misaki A, Kawaguchi K, Miyaji H, et al. Structure of pestalotan, a highly branched (1→3)-β-glucan elaborated by Pestalotia sp.815, and the enhancement of its antitumor activity by polyol modification of the side chains [J]. Carbohydrate Research,1984,129:209-227.
    [105]Samuelsen A B, Paulsen B S, Wold J K, et al. Characterization of a biologically active pectin from Plantago major L [J]. Carbohydrate Polymers,1996,30(1):37-44.
    [106]Yoshida O, Nakashima H, Yoshida T, et al. Sulfation of the immunomodulating polysaccharide lentinan:A novel strategy for antivirals to human immunodeficiency virus (HIV) [J]. Biochemical Pharmacology,1988,37(15):2887-2891.
    [107]王长云,管华诗.多糖抗病毒作用研究进展Ⅰ-多糖抗病毒作用[J].生物工程进展,2000,20
    (1):17-20.
    [108]张丽萍,张翼伸.硫酸化对金顶侧耳多糖构象及生物活性的影响[J].生物化学与生物物理学报,1994,26(4):417-421.
    [109]田庚元,李寿桐,宋麦丽,等.牛膝多糖硫酸酯的合成及其抗病毒活性[J].药学学报,1995,30(2):107-111.
    [110]史宝军,聂小华,许涨渝.灰树花多糖硫酸醋的制备及其抗肿瘤活性[J].中国医药工业杂志,2003,34(8):383-385.
    [111]张全斌,于鹏展,周革非,等.海带褐藻多糖硫酸PvH的抗氧化活性研究[J].中草药,2003,34(9):824-826.
    [112]Carlucci M J, Pujol C A, Ciancia M, et al. Antiherpetic and anticoagulant properties of carrageenans from the red seaweed Gigartina skottsbergii and their cyclized derivatives: correlation between structure and biological activity [J]. International Journal of Biological Macromolecules,1997,20(2):97-105.
    [113]周靓,蒙义文.多糖及其衍生物抗病毒作用研究进展[J].应用与环境生物学报,1997,3(1):82-90.
    [114]周鹏,谢明勇,傅博强.多糖的结构研究[J].南昌大学学报(理科版),2001,25(2):197-204.
    [115]方唯硕(译).具有抗HIV活性的天然产物[J].国外医药植物药分册,1993,8(2):65-69.
    [116]方积年.多糖研究的现状[J].药学学报,1986,21(12):944-948.
    [117]梁忠岩,苗春艳.化学修饰对斜顶菌多糖抑瘤活性影响的研究[J].中国药学杂志,1996.31(10):613-615.
    [118]赵吉福,么雅娟,陈英杰.磺酰化新茯芩多糖的制备及抗肿瘤作用[J].沈阳药科大学学报,1996,13(2):125-128.
    [119]王雁,杨祥良,邓成华,等.羧甲基化虎奶多糖的制备及抗氧化性研究[J].生物化学与生物物理进展,2000,27(4):411-415.
    [120]张健,田庚元.羟乙基化牛膝多糖的合成及其活性研究[J].化学学报,2003,22(10):1692-169.
    [121]梁忠岩,张翼伸.斜顶菌水溶性多糖的构象研究[J].生物化学杂志,1985,1(5-6):141-147.
    [122]Zhang P, Zhang L, Cheng S. Effects of urea and sodium hydroxide on the molecular weight and conformation of a-(1→3)-glucan from Lentinus edodes in aqueous solution [J]. Carbohydrate Research,2000,327(4):431-438.
    [123]Young S H, Jacobs R R. Sodium hydroxide-induced conformational change in schizophyllan detected by the fluorescence dye, aniline blue [J]. Carbohydrate Research,1998,310(1-2):91-99.
    [124]Hamuro J, Chihara G. Mechanisms of action of antitumor polysaccharide. I. Effects of antilymphocyte serum on the antitumor activity ientinan [J]. International journal of cancer,1971, 8(1):41-46.
    [125]Ohno N, Miura T, Miura N N, et al. Structure and biological activities of hypochlorite oxidized zymosan [J]. Carbohydrate Polymers,2001,44(4):339-349.
    [126]张丽萍,汉丽萍,王月秋,等.硫酸化高山红景天多糖的制备及鉴定[J].分子科学学报,1999,15(4):205-210.
    [127]Carlucci M J, Ciancia M, Matulewicz M C, et al. Antiherpetic activity and mode of action of natural carrageenans of diverse structural types [J]. Antiviral Research,1999,43(2):93-102.
    [128]Kraus J, Blaschek W, Schutz M, et al. Antitumor activity of cell wall β-1,3/β-1,6-glucans from Phytophthora spp [J]. Planta medicine,1992,58(1):39-42.
    [129]Saito H, Yoshioka Y, Uehara N, et al. Relationship between conformation and biological response for (1→3)-β-glucans in the activation of coagulation Factor G from limulus amebocyte lysate and host-mediated antitumor activity. Demonstration of single-helix conformation as a stimulant [J]. Carbohydrate Research,1991,217:181-190.
    [130]Witvwouw M, Desmyter J, Clercq E D. Antiviral portrait series:4. Polysulfates as inhibitors of HIV and other enveloped [J]. Antiviral Chemistry & Chemotherapy,1994,5(6):345-349.
