用户名: 密码: 验证码:
新型照明显示器件用氧氮化物荧光粉的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会的快速发展,作为人们生活基本需求之一的照明显示技术也表现出日新月异的变化。特别是在近些年,新一代的照明显示技术,如LED(发光二级管)和PDP(等离子平板显示技术)等,取得了突飞猛进的进展。相对于传统技术,LED和PDP技术有以下优点:能量转换效率高,对环境友好无(低)污染,图像质量高,性能稳定,可在全数字模式下工作等等,因此已经逐渐得到学界以及市场的广泛认可,是具有广阔发展前景的高新技术产业。
     在照明及显示器件中,荧光材料是非常重要的组成部分,因为它承担了将光源发出的光转化成所需要色彩的作用,因此,荧光材料的品质直接决定了观察者的最终感受。正因为荧光材料具有如此重要的地位,伴随近年来照明显示技术的快速发展,对于荧光材料的研究也越来越受到重视。传统的荧光材料主要是氧化物、硫化物、含氧酸盐等,这些材料合成方法较为简单,并且由于已经经过长期的研究,在技术方面已经较为成熟。但是由于新一代光源(LED,等离子体等)的普及,这些传统材料在性能上已经逐渐难以满足需要。
     作为一种优秀的荧光材料,它需要具有以下基本性质:光转化效率高、合适的激发和发射波长、化学及热稳定性好等,如果要应用于显示领域,荧光材料还需要具有快速的响应时间。正是由于在这些方面具有巨大的发展潜力,氧氮化物荧光材料在近些年逐渐兴起并取得了快速的发展。为了对氧氮化物荧光粉进行探索研究,本工作主要对硅基氧氮化物荧光材料——稀土离子激活的CaSi2O2N2的合成条件、发光性能、材料优化、能级分布等进行了研究和探讨,同时还研究了Si-N掺杂对于铝酸盐荧光粉荧光性能的影响。通过这些研究,希望能够在氧氮化物荧光粉性能的预估、优化以及Si-N键对荧光粉性能的作用机理上探索理论和实验依据,为今后荧光材料的研究开发提供一定的参考。
     论文的第一章简单阐述了照明及显示技术的发展历程,并且通过介绍相关文献和技术,对传统荧光粉材料的结构特点、发光原理和性能、优点以及不足进行了说明,然后介绍了新型照明及显示技术的现状和需求,并在此基础上提出了本文的工作思路。
     在第二章中,介绍了本工作的实验部分,主要包括:起始原料、材料合成设备、合成工艺流程、材料性能表征技术等。
     论文的第三章包括两个部分:第一,阐述了Eu2+掺杂的CaSi2O2N2荧光材料的合成条件、晶体结构、从真空紫外波段到可见光区域的荧光性能等。通过研究表明:在真空紫外光谱中,材料的激发对应于基质的晶格吸收,然后会发生从晶格到发光中心Eu2+的能量转移并最终发射出来;在紫外或蓝光激发下,则在Eu2+离子自身发生从4f能级到5d能级的电子跃迁。由于发光来源于Eu2+离子中电子从5d能级向4f能级的跃迁,因此在任何波段的光源激发下,材料的发射光谱都是区间在绿光-黄光波段的宽带谱。第二,探讨了离子共掺对于CaSi2O2N2:Eu2+发光性能的影响以及产生影响的机理,内容包括共掺杂的元素选择、掺杂离子的配比含量、基质材料的氧氮比例调整、不同发光中心之间的能量传递、掺杂前后离子的价态变化等等。研究结果表明:1.在荧光材料中,稳定Eu离子的价态对材料的荧光性能有明显优化作用。当加入适当的共掺离子时,共掺离子能够影响材料中缺陷的存在状态,并与Eu2+形成更加稳定的缺陷组合,有效地稳定材料中的Eu2+离子,从而提高有效的发光中心浓度,大幅减少Eu2+和Eu3+离子之间的非辐射能量传递,进而优化荧光粉的荧光性能。本工作不仅在实验上观察到了这种价态稳定现象,并且从理论计算的角度也证明了这种稳定机理的存在。2.通过改变基质材料氧氮比例的方法,能够影响材料的色坐标、发光强度等荧光性能。
     第四章对不同镧系离子在材料中的发光行为进行了表征和分析。对于在发光过程中镧系离子的电子跃迁方式进行了分析和归类,研究了不同镧系离子之间的能量传递现象。最终,根据对这些离子发光行为的系统分析,得到了镧系离子在CaSi2O2N2基质中的部分能级分布情况,并据此对材料中镧系离子的发光行为给出了一定程度的解释。
     在第五章中,通过在CaAl2O4基质中掺杂Si-N键来部分取代Al-O键的方法,提高了荧光粉的发光强度和余辉性能。通过电子顺磁共振(EPR)的方法,证明掺杂Si-N倾向于取代Eu2+附近的Al-O,并且由于Si-N键具有较短的键长,导致引入的Si-N能够提高发光中心周围晶体骨架的刚性,减少热震动导致的非辐射跃迁能量损失,从而提高荧光粉的发光性能。
     第六章中简单介绍了Tb3+和Ce3+离子激活的CaSiO3和Ca2SiO4基质荧光粉的荧光性能。
     第七章则对全文进行了总结并对今后的工作进行展望。
The lighting technology is one of the most basic demands in daily life and therefore has been growing rapidly with the development of the society. In particular, the new lighting technologies, such as LEDs (light emitting diodes) and PDP (plasma flat-panel display technology), etc., have made rapid progress in recent years. Compared to traditional technologies, the LED and the PDP technologies have the following advantages:high energy conversion efficiency and environmental friendliness without (low) pollution, high image quality, stable performance in all-digital mode, and therefore has been admitted both in academic and market.
     In lighting and display equipments, phosphors which convert the light from the light source into different colors are indispensable components. Moreover, the phosphors directly determine the quality of the observers'final experience. As phosphors have such an important position, they have gotten more and more attention along with the rapid development of the lighting technology. The conventional phosphors are mainly oxides, sulfides, oxysalts and so on. However, only a very limited number of present phosphors can meet the minimum requirements for the new generation of lighting and display technology. Therefore, to modify existing and explore new phosphor materials is extremely urgent.
