用户名: 密码: 验证码:
玉米秆粉末在超临界甲醇中的解聚及其产物的高速逆流色谱分离与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前能源和环境问题已成为全球关注的焦点,而生物质以其产量巨大、可储存和碳循环等优点已引起全球的广泛关注,开展生物质的高效转化利用对减少环境污染、减轻对化石燃料的依赖以及促进经济的可持续发展等方面具有积极的意义。
     以玉米秆为原料,在超临界甲醇解聚工艺研究的基础上,对解聚产物采用“分级蒸馏—分级萃取—高速逆流色谱制备分离—GC/MS分析”的方法进行了系统的分离与分析,以期为玉米秆的高效转化和产物的资源化利用提供理论依据。
     通过单因素和正交试验对解聚工艺中溶剂种类、反应温度、反应时间、溶剂用量及高压釜内残存空气除去方式等因素进行了探讨,确定了最佳解聚工艺:5 g玉米秆加20 mL甲醇,采用N2置换方式除去高压釜内残存的空气,300°C下反应1 h,残渣率最低26.9%。解聚液体产物的FTIR和GC/MS分析表明其成分非常复杂,含酯、酚、酮、烃及醚等类化合物,甲醇解聚产物中38.8%的甲酯类化合物,乙醇解聚产物中42.7%的乙酯类化合物和丙酮解聚产物中22.0%酮类化合物等信息揭示了溶剂直接参与了玉米秆的解聚反应。
     通过分级蒸馏实现了解聚产物的简单分级,轻质馏分为pH值接近中性的均相体系,物种信息比较简单,以低碳链的甲酯、酮、酚和醚等类化合物为主,总热值与解聚原液的总热值相近,表明轻质馏分可以作为燃料使用。稳定性实验表明,各馏分中的物种信息随时间而不断增多。
     正己烷、四氯化碳、苯、甲醇和丙酮的分级萃取实现了蒸馏残渣的初步分离,正己烷萃取物中含大量的轻质弱极性酯类化合物,四氯化碳萃取物中含较多的杂环类化合物;苯萃取物中富含芳烃和烷烃等类化合物,甲醇和丙酮萃取物中无GC/MS可检测信息。
     将高速逆流色谱技术应用于解聚产物的分离与分析,通过HPLC确定了氯仿-四氯化碳-甲醇-水(1:3:3:2,v/v)、正己烷-乙酸乙酯-甲醇-水(3:5:3:5,v/v)、乙酸乙酯-正丁醇-水(4:1:5,v/v)和乙酸乙酯-正丁醇-水(4:1:5,v/v)溶剂体系分别为蒸馏剩余液体、残渣的正己烷、四氯化碳和苯萃取物HSCCC制备分离的起始溶剂,采用步进方式洗脱,分别得到了12、6、12和12个逆流峰,HPLC和GC/MS分析表明各组分得到了明显富集,物种数量显著减少,所有样品的GC/MS可检测物种数比直接分析多很多,分别检测到159、222、207和125种,以酯、酮、酚和烃类化合物为主,但存在明显的种类差异。GC/MS分析纯度较高的化合物有11种,包括4种酮,4种酯,2种酚和1种酰胺。这些丰富的物种信息和较纯的化合物为从重质组分中获取高附加值化学品提供了一条潜在的途径。
     建立的“分级蒸馏—分级萃取—高速逆流色谱制备分离—GC/MS分析”适用于从轻质组分到中等重质组分,从弱极性组分到中极性组分的分离与分析的研究方法,丰富了生物质解聚产物中有机组分的分离与分析的研究方法。
At present, energy crisis and environmental issues have become the focus of global concern, while the biomass caused widespread concern around the world for its advantages of great production, storage and carbon cycle. It has positive significance to research in efficient conversion of biomass for decreasing environmental pollution, dependence on the fossil fuel and promoting the economic sustainable development.
     On the bases of the research on depolymerization technology of cornstalk powders in supercritical methanol, the depolymerization product was separated and analyzed systematically by the way of“graded distillation-fractional extraction-separation with high-speed countercurrent chromatography-GC/MS analysis”with a view to providing a theoretical basis for efficient conversion of cornstalk and utilization of product.
     Effects of solvent species, reaction temperature, reaction time, solvent amount and methods of removing air in the autoclave on depolymerization of cornstalk were investigated by single factor and orthogonal test. The optimum conditions were identified as the follows: 5 g cornstalk with 20 mL methanol was conducted at 300°C for 1h with substitute mode of nitrogen to remove any trapped air, and the residue rate decreased to 26.9%. The depolymerization product was analyzed with FTIR and GC/MS. The results showed that its components were quite complex, and there are a majority of oxygen-containing organic compounds which include esters, phenols, ketones, hydrocarbons, aethers and other compounds in the depolymerization product. The relative content of methyl esters was 38.8% in the depolymerization product of supercritical methanol, the relative content of ethyl esters was 42.7% in the product of supercritical ethanol, while the content of ketones was 22.0% in the product of supercritical ketone. These facts indicate that solvents involve in the depolymerization of the cornstalk powders respectively.
     The depolymerization product was fractioned by fractional distillation. The light fractions were a homogeneous system with proper caloric value and pH values near neutrality. The species information was relatively simple and these compounds mainly include methyl esters, ketones, phenols, and aethers. The total calorific value of all light fractions was little less than the value of the depolymerization initial sample, so the light fractions could be used as fuel while the remaining liquid could not suitable for fuel. The stability experiment revealed that the species information of the fractions increased gradually as time.