    [131]Alban S, Franz G. Characterization of the anticoagulant actions of a semisynthetic curdlan sulfate [J]. Thrombosis Research,2000,99(4):377-388.
    [132]王健,龚兴国.多糖的抗肿瘤及免疫调节研究进展[J].中国生化药物杂志,2001,22(1):52-54.
    [133]Calazans G M T, Lima R C, de Fran F P, et al. Molecular weight and antitumour activity of Zymomonas mobilis levans [J]. International Journal of Biological Macromolecules,2000,27(4): 245-247.
    [134]Tabata K, Ito W, Kojima T, et al. Ultrasonic degradation of schizophyllan, an antitumor polysaccharide produced by Schizophyllum commune fries [J]. Carbohydrate Research,1981, 89(1):121-135.
    [135]Gao Y, Fukuda A, Katsuraya K, et al. Synthesis of regioselective substituted curdlan sulfates with medium molecular weights and their specific anti-HIV-1 antivities [J]. Macorm,1997,30(11): 3224-3228.
    [136]Zhang L M. Cellulosic associative thickeners [J]. Carbohydrate Polymers,2001,45(1):1-10.
    [137]Sandula J, Kogan G, Kacurakova M, et al. Microbial (1→3)-β-glucans, their preparation, physico-chemical characterization and immunomodulatory activity [J]. Carbohydrate Polymers, 1999,38(3):247-253.
    [138]孙群,阚健全,赵国华,等.活性多糖构效关系研究进展[J].广州食品工业科技,2004,20(1):104-106.
    [139]Zhang L, Zhang M, Chen J, et al. Solution properties of antitumor carboxy-methylated derivatives of β-1,3-D-glucan from Ganoderma luciodum [J]. Chinese journal of polymer science,2001, 19(3):283-289.
    [140]Zhao J F, Kiyohara H, Yamada H, et al. Heterogeneity and characterisation of mitogenic and anti-complementary pectic polysaccharides from the roots of Glycyrrhiza uralensis Fisch et D.C [J]. Carbohydrate Research,1991,219:149-172.
    [141]Kwang W Y, Kiyohara H, Matsumoto T, et al. Intestinal immune system modulating polysaccharides from rhizomes of Atractylodes iancea [J]. Planta medicine,1998,64:714-719.
    [1]雷云霞,仲娜,杨敏,等.扇贝糖蛋白及多糖对S180荷瘤小鼠的抑瘤作用[J].中国药师,2006,9(2):123-124.
    [2]Xu H, Guo T, Guo Y, et al. Characterization and protection on acute liver injury of a polysaccharide MP-I from Mytilus Coruscus [J]. Glycobiology,2008,18:97-103.
    [3]Ye H, Wang K, Zhou C, et al. Purification, antimumor, and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum [J]. Food Chemistry,2008,111(2): 428-432.
    [4]Ke C, Qiao D, Gan D, et al. Antioxidant acitivity in vitro and in vivo of the capsule polysaccharides from Streptococcus equi subsp. zooepidemicus [J]. Carbohydrate Polymers (2009), 75(4):677-682.
    [5]张志澄,吴皓,狄留庆,等.淡水珠蚌类的研究进展[J].中华中医药学刊,2007,25(1):121-123.
    [6]胡健饶,曹明富.三角帆蚌多糖抑瘤作用的实验研究[J].中国现代应用药学杂志,2003,20
    (1):11-13.
    [7]陈文星,吴皓,陆茵,等.珠蚌多糖对实验性移植肿瘤及NK细胞活性的作用[J].中国海洋药物,2007,26(2):30-33.
    [8]陈文星,吴皓,陆茵,等.三角帜蚌寒凉药性与多糖效应相关性研究[J].华夏医药,2008,(2):103-106.
    [9]Kshirsagar A C, Singhal R S. Optimization of starch oleate derivatives from native corn and hydrolyzed corn starch by response surface methodology [J]. Carbohydrate Polymers,2007,69: 455-461.
    [10]Hou X, Chen W. Optimization of extraction process of crude polysaccharides from wild edible BaChu mushroom by response surface methodology [J]. Carbohydrate Polymers,2008,72:67-74.
    [11]Masmoudi M, Besbes S, Chaabouni M, et al. Optimization of pectin extraction from lemon by-product with acidified date juice using response surface methodology [J]. Carbohydrate Polymers,2008,74:185-192.
    [12]Song X, Zhang X, Kuang C, et al. Optimization of fermentation parameters for the biomass and DHA production of Schizochytrium limacinum OUC88 using response surface methodology [J]. Process Biochemistry,2007,42:1391-1397.
    [13]Box G E P, Behnken D W. Some new three level designs for the study of quantitative variables [J]. Technometrics,1960,2:455-475.
    [14]Ferreira S L C, Bruns R E, Ferreira H S, et al. Box-Behnken design:An alternative for the optimization of analytical methods [J]. Analytica Chimica Acta,2007,597:179-186.
    [15]Wang Y X, Lu Z X. Optimization of processing parameters for the mycelial growth and extracellular polysaccharide production by Boletus spp. ACCC 50328 [J]. Process Biochemistry, 2005,40:1043-1051.
    [16]姚滢,魏江洲,王俊,等.(2005).厚壳贻贝多糖的提取和免疫学活性研究[J].第二军医大学学报,26(8):896-899.