     A new class of inorganic phosphors, namely rare-earth-doped silicon oxynitrides, has attracted much attention in recent years due to their high chemical and thermal stability as well as their unusual luminescence properties. In order to research the oxynitrides, the present work studied the rare-earth ions activated CaSi2O2N2on the synthesis conditions, luminescent properties, optical optimization, and the energy level distribution. On the other hand, the influence of Si-N codoping in the aluminate phosphors has also been studied.
     In Chapter Ⅰ, the development process of lighting and display technologies was briefly introduced, and a brief description about conventional and newly phosphors was given with relevant literatures and technologies.
     In Chapter Ⅱ the experimental process of this work is described, including the starting materials, synthesis equipment, the synthesis process, material testing techniques.
     Chapter Ⅲ consists of three parts.(1) The synthesis conditions, crystal structure, and the photoluminescence properties of Eu2+doped CaSi2O2N2were studied. The results show that in the VUV region, the excitation corresponds to the host absorption, and the energy transfer from host to activators exists. The excitation from ultraviolet to blue originates from the electronic transitions from the4f ground level to the5d levels of Eu2+. The light emission located in the green-yellow region and corresponds to the electronic transitions from the5d levels to the4f levels.(2) The photoluminescence properties of CaSi2O2N2:Eu2+may be greatly impact by Lanthanide3+ions. The optimization mechanism was studied in detail by the case of La3+doping. The La3+ions could stabilize Ca2+vacancies, inhibit the oxidization of Eu2+to Eu3+, and consequently increase the total number of activators. Meanwhile, new defect-energy levels were detected. These defects might capture electrons which were excited from Eu2+to the conductive band, and then detrap a considerable amount of the electrons back to the5d levels of Eu2+ions.(3) The influence of some other co-dopants was also discussed in the material.
     In Chapter IV, The photoluminescence properties of different lanthanide ions in the material were characterized and analyzed systematically. Energy transitions attributed to electron transfers from4f to4f (ff), from4f to5d (fd), from5d to4f (df) and charge transfer (CT) transition were obtained and classified. Finally, an energy-level diagram of lanthanide-ions in CaSi2O2N2was proposed. The diagram matches perfectly with the experimental results and explains the luminescence properties of lanthanide-doped CaSi2O2N2phosphors.