     The distillation residue was sequentially extracted with n-hexane, carbon tetrachloride, benzene, methanol and acetone in a Soxhlet extractor. Lots of light low-polar esters, heterocyclic compounds, aromatics and alkanes were identified in the fractions of n-hexane, carbon tetrachloride and benzene,respectively, while none were detected in the extracts of methanol and acetone by the GC/MS.
     The extracts were further separated with a high speed countercurrent chromatography (HSCCC) and then analyzed with HPLC and GC/MS. The original solvent systems of HSCCC established by HPLC were chloroform/carbon tetrachloride/methanol/water(1:3:3:2, v/v), n-hexane/ethyl acetate/methanol/water(3:5:3:5, v/v), ethyl acetate/n-butanol/water(4:1:5, v/v)and ethyl acetate/n-butanol/water (4:1:5, v/v) for distillation residual liquid, extractable fractions with n-hexane, carbon tetrachloride and benzene from distillation residue, respectively. A stepwise elution mode was introduced in the separation and purification and 12, 6, 12 and 12 chromatographic peaks were obtained, respectively. The results of analysis by HPLC and GC/MS showed that the components of every fraction were simple significantly and the number of species decreased markedly. Compared with the direct analysis to the four fractions, there are significant increases in the species number of compounds detected by GC/MS, which was 159, 222, 207 and 125. These compounds were mainly esters, ketones, phenols and hydrocarbons, but there was an obvious difference in type. 11 compounds with high purity were separated successfully from the four fractions, and 4 ketones, 4 esters, 2 phenols and 1 acid amide.
     These abundant compounds messages and high purity compounds was significant valuable for investigating the comprehensive utilization of the depolymerization products and the depolymerization mechanism of biomass. This result displays a possibility of production of fine chemicals from heavy components through separation approach. The study system of separation and analysis of“graded distillation-fractional extraction-separation with HSCCC-GC/MS analysis”was suitable for separation and analysis of the fractions from light to medium heavy components and the fractions from low polar to medium polar components, and also enriched the study methods of separation and analysis of the organic compounds in the biomass depolymerization products.
引文
[1]宋春财.农作物秸秆的热解及在水中的液化研究[D].大连理工大学,2003.
    [2]魏晓旻.生物质液化的实验研究[D].北京化工大学,2003.
    [3]严陆光,陈俊武,周凤起,赵忠贤,翟光明,谢克昌,匡廷云,何祚庥,衣宝廉,吴承康,蔡睿贤.我国中远期石油补充与替代能源发展战略研究[J]. 2006,25(4):1-7.
    [4]陈洪章,徐建,姚建中,李佐虎.秸秆分层多级转化液体燃料新工艺的研究进展[J].生物加工过程,2005,3(1):9-13.
    [5]闵恩泽.利用可再生农林生物质资源的炼油厂——推动化学工业迈入“碳水化合物”新时代[J].化学进展,2006,18(2):131-141.
    [6]廖艳芬,王树荣,骆仲泱,谭洪,余春江,周劲松,岑可法.纤维素快速热裂解试验研究及分析[J].浙江大学学报:工学版,2003,37(5):582-587.
    [7]徐勇.欧阳平凯:用生物质资源替代化石资源是大势所趋[J].科学新闻,2006(13):2.
    [8]王晓艳.生物油及相关生物质原料的特性分析[D].吉林农业大学,2005.
    [9]崔民选.中国能源发展报告2008[M].社会科学文献出版社,2008.
    [10]赖艳华,吕明新.秸秆类生物质热解特性及其动力学研究[J].太阳能学报,2002,23(2):203-206.
    [11]吕鹏梅,袁振宏,马隆龙,吴创之,陈勇.生物质废弃物催化裂解制备富氢燃气实验研究[J].环境污染治理技术与设备,2006,7(9):35-40.
    [12]农业部《农业生物质能产业发展规划(2007—2015年)》,2007.
    [13]李爱民,秦四强,李润东,李延吉,袁用文.生物质物料气化产气特性的研究[J].热力发电,2004,33(10):22-25.
    [14]赵旺初.生物质气化发电示范工程[J].热能动力工程,2005,20(6):564.
    [15]陈冠益,李强,Spliethoff H,王福全.生物质热解气化制取氢气[J].太阳能学报,2004,25(6):776-781.
    [16]朱锡锋,Venderbosch R H.生物质热解油气化试验研究[J].燃料化学学报,2004,32(4):510-512.
    [17]刘圣勇,马骏,李荫,谢海江,郭前辉.秸秆成型燃料双层炉排锅炉炉膛温度分布试验与分析[J].农业工程学报,2006,22(7):101-104.
    [18]何晓峰,雷廷宙,李在峰,朱金陵.生物质颗粒燃料冷成型技术试验研究[J].太阳能学报,2006,27(9):937-941.
    [19]余有芳,盛奎川,Hassan G.生物质成型燃料的热解燃烧特性试验研究[J].浙江大学学报:农业与生命科学版,2005,31(5):663-667.
    [20]余贻骥.中国造纸工业循环经济的进展[J].纸和造纸,2007,26(1):1-3.
    [21]张晓燕,赵广杰,刘志军.木质生物质的生物分解及生物转化研究进展[J].林业科学,2006,42(3):85-93.
    [22] Liao Y F, Wang S R, Ma X Q, Luo Z, Cen K. Numerical approach to the mechanism of cellulose pyrolysis [J]. Chinese J Chem Eng, 2005, 13 (2): 197-203.
    [23] Minowa T, Zhen F, Ogi T. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst [J]. J Supercrit Fluid, 1998, 13 (1-3): 253-259.