    [17]Sevag M G, Lackman D B, Smolens J. The isolation of components of streptococcal nucleoproteins in serologically active form [J]. Journal of Biological Chemistry,1938,124:425.
    [18]Ray B. Polysaccharides from Enteromorpha compressa:Isolation, purification and structural features [J]. Carbohydrate Polymers,2006,66(3):408-416.
    [19]Vinogradov E V, Brade L, Brade H, et al. Structural and serological characterisation of the O-antigenic polysaccharide of the lipopolysaccharide from Acinetobacter baumannii strain 24 [J]. Carbohydrate Research,2003,338(23):2751-2756.
    [20]Li W, Cui S W, Kakuda Y. Extraction, fractionation, structural and physical characterization of wheat β-D-glucans [J]. Carbohydrate Polymers,2006,63(3):408-416.
    [21]Braga M E M, Moreschi S R M, Meireles M A A. Effects of supercritical fluid extraction on Curcuma longa L. and Zingiber officinale R. starches [J]. Carbohydrate Polymers,2006,63(3): 340-346.
    [22]Liu Z D, Wei G H, Guo Y C, et al. Image study of pectin extraction from orange skin assisted by microwave [J]. Carbohydrate Polymers,2006,64:548-552.
    [23]Cai W, Gu X, Tang J. Extraction, purification, and characterization of the polysaccharides from Opuntia milpa alta [J]. Carbohydrate Polymers,2008,71(3):403-410.
    [24]Bendahou A, Dufresne A, Kaddam, H, et al. Isolation and structural characterization of hemicelluloses from palm of Phoenix dactylifera L [J]. Carbohydrate Polymers,2007,68: 601-608.
    [25]Pujari V, Chandra T S. Statistical optimization of medium components for enhanced riboflavin production by a UV-mutant of Eremothecium ashbyii [J]. Process Biochemistry,2000,36(1-2): 31-37.
    [26]Muralidhar R V, Chirumamila R R, Marchant R, et al. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources [J]. Biochemical Engineering Journal,2001,9(1):17-23.
    [27]Narang S, Sahai V, Bisaria V S. Optimization of xylanase production by Melanocarpus albomyces IIS68 in solid state fermentation using response surface methodology [J]. Journal of Bioscience and Bioengineering,2001,91(4):425-427.
    [28]Dey G, Mitra A, Banerjee R, et al. Enhanced production of amylase by optimization of nutritional constituents using response surface methodology [J]. Biochemical Engineering Journal,2001,7(3): 227-231.
    [29]Kalil S J, Maugeri F, Rodrigues M I. Response surface analysis and simulation as a tool for bioprocess design and optimization [J]. Process Biochemistry,2000,35(6):539-550.
    [30]Roseiro J C, Esgalhado M E, Amaral Collaco M T, et al. Medium development for xanthan production [J]. Process Biochemistry,1992,27(3):167-175.
    [1]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999,1-260.
    [2]Yu R, Wang L, Zhang H, et al. Isolation, purification and identification of polysaccharides from cultured Cordyceps militaris [J]. Fitoterapia,2004,75(7-8):662-666.
    [3]李波,许时婴.羊栖菜褐藻糖胶的分级纯化和结构分析[J].无锡轻工大学学报:食品与生物技术,2004,23(2):86-89.
    [4]刘敦华,谷文英.沙蒿籽胶多糖的分级纯化和结构分析[J].食品科学,2007,28(3):73-76.
    [5]吴亚林,黄静,潘远江.无花果多糖的分离、纯化和鉴定[J].浙江大学学报:理学版,2004,31(2):177-179.
    [6]闫吉昌,催春月,张奕,等.芦荟多糖的分离纯化及结构分析[J].高等学校化学学报,2003,24(7):1189-1192.
    [7]张金亭,黄勇,李金花,等.小刺猴头多糖Ⅰ的分离纯化及组成分析[J].中国药学杂志,2005,40(7):545-547.
    [8]张志澄,吴皓,狄留庆,等.淡水珠蚌类的研究进展[J].中华中医药学刊,2007,25(1):121-123.
    [9]胡健饶,曹明富.三角帆蚌多糖抑瘤作用的实验研究[J].中国现代应用药学杂志,2003,20(1) : 11-13.
    [10]陈文星,吴皓,陆茵,等.珠蚌多糖对实验性移植肿瘤及NK细胞活性的作用[J].中国海洋药物,2007,26(2):30-33.
    [11]陈文星,吴皓,陆茵,等.三角帜蚌寒凉药性与多糖效应相关性研究[J].华夏医药,2008,(2): 103-106.
    [12]Cai W, Gu X, Tang J. Extraction, purification, and characterization of the polysaccharides from Opuntia milpa alta [J]. Carbohydrate Polymers,2008,71:403-410.
    [13]Ye H, Wang K, Zhou C, et al. Purification, anti-tumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum [J]. Food Chemistry,2008,111(2): 428-432.
    [14]Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances [J]. Analytical Biochemistry,1956,28:350-356.
    [15]Bradford M M. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytic Biochemistry,1976,72: 248-254.
    [16]Karamanos N K, Hjerpe A, Tsegenidis T, et al. Determination of iduronic acid and glucuronic acid in glycosaminoglycans after stoichiometric reduction and depolymerization using high-performance liquid chromatography and ultraviolet detection [J]. Analytical Biochemistry, 1988,172:410-419.