     In Chapter V, the impact on the photoluminescence and afterglow properties of CaAl2O4:Eu2+via Si-N co-doping was discussed. A small amount of Si-N was introduced into the conventional phosphor CaAl2O4:Eu2+, and obviously improved the photoluminescence intensity. It was proved that the Si-N bands preferred to replace the the Al-O near Eu2+though electron paramagnetic resonance (EPR) measurements. Since Si-N bond has a shorter bond length, they may improve the lattice rigidity around Eu2+. As a result, the energy loss caused by the lattice vibration may be reduced.
     In Chapter VII, Tb3+and/or Ce3+activated CaSiO3and Ca2SiO4phosphors were synthesized and their photoluminescence properties were discussed.
     Chapter VII consists of summary and future work outlook.
引文
[1]陈元灯,《LED制造技术与应用》,电子工业出版社,2007。
    [2]J. P. Boeuf, Plasma display panels:Physics, recent developments and key issues, Journal of Physics D:Applied Physics 36 (2003) R53-R79.
    [3]Y. F. Wang, X. Xu, L. J. Yin, L. Y. Hao, High Photoluminescence of Si-N-Co-Doped BaAl12O19:Mn2+ Green Phosphors, Electrochemical and Solid-State Letters 13 (2010) J119-J121.
    [4]李建宇,《稀土发光材料及其应用》,化学工业出版社,2003。
    [5]徐叙瑢,苏勉曾,《发光学与发光材料》,化学工业出版社,2004。
    [6]P. Dorenbos, The 5d level positions of the trivalent lanthanides in inorganic compounds, Journal of Luminescence 91 (2000) 155-176.
    [7]P. Dorenbos, The 4f n-4fn-15d transitions of the trivalent lanthanides in halogenides and chalcogenides, Journal of Luminescence 91 (2000) 91-106.
    [8]R. T. Wegh, A. Meijerink, Spin-allowed and spin-forbidden 4fn-4fn-115d transitions for heavy lanthanides in fluoride hosts, Physical Review B 60 (1999) 10820-30.
    [9]D.B.M. Klaassen, R.A.M. van Ham, T.G.M. van Rijn, Energy transfer processes in yttrium oxide activated with europium, Journal of Luminescence 43 (1989),261-274.
    [10]C. R. Ronda, Phosphors for lamps and displays:an applicational view, Journal of Alloys and Compounds 225 (1995) 534-538.
    [11]李丹,吕少哲,陈宝玖,王海宇,唐波,张家骅,侯尚公,黄世华,Y203:Eu3+纳米晶中能量传递相互作用的研究,《物理学报》50(2001)933-936.
    [12]M. Leskela, M. Saakes, G. Blasse, Energy transfer phenomena in GdMgB5O10, Materials Research Bulletin 19 (1984) 151-159.
    [13]J. M. P. J. Verstegen, J. L. Sommerdijk, J. G. Verriet, Cerium and terbium luminescence in LaMgAl11O19, Journal of Luminescence 6 (1973) 425-431.
    [14]H. Jiao, N. Zhang, X. P. Jing, D. M. Jiao, Influence of rare earth elements (Sc, La, Gd and Lu) on the luminescent properties of green phosphor Y2SiO5:Ce,Tb, Optical Materials 29 (2007) 1023-1028.
    [15]N. O. Nunez, S. R. Liviano, M. Ocan, Citrate mediated synthesis of uniform monazite LnPO4 (Ln= La, Ce) and Ln:LaPO4 (Ln= Eu, Ce, Ce+Tb) spheres and their photoluminescence, Journal of Colloid and Interface Science 349 (2010) 484-49.
    [16]P. Yang, G. Q. Yao, J. H. Lin, Energy transfer and photoluminescence of BaMgAl10O17 co-doped with Eu2+ and Mn2+, Optical Materials 26 (2004) 327-331.
    [17]B. Howe, A. L. Diaz, Characterization of host-lattice emission and energy transfer in BaMgAl10O17:Eu2+, Journal of Luminescence 109 (2004) 51-59.
    [18]Y. F. Wang, X. Xu, L. J. Yin, L.Y. Hao. High Thermal Stability and Photoluminescence of Si-N-Codoped BaMgAl10O17:Eu2+ Phosphors, Journal of the American Ceramic Society 93 (2010) 1534-1536.
    [19]Y. F. Wang, X. Xu, H. Qin, L. J. Yin, L.Y. Hao. Optimization of BaMgAl10O17:Eu2+ phosphors by the substitution of Si-N bonds for Al-0 bonds. Journal of Rare Earths 28 (2010) 281-284.