    [24] Liao Y, Wang S, Luo Z, Cen K, Ma X. Catalysis mechanism of calcium salt in cellulose rapid pyrolysis [J]. Acta Energiae Solaris Sinica, 2005, 26 (5): 654-659.
    [25] Yang H, Yan R, Chen H, Lee D H, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis [J]. Fuel, 2007, 86 (12-13): 1781-1788.
    [26] Hosoya T, Kawamoto H, Saka S. Cellulose-hemicellulose and cellulose-lignin interactions in wood pyrolysis at gasification temperature [J]. J Anal Appl Pyrol, 2007, 80 (1): 118-125.
    [27] Sj?berg G, Nilssona S I, Perssonb T, Karlssonb P. Degradation of hemicellulose, cellulose and lignin in decomposing spruce needle litter in relation to N [J]. Soil Biol Biochem, 2004, 36 (11): 1761-1768.
    [28] Selhan K, Thallada B, Akinori M, Sakata Y. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment [J]. Fuel, 2005, 84 (7-8): 875-884.
    [29] Robertson S A, Mason S L, Hack E, Abbott G D. A comparison of lignin oxidation, enzymatic activity and fungal growth during white-rot decay of wheat straw [J]. Org Geochem, 2008, 39 (8): 945-951.
    [30] Gani A, Naruse I. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass [J]. Renewable Energy, 2007, 32 (4): 649-661.
    [31]陈辉,陆善祥.生物质制燃料乙醇[J].石油化工,2007,36(2):107-117.
    [32]杏艳,赵金安,樊耀亭,侯红卫,刘宝敏.含纤维素类生物质的生物制氢[J].太阳能学报,2006,27(7):656-660.
    [33]宋安东,张建威,吴云汉,马向东.利用酒糟生物质发酵生产燃料乙醇的试验研究[J].农业工程学报,2003,19(4):278-281.
    [34] Maria Z O, Backman R, Skrifvars B J, Hupa M. The ash chemistry in fluidised bed gasification of biomass fuels. Part I: predicting the chemistry of melting ashes and ash-bed material interaction [J]. Fuel, 2001, 80 (10): 1489-1502.
    [35] Demirbas A. Hydrogen production from biomass via supercritical water extraction [J]. Energ Source, 2005, 27 (15): 1409-1417.
    [36] Lu Y, Guo L, Zhang X, Yan Q. Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water [J]. Chem Eng J, 2007, 131 (1-3): 233-244.
    [37]乔春珍,肖云汉,赵丽凤,徐祥.生物质一步制氢的热力学分析及实验研究[J].太阳能学报,2007,28(1):91-96.
    [38]关宇,裴爱霞,郭烈锦.纤维素在超临界水中的催化气化制氢研究[J].高校化学工程学报,2007,21(3):436-441.
    [39]张春梅,刘荣厚.生物质热裂解液化物质平衡及影响因素分析[J].农机化研究,2006(10):144-146.
    [40]王琦,王树荣,王乐,谭洪,骆仲泱,岑可法.生物质快速热裂解制取生物油试验研究[J].工程热物理学报,2007,28(1):173-176.
    [41]董芃,齐国利,王丽,翟明.生物质快速热解制取生物质油[J].太阳能学报,2007,28(2):223-226.
    [42] Minowa T, Ogi T, Dote Y, Yokoyama S. Methane production from cellulose by catalytic gasification [J]. Renewable Energy, 1994, 5 (5-8): 813-815.
    [43]何方,王华.生物质液化制取液体燃料和化学品[J].能源工程,1999(5):14-17.
    [44] Minowa T, Hanaoka T, Yokoyama S. Process evaluation of biomass to liquid fuel production system with gasification and liquid fuel synthesis[J]. Stud Surf Sci Catal, 2004,153 (6): 79-84.
    [45] Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicals [J]. Energ Conv Manage, 2001, 42 (11): 1357-1378.
    [46] Karag S, Bhaskar T, Muto A, Sakata Y. Hydrothermal upgrading of biomass: Effect of K2CO3 concentration and biomass/water ratio on products distribution [J]. Bioresource Technol, 2006, 97 (1): 90-98.
    [47]朱锡锋,郑冀鲁,陆强,郭庆祥,朱清时.生物质热解液化装置研制与试验研究[J].中国工程科学,2006:89-93.
    [48]刘孝碧,曲敬序,李栋,毛志怀.玉米秸在亚/超临界乙醇-水中液化的初步研究[J].农业工程学报,2006,22(5):130-134.
    [49]周中仁,吴文良.生物质能研究现状及展望[J].农业工程学报,2005,21(12):12-15.
    [50] Venturi P, Venturi G. Analysis of energy comparison for crops in European agricultural systems [J]. Biomass Bioenerg, 2003, 25(3): 235-255.
    [51]宋昭峥,丁宏霞,孙贵利,柯明,蒋庆哲.国外可再生能源发展现状与展望[J].现代化工,2007,27(5):61-64.
    [52]易维明,柏雪源,何芳,姚福生.利用热等离子体进行生物质液化技术的研究[J].山东工程学院学报,2000,14(1):9-12.
    [53]李辉,袁兴中,曾光明,佟婧怡,谢文.混合溶剂对稻草亚/超临界液化行为影响初探[J].农业工程学报,2008,24(5):200-203.
    [54]董芃,齐国利,王丽,翟明.生物质快速热解制取生物质油[J].太阳能学报,2007,28(2):223-226.
    [55]曹青,刘岗,鲍卫仁,吕永康.生物质与废轮胎共热解及催化对热解油的影响[J].化工学报,2007,58(5):1283-1289.