    [17]Dodgson K S, Price R G A note on the determination of the ester sulfate content of sulfate polysaccharides [J]. Biochemistry Journal,1962,84:106-110.
    [18]Liu C, Li X, Li Y, et al. Structural characterisation and antimutagenic activity of a novel polysaccharide isolated from Sepiella maindroni ink [J]. Food Chemistry,2008,110(4):807-813.
    [19]Alsop R M, Vlachogiannis G J. Determination of the molecular weight of clinical dextran by gel permeation chromatography on TSK PW type columns [J]. Journal of Chromatography A,1982, 246(2):227-240.
    [20]Roy S K, Maiti D, Mondal S, et al. Structural analysis of a polysaccharide isolated from the aqueous extract of an edible mushroom, Pleurotus sajor-caju, cultivar Black Japan [J]. Carbohydrate Research,2008,343(6):1108-1113.
    [21]Maciel J S, Chaves L S, Souza B W S, et al. Structural characterization of cold extracted fraction of soluble sulfated polysaccharide from red seaweed Gracilaria birdiae [J]. Carbohydrate Polymers,2008,71(4):559-565.
    [22]诸葛健,赵振锋,方慧英.功能性多糖的构效关系[J].无锡轻工大学学报(食品与生物技术),2002,21(2):209-212.
    [23]田庚元,李寿桐,宋麦丽,等.牛膝多糖硫酸酯的合成及其抗病毒活性[J].药学学报,1995,30(2):107-111.
    [24]史宝军,聂小华,许涨渝.灰树花多糖硫酸酯的制备及其抗肿瘤活性[J].中国医药工业杂志,2003,34(8):383-385.
    [25]张全斌,于鹏展,周革非,等.海带褐藻多糖硫酸PvH的抗氧化活性研究[J].中草药,2003,34(9):824-826.
    [26]魏远安,方积年.高效凝胶渗透色谱法测定多糖纯度及分子量[J].药学学报,1989,24(7):532-536.
    [27]Hagel L. Comparison of some soft gels for the molecular-weight distribution analysis of dextran at enhanced flow-rates [J]. Journal of Chromatography A,1978,160(1):59-71.
    [1]Simic M G, Bergtold D S, Karam L R. Generation of oxy radicals in biosystems [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,1989,214(1):3-12.
    [2]Harman D. Free radical involvement in aging:pathophysiology and therapeutic implications [J]. Drugs and Aging,1993,3 (1):60-80.
    [3]Benzi G, Moretti A. Age and peroxidative stress-related modifications of the cerebral enzymatic activities linked to mitochondria and glutathione system [J]. Free Radical Biology and Medicine 1995,19(1); 77-101.
    [4]Rikans L E, Hornbrook K R. Lipid peroxidation, antioxidant protection and aging [J]. Biochimica et Biophysica Acta-Molecular Basis of Disease,1997,1362(2-3):116-27.
    [5]Finkel T, Holbrook N J. Oxidants, oxidative stress and the biology of aging [J]. Nature,2000,408 (9):239-247.
    [6]Wickens A P. Ageing and the free radical theory [J]. Respiration Physiology,2001,128(3): 379-391.
    [7]Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease [J]. The International Journal of Biochemistry and Cell Biology, 2007,39(1):44-84.
    [8]Grice H C. Safety evaluation of butylated hydroxyanisole from the perspective of effects on forestomach and oesophageal squamous epithelium [J]. Food and Chemical Toxicology,1988, 26(8):717-723.
    [9]Peterszegi G, Robert A M, Robert L. Protection by L-fucose and fucose-rich polysaccharides against ROS-produced cell death in presence of ascorbate [J]. Biomedecine & Pharmacotherapy, 2003,57(3-4):130-133.
    [10]Yuan Y V, Bone D E, Carrington M F. Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro [J]. Food Chemistry,2005,91(3):485-494.
    [11]Wu J H, Xu C, Shan C Y, et al. Antioxidant properties and PC 12 cell protective effects of APS-1, a polysaccharide from Aloe vera var. chinensis [J]. Life Sciences,2006,78(6):622-630.
    [12]Chen J, Hu T, Zheng R. Antioxidant activities of Sophora subprosrate polysaccharide in immunosuppressed mice [J]. International Immunopharmacology,2007,7(4):547-553.
    [13]Li X M, Li X L, Zhou A G. Evaluation of antioxidant activity of the polysaccharides extracted from Lycium barbarum fruits in vitro [J]. European Polymer Journal,2007,43(2):488-497.
    [14]Liu C, Wang C, Xu Z, et al. Isolation, chemical characterization and antioxidant activities of two polysaccharides from the gel and the skin of Aloe barbadensis Miller irrigated with sea water [J]. Process Biochemistry,2007,42(6):961-970.
    [15]张俊玲,刘赛,王瑞臣,等.扇贝裙边糖胺聚糖对OX-LDL致血管内皮细胞损伤的保护作用[J].中国药理学通报,2004,20(12):1389-1392.
    [16]孙福生,刘赛.扇贝糖胺聚糖对平滑肌源性泡沫细胞形成及其功能的影响[J].医学研究生学报,2005,18(3):200-203.
    [17]王俊,姚滢,张建鹏,等.牡蛎多糖的制备和生物学活性研究[J].医学研究生学报,2006,19(3):217-220.
    [18]张杰,刘赛,苏玉文,等.扇贝糖胺聚糖对受氧化损伤的内皮细胞功能的影响[J].中国药学杂志,2006,41(13):990-993.
    [19]姚治,李扬,王晓华.河蚌肉提取物的药理作用[J].中药材,1998,21(4):191-193.
    [20]袁亚非,王艳辉,李卫东,等.河蚌提取物对小鼠免疫功能的增强作用[J].承德医学院学报,1999,16(4):308-311.
    [21]胡健饶,曹明富.三角帆蚌多糖抑瘤作用的实验研究[J].中国现代应用药学杂志,2003,20(1): 11-13.
    [22]陈文星,吴皓,陆茵,等.0.珠蚌多糖对实验性移植肿瘤及NK细胞活性的作用[J].中国海洋药物杂志,2007,26(2):30-33.
    [23]张志澄,吴皓,狄留庆,等.淡水珠蚌类的研究进展[J].中华中医药学刊,2007,25(1):121-123.
    [24]Qiao D, Hu B, Gan D, et al. Extraction optimized by using response surface methodology, purification and preliminary characterization of polysaccharides from Hyriopsis cumingii [J]. Carbohydrate Polymers,2009,76(3):422-429.
    [25]Dai Z, Zhang H, Zhang Y, et al. Chemical properties and immunostimulatory activity of a water-soluble polysaccharide from the calm of Hyriopsis cumingii Lea [J]. Carbohydrate Polymers, doi:10.1016/j.carbpol.2009.01.003.
    [26]Li X, Zhou A, Han Y. Anti-oxidation and anti-microorganism activities of purification polysaccharide from Lygodium japonicum in vitro [J]. Carbohydrate Polymers,2006,66(1): 34-42.
    [27]Liu F, Ooi V E C, Chang S T. Free radical scavenging activities of mushroom polysaccharide extracts [J]. Life Sciences,1997,60(10):763-771.
    [28]Zhang Q, Li N, Zhou G, et al. In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice [J]. Pharmacological Research,2003,48(2): 151-155.
    [29]Wang Z, Luo D. Antioxidant activities of different fractions of polysaccharide purified from Gynostemma pentaphyllum Makino [J]. Carbohydrate Polymers,2007,68(1):54-58.
    [30]Ngo D N, Kim M M, Kim S K. Chitin oligosaccharides inhibit oxidative stress in live cells [J]. Carbohydrate Polymers,2008,74(2):228-234.
    [31]Ke C, Qiao D, Gan D, et al. Antioxidant acitivity in vitro and in vivo of the capsule polysaccharides from Streptococcus equi subsp. zooepidemicus [J]. Carbohydrate Polymers,2009, 75(4):677-682.
    [32]Yang X B, Gao X D, Han F, et al. Sulfation of a polysaccharide produced by a marine filamentous fungus Phoma herbarum YS4108 alters its antioxidant properties in vitro [J]. Biochimica et Biophysica Acta (BBA)-General Subjects,2005,1725(1):120-127.
    [33]Qi H, Zhang Q, Zhao T, et al. In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) [J]. Bioorganic & Medicinal Chemistry Letters,2006,16(9):2441-2445.
    [34]Benzie I F F, Strain J J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of "Antioxidant Power":The FRAP Assay [J]. Analytical Biochemistry,1996,239(1):70-76.
    [35]Korycka-Dahl M B, Richardson T. Activated oxygen species and oxidation of food constituents [J]. CRC Critical Reviews in Food Science and Nutrition,1978,10 (3):209-241.
    [36]Meyer A S, Isaksen A. Application of enzymes as food antioxidants [J]. Trends in Food Science & Technology,1995,6(9):300-304.
    [37]Hu F, Lu R, Huang B, et al. Free radical scavenging activity of extracts prepared from fresh leaves of selected Chinese medicinal plants [J]. Fitoterapia,2004,75(1):14-23.
    [38]Li X L, Zhou A G, Li X M. Inhibition of Lycium barbarum polysaccharides and Ganoderma lucidum polysaccharides against oxidative injury induced by y-irradiation in rat liver mitochondria [J]. Carbohydrate Polymers,2007,69(1):172-178.
    [39]Braughler J M, Hall E D. Central nervous systems trauma and stroke:I. Biochemical considerations for oxygen radical formation and lipid peroxidation [J]. Free Radical Biology and Medicine,1989,6(3):289-301.
    [40]Lebel C P, Bondy S C. Oxygen radicals:Common mediators of neurotoxicity [J]. Neurotoxicology and Teratology,1991,13(3):341-346.
    [41]Pin-Der-Duh X. Antioxidant activity of burdock(Arctium lappaLinne):its scavenging effect on free radical and active oxygen [J]. Journal of American Oil Chemstry Society,1998,75:455-461.
    [42]Amarowicz R, Pegg R B, Rahimi-Moghaddam P, et al. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies [J]. Food Chemistry,2004, 84(4):551-562.
    [43]黄小燕,孔祥峰,王德云,等.多糖硫酸化修饰和多糖硫酸酯的研究进展[J].天然产物研究与开发,2007,19(2):328-332.
    [44]诸葛健,赵振锋,方慧英.功能性多糖的构效关系[J].无锡轻工大学学报(食品与生物技术),2002,21(2):209-212.