    [56]袁成凌,刘昌伟,等. CO2超临界萃取技术富集微生物油脂中花生四烯酸的研究[J].中国油脂,2002,27(6):48-50.
    [57]王晓.超临界CO2/超声波强化萃取-高速逆流色谱纯化技术的集成及其在生物活性成分研究中的应用[D].山东农业大学,2005.
    [58]刘以红,罗运华.大港减渣窄馏分族组成及结构参数[J].石油化工高等学校学报,2003,16(3):42-46.
    [59]邵千钧,彭锦星,修树东,文先红.竹子在超临界甲醇中的热解油产物分析[J].太阳能学报,2007,28(9):984-987.
    [60] Kabyemela B M, Adschiri T, Malaluan R, Arai K. Degradation kinetics of dihydroxyacetone and glyceraldehyde in subcritical and supercritical water [J]. Ind Eng Chem Res, 1997, 36 (6): 2025-2030.
    [61] Kabyemela B M, Adschiri T, Malaluan R M, Arai K. Kinetics of glucose epimerization and decomposition in subcritical and supercritical water [J]. Ind Eng Chem Res, 1997, 36 (5): 1552-1558.
    [62] Kabyemela B M, Adschiri T, Malaluan R M, Arai K, Ohzeki H. Rapid and selective conversion of glucose to erythrose in supercritical water [J]. Ind Eng Chem Res, 1997, 36 (12): 5063-5067.
    [63] Kabyemela B M, Takigawa M, Adschiri T, Malaluan R M, Arai K. Mechanism and kinetics of cellobiose decomposition in sub- and supercritical water [J]. Ind Eng Chem Res, 1998, 37 (2): 357-361.
    [64] Sasaki M, Adschiri T, Arai K. Production of cellulose from native cellulose by near- and supercritical water solubilization [J]. J Agr Food Chem, 2003, 51 (18): 5376-5381.
    [65] Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K. Dissolution and hydrolysis of cellulose in subcritical and supercritical water [J]. Ind Eng Chem Res, 2000, 39 (8): 2883-2890.
    [66] Sasaki M, Kabyemela B M, Malaluan R M, Hirose S, Takeda N, Adschiri T, Arai K. Cellulose hydrolysis in subcritical and supercritical water [J]. J Supercrit Fluid, 1998, 13 (5): 261-268.
    [67] Buehler W, Dinjus E, Ederer H J, Kruse A, Mas C. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical water [J]. J Supercrit Fluid, 2002, 22 (1): 37-53.
    [68] Kruse A, Gawlik A. Biomass conversion in water at 330?410°C and 30?50 MPa identification of key compounds for indicating different chemical reaction pathways [J]. Ind Eng Chem Res, 2003, 42 (2): 267-279.
    [69]汪利平,吕惠生,张敏华.纤维素超临界水解反应的研究进展[J].林产化学与工业,2006,26(4):117-120.
    [70]谭洪,王树荣,骆仲泱,余春江,岑可法.木质素快速热裂解试验研究[J].浙江大学学报:工学版,2005,39(5):710-714.
    [71]姚燕,王树荣,郑赟,骆仲泱,岑可法.基于热红联用分析的木质素热裂解动力学研究[J].燃烧科学与技术,2007,13(1):50-54.
    [72]岳金方,应浩.工业木质素的热裂解试验研究[J].农业工程学报,2006,22(S1):125-128.
    [73]赵岩,王洪涛,陆文静,李冬.秸秆超(亚)临界水预处理与水解技术[J].化学进展,2007,19(11):1832-1838.
    [74] Goudriaan F, Peferoen D G. Liquid fuels from biomass via a hydrothermal process [J]. Chem Eng Sci, 1990, 45 (8): 2729-2734.
    [75] Cemek M, Kucuk M M. Liquid products from Verbascum stalk by supercritical fluid extraction [J]. Energ Conv Manage, 2001, 42 (2): 125-130.
    [76] Demirbas A. Liquefaction of olive husk by supercritical fluid extraction [J]. Energ Conv Manage, 2000, 41 (17): 1875-1883.
    [77]宋春财,胡浩权,朱盛维,朱英华.生物质秸秆热重分析及几种动力学模型结果比较[J].燃料化学学报,2003,31(4):311-316.
    [78] Lehr V, Sarlea M, Ott L, Vogel H. Catalytic dehydration of biomass-derived polyols in sub- and supercritical water [J]. Catal Today, 2007, 121 (1-2): 121-129.
    [79] Matsumura Y, Nonaka H, Yokura H, Tsutsumi A, Yoshida K. Co-liquefaction of coal and cellulose in supercritical water [J]. Fuel, 1999, 78 (9): 1049-1056.
    [80] Xu C, Etcheverry T. Hydro-liquefaction of woody biomass in sub- and super-critical ethanol with iron-based catalysts [J]. Fuel, 2008, 87 (3): 335-345.
    [81] Yoshida T, Matsamura Y. Gasification of cellulose, xylan, and lignin mixtures in supercritical water[J]. Ind Eng Chem Res,2001, 40 (5): 5469-5476.
    [82] Sivakumar P, Jung H, Tierney J W, Wender I. Liquefaction of lignocellulosic and plastic wastes with coal using carbon monoxide and aqueous alkali [J]. Fuel Process Technol, 1996, 49 (1-3): 219-232.
    [83]王树荣,骆仲泱,谭洪,洪军,董良杰,方梦祥,岑可法.生物质热裂解生物油特性的分析研究[J].工程热物理学报,2004,25(6):1049-1052.
    [84]何建辉,钱叶剑,谈建,左承基.水中直接液化木质生物质的试验研究[J].合肥工业大学学报:自然科学版,2006,29(1):110-112.
    [85]刘荣厚,袁海荣,李金洋.花生壳热解试验及其剩余物特性红外光谱分析[J].农业工程学报,2007,23(12):197-201.
    [86] Nurgül ?, Esin A, Ba?ak B U, Ay?e E P. Characterization of bio-oil obtained from fruit pulp pyrolysis [J]. Energy, 2008, 33 (8): 1233-1240.
    [87]朱满洲,朱锡锋,郭庆祥,朱清时.以玉米秆为原料的生物质热解油的特性分析[J].中国科学技术大学学报,2006,36(4):374-377.
    [88]王树荣,骆仲泱,董良杰,方梦祥,岑可法.几种农林废弃物热裂解制取生物油的研究[J].农业工程学报,2004,20(2):246-249.
    [89]王丽红,柏雪源,易维明,孔凡霞,李永军,何芳,李志合.玉米秸秆热解生物油特性的研究[J].农业工程学报,2006,22(3):108-111.
    [90] Taner F, Eratik A, Ardic I. Identification of the compounds in the aqueous phases from liquefaction of lignocellulosics [J]. Fuel Process Technol, 2005, 86 (4): 407-418.
    [91]张素萍,颜涌捷,任铮伟,李庭琛.生物质快速裂解液体产物的分析[J].华东理工大学学报,2001,27(6):666-668.
    [92] Boon J J, Pastorova I, Botto R E, Arisz P W. Structural studies on cellulose pyrolysis and cellulose char by PYMS, PYGVMS, FTIR, NMR and by wet chemical techniques[J]. Biomass Bioenerg, 1994, 7 (1-6): 25-32.
    [93] Bighelli A, Tomi F, Casanova J. Computer-aided carbon-13 NMR study of phenols contained in liquids produced by pyrolysis of biomass [J]. Biomass Bioenerg, 1994, 6 (6): 461-464.
    [94] Qian Y, Zuo C, Tan J, He J. Structural analysis of bio-oils from sub-and supercritical water liquefaction of woody biomass [J]. Energy, 2007, 32 (3): 196-202.
    [95] Xiu Z L, Chen X, Sun Y Q, Zhang D J. Stoichiometric analysis and experimental investigation of glycerol-glucose co-fermentation in Klebsiella pneumoniae under microaerobic conditions [J]. Biochem Eng J, 2007, 33 (1): 42-52.
    [96] Sharypov V I, Beregovtsova N G, Kuznetsov B N, Membrado L, Cebolla V L, Marin N, Weber J V. Co-pyrolysis of wood biomass and synthetic polymers mixtures. Part III: Characterisation of heavy products [J]. J Anal Appl Pyrol, 2003, 67 (2): 325-340.
    [97] Putun A E, Ozcan A, Putun E. Pyrolysis of hazelnut shells in a fixed-bed tubular reactor: yields and structural analysis of bio-oil [J]. J Anal Appl Pyrol, 1999, 52 (1): 33-49.
    [98] Das P, Sreelatha T, Ganesh A. Bio oil from pyrolysis of cashew nut shell-characterisation and related properties [J]. Biomass Bioenerg, 2004, 27 (3): 265-275.
    [99] Li S, Xu S, Lu Q, Liu S. Column chromatographic separation of bio-oil from fast pyrolysis of biomass [J]. Acta Energiae Solaris Sinica, 2005, 26 (4): 549-555.
    [100]孙芳,肖向红,杨琳.东北林蛙皮肤分泌物中特定范围内蛋白和多肽凝胶层析分析[J].野生动物,2007,28(3):22-25.
    [101]刘尚义,刘秀文,蔡耘,宋海峰,应万涛,朱宝珍,李蕾,汤仲明,钱小红.亲和层析结合生物质谱技术分析鉴定猕猴血清中的重组人内皮抑制素[J].分析化学,2003,31(3):277-282.
    [102]任辉.免疫胶体金层析法快速检测食品中吗啡[J].中国公共卫生,2004,20(4):488.
    [103]张素萍,颜涌捷,任铮伟,李庭琛.生物质快速裂解液体产物的分析[J].华东理工大学学报:自然科学版,2001,27(6):666-668.
    [104]李世光,徐绍平,路庆花,刘淑琴.快速热解生物油柱层析分离与分析[J].太阳能学报,2005,26(4):549-555.
    [105]谭洪,王树荣,骆仲泱,岑可法.生物质三组分热裂解行为的对比研究[J].燃料化学学报,2006,34(1):61-65.
    [106]孟志强,秦鹏,刘景委,李彦恒,赵存良.有机抽提物族组分小柱状色谱分离[J].化学世界,2006,47(5):271-272.
    [107]徐世平,孙永革.一种适用于沉积有机质族组分分离的微型柱色谱法[J].地球化学,2006,35(6):681-688.
    [108] Onay O, Bayram E, Kockar O M. Copyrolysis of seyitomer-lignite and safflower seed: influence of the blending ratio and pyrolysis temperature on product yields and oil characterization [J]. Energ Fuel, 2007, 21 (5): 3049-3056.
    [109] Sevgi ?, ?lknur D, Ger?elb H F. Olive bagasse (Olea europea L.) pyrolysis [J]. Bioresource Technol,2006, 97 (3): 429-436.
    [110] Das P, Sreelatha T, Ganesh A. Bio oil from pyrolysis of cashew nut shell-characterisation and related properties [J]. Biomass Bioenerg, 2004, 27 (3): 265-275.