    [45]Song X, Bao M, Li D, et al. Advanced glycation in D-galactose induced mouse aging model [J]. Mechanisms of Ageing and Development,1999,108(3):239-251.
    [46]Lu J, Zheng Y L, Wu D M, et al. Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose [J]. Biochemical Pharmacology,2007,74(7):1078-1090.
    [47]Zhang H, Yu N, Huang G, et al. Neuroprotective effects of purslane herb aquenous extracts against D-galactose induced neurotoxicity [J]. Chemico-Biological Interactions,2007,170(3): 145-152.
    [48]Przybyszewski W M, Widel M, Koterbicka A. Early peroxidizing effects of myocardial damage in rats after gamma-irradiation and farmorubicin (4'-epidoxorubicin) treatment [J]. Cancer Letters, 1994,81(2):185-192.
    [49]Hagihara M, Nishigaki I, Maseki M, et al. Age-dependent changes in lipid peroxide levels in the lipoprotein fractions of human serum [J]. Journal of Gerontology,1984,39(3):269-272.
    [50]Schuessel K, Frey C, Jourdan C, et al. Aging sensitizes toward ROS formation and lipid peroxidation in PS1M146L transgenic mice [J]. Free Radical Biology and Medicine,2006,40(5): 850-862.
    [51]Inal M E, Kanbak G, Sunal E. Antioxidant enzyme activities and malondialdehyde levels related to aging [J]. Clinica Chimica Acta,2001,305(1-2):75-80.
    [52]Oost R v d, Beyer J, Vermeulen N P E. Fish bioaccumulation and biomarkers in environmental risk assessment:a review [J]. Environmental Toxicology and Pharmacology,2003,13(2):57-149.
    [53]Yao D, Shi W, Gou Y, et al. Fatty acid-mediated intracellular iron translocation:A synergistic mechanism of oxidative injury [J]. Free Radical Biology and Medicine,2005,39(10):1385-1398.
    [54]Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs [J]. Physiological Reviews,1979,59(3):527-605.
    [55]Urso M L, Clarkson P M. Oxidative stress, exercise and antioxidant supplementation [J]. Toxicology,2003,189(1-2):41-54.
    [56]Bagchi D, Bagchi M, Hassoun E A, et al. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides [J]. Toxicology, 1995,104(1-3):129-140.
    [1]韩蔚伟,卢静,王大兵.衰老与免疫功能的变化[J].中国医学检验杂志,2008,9(3):178-180.
    [2]高晓明.免疫学教程[M].北京;高等教育出版社,2006,2-315.
    [3]苏子峰,戴志明,杨建发.多糖免疫机制研究进展[J].云南农业大学学报,2006,21(2):601-605.
    [4]程安玮,金征宇,王家启.功能性多糖免疫调节机理的研究进展[J].食品科技,2006,(12):4-8.
    [5]郭新华,章世元,佟建明,等.多糖的免疫调节作用及机制的研究进展[J].饲料博览,2007,(23):31-34.
    [6]张彬,薛立群,李丽立,等.多糖对动物免疫调控的作用及其机理[J].家畜生态学报,2008,29(1):1-5.
    [7]Kim Y O, Han S B, Lee H W, et al. Immuno-stimulating effect of the endo-polysaccharide produced by submerged culture of Inonotus obliquus [J]. Life Sciences,2005,77(19):2438-2456.
    [8]Schepetkin I A, Faulkner C L, Nelson-Overton L K, et al. Macrophage immunomodulatory activity of polysaccharides isolated from Juniperus scopolorum [J]. International Immunopharmacology,2005,5(13-14):1783-1799.
    [9]Im S A, Kim K, Lee C K. Immunomodulatory activity of polysaccharides isolated from Salicornia herbacea [J]. International Immunopharmacology,2006,6(9):1451-1458.
    [10]Yang T, Jia M, Meng J, et al. Immunomodulatory activity of polysaccharide isolated from Angelica sinensis [J]. International Journal of Biological Macromolecules,2006,39(4-5): 179-184.
    [11]Leiro J M, Castro R, Arranz J A, et al. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh [J]. International Immunopharmacology,2007,7(7):879-888.
    [12]Xie G, Schepetkin I A, Quinn M T. Immunomodulatory activity of acidic polysaccharides isolated from Tanacetum vulgare L [J]. International Immunopharmacology,2007,7(13):1639-1650.
    [13]Liu C, Xi T, Lin Q, et al. Immunomodulatory activity of polysaccharides isolated from Strongylocentrotus nudus eggs [J]. International Immunopharmacology,2008,8(13-14): 1835-1841.
    [14]陈文星,吴皓,金亦涛.珠蚌多糖的免疫调节作用研究[J].中药药理与临床,2001,17(5):16-18.
    [15]陈文星,吴皓,陆茵,等.珠蚌多糖对实验性移植肿瘤及NK细胞活性的作用[J].中国海洋 药物杂志,2007,26(2):30-33.
    [16]Dai Z, Zhang H, Zhang Y, et al. Chemical properties and immunostimulatory activity of a water-soluble polysaccharide from the calm of Hyriopsis cumingii Lea [J]. Carbohydrate Polymers, doi:10.1016/j.carbpol.2009.01.003.