    [111] Ito Y. Countercurrent chromatography [J]. Trends Biochem Sci, 1982, 7(2): 47-50.
    [112] Mandava N B, Ito Y. Separation of plant hormones by counter-current chromatography [J]. J Chromatogr A, 1982, 247 (2): 315-325.
    [113] Ito Y, Sandlin J, Bowers W G. High-speed preparative counter-current chromatography with a coil planet centrifuge [J]. J Chromatogr A, 1982, 244 (2): 247-258.
    [114] Ito Y. Countercurrent chromatography [J]. J Biochem Biophys Meth, 1981, 5 (2): 105-129.
    [115]赵碧清,段更利.高速逆流色谱法在中药有效成分分离中的应用[J].中成药,2007,29(9):1347-1349.
    [116] Baldermann S, Ropeter K, Nils K, Fleischmann P. Isolation of all-trans lycopene by high-speed counter-current chromatography using a temperature-controlled solvent system [J]. J Chromatogr A, 2008, 1192 (1): 191-193.
    [117] Friesen J B, Pauli G F. Rational development of solvent system families in counter-current chromatography [J]. J Chromatogr A, 2007, 1151 (1-2): 51-59.
    [118] Yanagida A, Yamakawa Y, Noji R, Oda A, Shindo H, Ito Y, Shibusawa Y. Comprehensive separation of secondary metabolites in natural products by high-speed counter-current chromatography using a three-phase solvent system [J]. J Chromatogr A, 2007, 1151 (1-2): 74-81.
    [119]颜继忠,褚建军,童胜强.中药分离中高速逆流色谱溶剂体系的选择[J].中国现代应用药学,2003,20(5):374-376.
    [120] Shibusawa Y, Yamakawa Y, Noji R, Yanagida A, Shindo H, Ito Y. Three-phase solvent systems for comprehensive separation of a wide variety of compounds by high-speed counter-current chromatography [J]. J Chromatogr A, 2006, 1133 (1-2): 119-125.
    [121]陈建华,黄少烈,李忠.高速逆流色谱技术制备石杉碱甲单体[J].中国现代应用药学,2006,23(4):295-297.
    [122]陈理,邓丽杰,陈平.高速逆流色谱分离同分异构体[J].色谱,2006,24(6):570-573.
    [123]陈平,孙东,郑小明. EGCG棕榈酸酯的制备、结构及其抗氧化活性[J].浙江大学学报:理学版,2003,30(4):422-425.
    [124]蔡定国,吴建均.高速逆流色谱法用于甜味剂阿司帕坦的提纯合杂质鉴别[J].中国医药工业杂志,1993,24(11):481-483.
    [125]洪波,赵宏峰,司云珊,徐雅娟.高速逆流色谱在中药有效成分分离中的应用研究进展[J].吉林农业大学学报,2005,27(5):522-527.
    [126]毛立新,刘诚,杨小兰.高速逆流色谱在保健食品功能成分纯化中的应用[J].食品科学,2007,28(2):372-374.
    [127]陈爱华,杨坚.高速逆流色谱(HSCCC)在食品色素制备中的应用[J].中国食品添加剂,2005(1):83-85.
    [128]曹学丽,徐亚涛,章光明,谢生猛,董银卯.微生物发酵产辅酶Q10的高速逆流色谱法分离纯化[J].中国生物工程杂志,2006,26(8):88-92.
    [129]夏兴,戈梅,陈代杰.利用高速逆流色谱从真菌HCCB00106转化液分离转化产物[J].中国抗生素杂志,2007,32(3):3-4.
    [130] Sutherland I A, Heywood-Waddington D, Ito Y. Counter-current chromatography : Applications to the separation of biopolymers, organelles and cells using either aqueous--organic or aqueous--aqueous phase systems [J]. J Chromatogr A, 1987, 384 (8): 197-207.
    [131]曹学丽.高速逆流色谱技术在药物研究开发中的应用[J].世界科学技术:中医药现代化,2007,9(1):54-58.
    [132]曹学丽.高速逆流色谱分离技术及应用[M].化学工业出版社,2005.
    [133]戴德舜,伍方勇,王义明,罗国安.高速逆流色谱实验体系的选择和优化[J].分析仪器,2001(3):31-34.
    [134]程杰,符晓晖,王维娜.高速逆流色谱在中药分离中溶剂体系的筛选[J].中草药,2008,39(8):1272-1275.
    [135] Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1065 (2): 145-168.
    [136] Peng J, Jiang Y, Fan G, Chen B, Zhang Q, Chai Y, Wu Y. Optimization suitable conditions for preparative isolation and separation of curculigoside and curculigoside B from Curculigo orchioides by high-speed counter-current chromatography [J]. Sep Purif Technol, 2006, 52 (1): 22-28.
    [137] Jerz G, Skotzki T, Fiege K, Winterhalter P, Wybraniec S. Separation of betalains from berries of Phytolacca americana by ion-pair high-speed counter-current chromatography [J]. J Chromatogr A, 2008, 1190 (1-2): 63-73.
    [138] K?hlera N, Wrayb V, Winterhalter P. Preparative isolation of procyanidins from grape seed extracts by high-speed counter-current chromatography [J]. J Chromatogr A, 2008, 1177 (1): 114-125.
    [139] Wu H, Su Z, Yang Y, Ba H, Aisa H A. Isolation of three sesquiterpene lactones from the roots of Cichorium glandulosum Boiss et Huet by high-speed counter-current chromatography [J]. J Chromatogr A, 2007, 1176 (1-2): 217-222.
    [140]胡江涌,梁勇,谢亚,黄肇锋,钟汉佐.土豆叶中茄尼醇的高速逆流色谱法分离纯化及质谱解析[J].色谱,2007,25(4):528-531.
    [141]黄丹凤,曹学丽,赵华,董银卯.高速逆流色谱与硅胶柱色谱结合分离制备高纯度芦荟素异构体[J].色谱,2006,24(1):42-45.
    [142]杨子银,屠幼英,赵勤,何普明.高速逆流色谱分离茶黄素单体的初步研究[J].食品科学,2005,26(10):87-90.
    [143] Peng J, Zhan L, Dong F, Han X, Qi Y, Xu Y, Xu L, Xu Q, Liu K. A comparative study of chromatographic methods for separating chemical compounds from Spiranthes australis (R. Brown) Lindl roots [J]. Sep Purif Technol, 2008, 59 (3): 262-269.
    [144]龚雨顺,刘仲华,黄建安.茶叶中儿茶素制备纯化研究进展[J].茶叶通讯,2003(1):15-18.
    [145]杜琪珍,李名君.高速逆流色谱法分离茶叶中的儿茶素[J].中国茶叶,1996,18(2):20-21.
    [146]江和源,台建祥,吕飞杰.高速逆流色谱法分离制备大豆异黄酮中的大豆苷和染料木苷[J].食品科学,2004,25(1):85-88.
    [147] Oka H, Harada K, Ito Y, Ito Y. Separation of antibiotics by counter-current chromatography [J]. J Chromatogr A, 1998, 812 (1-2): 35-52.
    [148]方东升,谢阳,陈勇,陈晓明,郑卫.高速逆流色谱法分离纯化环孢菌素[J].中国抗生素杂志,2005,30(1):48-51.
    [149] Ma Z M, Zhang L Z, Han S J. Separation of samarium, gadolinium, terbium, gysprosium, erbium and ytterbium by high-speed countercurrent chromatography with organophosphate ester[J]. J Chromatogr A, 1997, 766 (1-2): 282-285.
    [150] Pukhovskaya V M, Grebneva O N, Maryutina T A, Kuz'Min N M, Spivakov B Y. Inductively coupled plasma atomic emission spectroscopic determination of rare earth elements in geological samples after preconcentration by countercurrent chromatography [J]. Spectrochim Acta Pt B-At Spec, 1995, 50 (1): 5-12.
    [151] Kitazume E, Sato N, Saito Y, Ito Y. Separation of heavy metals by high-speed countercurrent chromatography [J]. Anal Chem, 1993, 65 (17): 2225-2228.
    [152]刘云,侴桂新.高速逆流色谱法分离制备乌药叶中的黄酮类成分[J].色谱,2007,25(5):735-739.
    [153]彭金咏,范国荣,吴玉田,陈洪渊.白花败酱草中异牡荆苷和异荭草苷的高速逆流色谱分离和制备[J].分析化学,2005,33(10):1389-1392.
    [154]李爱峰.高速逆流色谱分离纯化大黄、补骨脂等中药活性成分的研究[D].聊城大学,2005.
    [155] Liu Z, Jin Y, Shen P, Wang J, Shen Y. Separation and purification of verticine and verticinone from Bulbus Fritillariae Thunbergii by high-speed counter-current chromatography coupled with evaporative light scattering detection [J]. Talanta, 2007, 71 (5): 1873-1876.
    [156] Maier T, Sanzenbacher S, Kammerer D R, Berardini N, Conrad J, Beifuss U, Carle R, Schieber A. Isolation of hydroxycinnamoyltartaric acids from grape pomace by high-speed counter-current chromatography [J]. J Chromatogr A, 2006, 1128 (1-2): 61-67.
    [157] Lu J, Wei Y, Yuan Q. Preparative separation of punicalagin from pomegranate husk by high-speed countercurrent chromatography [J]. J Chromatogr B, 2007, 857 (1): 175-179.
    [158] Liu R, Chu X, Sun A, Kong L. Preparative isolation and purification of alkaloids from the Chinese medicinal herb Evodia rutaecarpa (Juss) Benth by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1074 (1-2): 139-144.
    [159] Ma X, Tian W, Wu L, Cao X, Ito Y. Isolation of quercetin-3-O-l-rhamnoside from acer truncatum bunge by high-speed counter-current chromatography [J]. J Chromatogr A, 2005, 1070 (1-2): 211-214.
    [160]中华人民共和国和国家质量监督检验检疫总局. GB/T212-2001煤的工业分析方法[M].中国标准出版社,2002.
    [161]张丽英.饲料分析及饲料质量检测技术[M].中国农业大学出版社,2007.
    [162]张平,汤小红,陈文利.超临界CO2萃取生物油脂成份的GC—MS分析[J].武汉化工学院学报,2005,27(4):11-12.
    [163] Yang C, Lu X, Lin W, Yang X, Yao J. TG-FTIR study on corn straw pyrolysis-influence of minerals [J]. Chem Res Chinese Univ, 2006, 22 (4): 524-532.
    [164]王伟,蓝煜昕,李明. TG-FTIR联用下生物质废弃物的热解特性研究[J].农业环境科学学报,2008,27(1):380-384.
    [165]欧阳东,陈楷.稻壳灰显微结构及其中纳米SiO2的电镜观察[J].电子显微学报,2003,22(5):390-394.
    [166]李水清,李爱民,等.生物质废弃物在回转窑内热解研究——Ⅰ.热解条件对热解产物分布的影响[J].太阳能学报,2000,21(4):333-340.
    [167]关宇,裴爱霞,郭烈锦.纤维素在超临界水中的催化气化制氢研究[J].高校化学工程学报,2007,21(3):436-441.