    [17]Desai V R, Ramkrishnan R, Chintalwar G J, et al. G1-4A, an immunomodulatory polysaccharide from Tinospora cordifolia, modulates macrophage responses and protects mice against lipopolysaccharide induced endotoxic shock [J]. International Immunopharmacology,2007,7(10): 1375-1386.
    [18]Sun Y, Wang S, Li T, et al. Purification, structure and immunobiological activity of a new water-soluble polysaccharide from the mycelium of Polyporus albicans (Imaz.) Teng [J]. Bioresource Technology,2008,99(4):900-904.
    [19]Li X, Jiao L L, Zhang X, et al. Anti-tumor and immunomodulating activities of proteoglycans from mycelium of Phellinus nigricans and culture medium [J]. International Immunopharmacology,2008,8(6):909-915.
    [20]Shin K H, Lim S S, Lee S, et al. Anti-tumour and immuno-stimulating activities of the fruiting bodies of Paecilomyces japonica, a new type of Cordyceps spp [J]. Phytotherapy Research,2003, 17(7):830-833.
    [21]徐远义,黄允宁,常越,等.多抗甲素增强大鼠腹腔巨噬细胞抗癌免疫功能的研究[J].免疫学杂志,2006,22(4):396-398.
    [22]吉宏武,邵海艳,章超桦,等.总状蕨藻Caulerpa racemosa多糖抗肿瘤和免疫增强活性[J].食品与生物技术学报,2007,26(4):67-72.
    [23]Nergard C S, Diallo D, Michaelsen T E, et al. Isolation, partial characterisation and immunomodulating activities of polysaccharides from Vernonia kotschyana Sch. Bip. ex Walp [J]. Journal of Ethnopharmacology,2004,91(1):141-152.
    [24]Ke C, Qiao D, Gan D, et al. Antioxidant acitivity in vitro and in vivo of the capsule polysaccharides from Streptococcus equi subsp. zooepidemicus [J]. Carbohydrate Polymers,2009, 75(4):677-682.
    [25]贾敏,梅其炳,杨铁虹,等.唐古特大黄多糖对小鼠脾细胞增殖的作用[J].细胞与分子免疫学杂志,2002,18(5):502-503.
    [26]马艳弘,刘安军,张国蓉,等.硒酸精氨酸对D-gal衰老小鼠细胞免疫功能的影响[J].细胞与分子免疫学杂志,2007,23(12):1126-1129.
    [27]Fishman M, Gunther G. Induction of tumor cell resistance to macrophage-mediated lysis by preexposure to non-activated macrophages [J]. Cellular Immunology,1986,99(1):241-256.
    [28]Fidler I J, Kleinerman E S. Therapy of cancer metastasis by systemic activation of macrophages: From the bench to the clinic [J]. Research in Immunology,1993,144(4):284-287.
    [29]任文华,张双全,宋大祥,等.少棘蜈蚣抗菌肽粗品对小鼠巨噬细胞的体外激活作用[J].中药材,2007,30(12):1491-1494.
    [30]金丽琴,吕建新,杨介钻,李东,等.蝉拟青霉总多糖对老龄大鼠巨噬细胞的激活作用[J].中国病理生理杂志,2006,22(1):116-119.
    [31]毛泽善,宋向凤,马全祥,等.丝瓜藤提取物对小鼠免疫功能的影响[J].新乡医学院学报,2004,21(1):8-10.
    [32]陈伟,林新华,陈俊,等.库拉索芦荟多糖对小鼠腹腔巨噬细胞的体外激活作用[J].中国药学杂志,2005,40(1):34-37.
    [33]黄小燕,孔祥峰,王德云,等.多糖硫酸化修饰和多糖硫酸酯的研究进展[J].天然产物研究与开发,2007,19(2):328-332.
    [34]诸葛健,赵振锋,方慧英.功能性多糖的构效关系[J].无锡轻工大学学报(食品与生物技术),2002,21(2):209-212.
    [35]彭晓娜,雷晓凌.方格星虫多糖对小鼠免疫活性的影响[J].广东海洋大学学报,2007,27(4):54-57.
    [36]任健,张倩落,郑莉.人工虫草多糖对免疫低下小鼠免疫功能的影响[J].第四军医大学学报,2007,28(21):1967-1969.
    [37]张松莲,兰琦杰,曾富华,等.仙人掌多糖对小鼠非特异性免疫的影响[J].湛江师范学院学报,2007,28(3):95-99.
    [38]雷晓凌,赵树进,蒋琳兰.弯斑蛸多糖对免疫抑制小鼠的调节作用[J].中国海洋药物杂志,2007,26(5):29-33.
    [39]弥曼,任利君,梅其炳,等.百合多糖对小鼠免疫功能的影响[J].第四军医大学学报,2007,28(22):2034-2036.
    [40]王通,曾耀英.胸腺保护与抗衰老[J].中国临床康复,2005,9(23):164-166.
    [41]毛跟年,许牡丹.功能食品生理特性与检测技术[M].北京:化学工业出版社,2005,387-394.
    [42]Blake C C K, Koen D F, Mair GA, et al. Structure of hen eggwhite lysozyme [J]. Nature,1965, 206:757.
    [43]李鹤,马力,王维香.溶菌酶的研究现状[J].食品研究与开发,2008,29(1):182-185.
    [44]张海波,吴嘉敏,谭洪新,等.溶菌酶和抗菌肽在对虾养殖中的应用[J].海洋科学,22008,32(6):61-65.