    [168] Izumizaki Y, Park K C, Tachibana Y, Tomiyasu H, Fujii Y. Organic decomposition in supercritical water by an aid of ruthenium (iv) oxide as a catalyst-exploitation of biomass resources for hydrogen production- [J]. Prog Nucl Energy, 2005, 47 (1-4): 544-552.
    [169] Wang C, Du Z, Pan J, Li J, Yang Z. Direct conversion of biomass to bio-petroleum at low temperature [J]. J Anal Appl Pyrol, 2007, 78 (2): 438-444.
    [170] Matsumura Y, Sasaki M, Okuda K, Takami S, Ohara S, Umetsu M, Adschiri T. Supercritical water treatment of biomass for energy and material recovery [J]. Combust Sci Technol, 2006, 178(7): 509-517.
    [171] Nakata T, Miyafuji H, Saka S. Bioethanol from cellulose with supercritical water treatment followed by enzymatic hydrolysis [J]. Appl Biochem Biotech, 2006, 130: 476.
    [172] Goodwin A K, Rorrer G L. Conversion of glucose to hydrogen-rich gas by supercritical water in a microchannel reactor [J]. Ind Eng Chem Res, 2008, 47 (12): 4106-4114.
    [173]梁凌云.秸秆热化学液化工艺和机理的研究[D].中国农业大学,2005.
    [174]张军,范志林,林晓芬,徐益谦.灰化温度对生物质灰特征的影响[J].燃料化学学报,2004,32(5):547-551.
    [175]伊晓路,郭东彦,张卫杰,许敏,孙立.生物质原料对循环流化床燃烧过程的影响[J].农业环境科学学报,2006,25(9):629-631.
    [176]王娜娜.闪速加热条件下低灰分生物质热解挥发特性的研究[D].山东理工大学,2006.
    [177] Miller J E, Evans L, Littlewolf A, Trudell D E. Batch microreactor studies of lignin and lignin modelcompound depolymerization by bases in alcohol solvents [J]. Fuel, 1999, 78 (11): 1363-1366.
    [178]徐俊明,蒋剑春,卢言菊.生物热解油精制改性研究进展[J].现代化工,2007,27(7):13-17.
    [179]张琦,常杰,王铁军,徐莹.生物质裂解油的性质及精制研究进展[J].石油化工,2006,35(5):493-498.
    [180] Zhao W, Zong Z M, Lin J, Song Y. Dewaxing from stalks with petroleum ether by different methods [J]. Energ Fuel, 2007, 21 (2): 1165-1168.
    [181] Kershaw J R. Comments on the role of the solvent in supercritical fluid extraction of coal [J]. Fuel, 1997, 76(5): 453-454.
    [182] Maschio G, Koufopanos C, Lucchesi A. Pyrolysis, a promising route for biomass utilization [J]. Bioresource Technol, 1992, 42 (3): 219-231.
    [183] Shin E J, Nimlos M R, Evans R J. Kinetic analysis of the gas-phase pyrolysis of carbohydrates [J]. Fuel, 2001, 80 (12): 1697-1709.
    [184] Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K. Cellulose hydrolysis in subcritical and supercritical water [J]. J Supercrit Fluid, 1998, 13 (1-3): 261-268.
    [185] Kabyemela B M, Adschiri T, Malaluan R M, Arai K. Degradation kinetics of dihydroxyacetone and glyceraldehyde in sub- and supercritical water [J]. Ind Eng Chem Res, 1997, 36 (3): 2025-2031.
    [186] Kabyemela B M, Takigawa M, Adschiri T, Malaluan R M, Arai K. Mechanism and kinetics of cellobiose decomposition in sub- and supercritical water [J]. Ind Eng Chem Res, 1998, 37 (2): 357-361.
    [187] Caddick S, Cheung S, Doyle V E, Frost L M, Soscia M G, Delisser V M, Williams M R V, Etheridge Z C, Khan S, Hitchcock P B, Pairaudeau G, Vile S. Stereoselective synthesis of polyfunctionalised hydroxylated cyclopentanes from dihydroxylated 2-cyclopentenone derivatives [J]. Tetrahedron, 2001, 57 (29): 6295-6303.
    [188] Caddick S, Khan S, Frost L M, Smith N J, Cheung S, Pairaudeau G. Studies toward the synthesis of natural and unnatural dienediynes. Part 2: A practical approach to functionalised cyclopentenones [J]. Tetrahedron, 2000, 56 (45): 8953-8958.
    [189]令狐文生,张昌鸣,李允梅,杨建丽,刘振宇.重质油和焦油的族组成分析[J].分析科学学报,2003,19(5):423-424.
    [190]胡斌,袁子艳,邓天龙.高效液相色谱法分析芳烃时检测波长的选择[J].化学分析计量,2006,15(3):53-54.
    [191]欧阳东,陈楷.稻壳灰显微结构的研究[J].材料科学与工程学报,2003,21(5):647-650.
    [192]欧阳东.纳米SiO2低温稻壳灰用于混凝土的研究[J].新型建筑材料,2003(8):7-9.
    [193]李学伟,李壶,张赛镭,杨丽丽.稻壳灰制备掺杂TiO2硅气凝胶研究[J].稀有金属材料与工程,2007,36(A01):43-45.
    [194]朱锡锋,陆强,郑冀鲁,郭庆祥,朱清时.生物质热解与生物油的特性研究[J].太阳能学报,2006,27(12):1285-1289.
    [195]周磊.生物油的物理化学性质表征和组成分析[D].中国矿大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700