    [1]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999,1-260.
    [2]Ali T, Weintraub A, Widmalm, G. Structural studies of the O-antigenic polysaccharides from the enteroaggregative Escherichia coli strain 87/D2 and international type strains from E. coli O128 [J]. Carbohydrate Research,2008,343(4):695-702.
    [3]Ghosh K, Chandra K, Roy S K, et al. Structural investigation of a polysaccharide (Fr. Ⅰ) isolated from the aqueous extract of an edible mushroom, Volvariella diplasia [J]. Carbohydrate Research, 2008,343(6):1071-1078.
    [4]Leone S, Lanzetta R, Scognamiglio R, et al. The structure of the O-specific polysaccharide from the lipopolysaccharide of Pseudomonas sp. OX1 cultivated in the presence of the azo dye Orange Ⅱ [J]. Carbohydrate Research,2008,343(4):674-684.
    [5]Li S, Wang D, Tian W, et al. Characterization and anti-tumor activity of a polysaccharide from Hedysarum polybotrys Hand.-Mazz [J]. Carbohydrate Polymers,2008,73(2):344-350.
    [6]Liu C, Li X, Li Y, et al. Structural characterisation and antimutagenic activity of a novel polysaccharide isolated from Sepiella maindroni ink [J]. Food Chemistry,2008,110(4):807-813.
    [7]Mondal S, Chandra K, Maiti D, et al. Chemical analysis of a new fucoglucan isolated from an edible mushroom, Termitomyces robustus [J]. Carbohydrate Research,2008,343(6):1062-1070.
    [8]Ojha A K, Maiti D, Chandra K, et al. Structural assignment of a heteropolysaccharide isolated from the gum of Cochlospermum religiosum (Katira gum) [J]. Carbohydrate Research,2008, 343(7):1222-1231.
    [9]Rout D, Mondal S, Chakraborty I. et al. The structure and conformation of a water-insoluble (1->3)-,(1->6)-β-D-glucan from the fruiting bodies of Pleurotus florida [J]. Carbohydrate Research,2008,343(5):982-987.
    [10]Serrato R V, Sassaki G L, Gorin P A J, et al. Structural characterization of an acidic exoheteropolysaccharide produced by the nitrogen-fixing bacterium Burkholderia tropica [J]. Carbohydrate Polymers,2008,73(4):564-572.
    [11]Alsop R M, Vlachogiannis G J. Determination of the molecular weight of clinical dextran by gel permeation chromatography on TSK PW type columns [J]. Journal of Chromatography A,1982, 246(2):227-240.
    [12]Roy S K, Maiti D, Mondal S, et al. Structural analysis of a polysaccharide isolated from the aqueous extract of an edible mushroom, Pleurotus sajor-caju, cultivar Black Japan [J]. Carbohydrate Research,2008,343(6):1108-1113.
    [13]Maciel J S, Chaves L S, Souza B W S, et al. Structural characterization of cold extracted fraction of soluble sulfated polysaccharide from red seaweed Gracilaria birdiae [J]. Carbohydrate Polymers,2008,71(4):559-565.
    [14]Ogawa K, Tsurugi J, Watanabe T. Complex of gel-forming 1,3-glucan with congored in alkaline solution [J]. Chemistry Letters,1972:689-692.
    [15]殷刚,刘铮,李琛,等.螺旋藻糖蛋白的分离纯化及其性质研究[J].高等学校化学学报,1999,20(4):565-568.
    [16]詹玲,潘思轶.大豆糖蛋白的分离纯化及结构分析[J].食品科学,2006,27(12):594-596.
    [17]裴福成,李长新,任桂萍.柱前衍生HPLC法测定地龙中氨基酸的含量[J].中医药学报,2007,35(3):26-27.
    [18]郑璐侠,邵泓,陈钢,等.13种氨基酸和牛磺酸的柱前衍生化HPLC测定[J].中国医药工业杂志,2008,39(8):610-612.
    [19]霍光华,李来生,高荫榆.波谱在多糖结构分析上的应用[J].生命的化学,2002,22(2):194-196.
    [20]阳佛送,李雪华.多糖结构研究的方法和进展[J].食品科技,2008, (3):200-203.
    [21]Ciucanu I, Kerek F. A simple and rapid method for the permethylation of carbohydrates [J]. Carbohydrate Research,1984,131(2),209-217.
    [22]方积年.多糖的甲基化分析方法[J].国外医学(药学分册),1986, (4):222-226.
    [23]范秀萍,吴红棉.氨基多糖的研究方法[J].湛江海洋大学学报,2002,22(6):73-80.
    [24]叶立斌,张劲松,潘迎捷.食药用菌多糖结构解析中的核磁共振技术[J].食用菌学报,2007,14(4):68-75.
    [25]林玉满,余萍.短裙竹荪菌丝体糖蛋白DdGP-3P3纯化及性质研究[J].福建师范大学学报(自然科学版),2003,19(1):91-94.
    [26]李亚娜,林永成,佘志刚.甘薯糖蛋白的分离、纯化和结构研究[J].华南理工大学学报(自然科学版),2004,32(9):59-62.
    [27]刘萍,陶文沂,敖中华.松口磨菌丝体糖蛋白MP的性质及其结构[J].无锡轻工大学学报,2004,23(1):17-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700