    [20]S. Ekambaram, K.C. Patil, Synthesis and properties of Eu2+activated blue phosphors, Journal of Alloys and Compounds 248 (1997) 7-12.
    [21]Y. H. Tseng, B. S. Chiou, C. C. Peng, L. Ozawa, Spectral properties of Eu3+-activated yttrium oxysulfide red phosphor, Thin Solid Films 330 (1998) 173-177.
    [22]李灿涛、袁剑辉、张万锴、刘行仁,掺杂Gd3+对Y2O2S:Eu3+发光特性的影响,发光学报20(1999)316-319.
    [23]J.Y. Choe, D. Ravichandran, S.M. Blomquist, K.W. Kirchner, E.W. Forsythe, D.C. Morton, Cathodoluminescence study of novel sol-gel derived Y3-xAl5O12:Tbx phosphors, Journal of Luminescence 93 (2001) 119-128.
    [24]李岚,熊光楠,赵新丽,不同稀土离子对YAGG:Tb发光性能的影响研究,发光学报19(1998)123-127.
    [25]J. H. Yang, J. Gong, H. G. Fan, L. L. Yang, The structure and luminescence characteristics of LaOBr:Tb3+ (Dy3+), Journal of Materials Science 40 (2005)3725-3728.
    [26]S. Nakamura, and G. Fasol, The Blue Laser Diode, Springer, Berlin,1997.
    [27]A. Ellens, F. Jermann, F. Zwaschka, F. Kummer, M. Ostertag, LED-based White-light Emitting Lighting Unit, International Patent Application. No. WO2001093342.
    [28]H. S. Jang, J. H. Kang, Y. H. Won, K. M. Chu, D. Y. Jeon, Origin of the discrepancy between photoluminescence brightness of TAG:Ce and electroluminescence brightness of TAG:Ce-based white LED expected from phosphor brightness, Optics Letters 33 (2008) 2140-2.
    [29]I. W. Park, J. H. Kim, J. S. Yoo, H. H. Shin, C. K. Kim, C. K. Choi, Longevity Improvement of CaS:Eu Phosphor Using Polymer Binder Coating for White LED Application, Journal of The Electrochemical Society 155 (2008) J132-J135.
    [30]X. Zhang, X. R. Liu, Luminescence Properties and Energy Transfer of Eu2+ Doped Ca8Mg(Si04)4Cl2 Phosphors, Journal of The Electrochemical Society 139 (1992) 622-625.
    [31]V. Singh, J. J. Zhu, M.K. Bhide, V. Natarajan, Synthesis, characterisation and luminescence investigations of Eu activated CaAl2O4 phosphor, Optical Materials 30 (2007) 446-450.
    [32]J. K. Park, M. A. Lim, C. H. Kim, H. D. Park, J. T. Park, S. Y. Choi, White light-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties, Applied Physics Letters 82 (2003) 683-685.
    [33]Y. L. Chang, H. I. Hsiang, M. T. Liang, Characterizations of Eu, Dy co-doped SrAl2O4 phosphors prepared by the solid-state reaction with B2O3 addition, Journal of Alloys and Compounds 461 (2008) 598-603.
    [34]T. S. Chan, C. C. Kang, R. S. Liu, L. Chen, X. N. Liu, J. J. Ding, J. Bao, C. Gao, Combinatorial Study of the Optimization of Y2O3:Bi,Eu Red Phosphors, Journal of Combinatorial Chemistry 9 (2007) 343-346.
    [35]H. J. Sung, K. Y. Ko, H. S. Kim, S. S. Kweon, J. Y. Park, Y. R. Do, Y. D. Huh, Size Dependence of the Photo-and Cathodo-luminescence of Y2O2S:Eu Phosphors, Bulletin of the Korean Chemical Society 27 (2006) 841-846.
    [36]T. Ekstrom, M. Nygren, SiAlON Ceramics, Journal of the American Ceramic Society 75 (1992)259-276.
    [37]B. S. B. Karunaratne, R. J. Lumby, and M. H. Lewis, "Rare-Earth-Doped a'-sialon Ceramics with Novel Optical Properties, " Journal of Materials Research 11(1996) 2790-94.
    [38]Z. J. Shen, M. Nygren, and U. Halenius, "Absorption Spectra of Rare-Earth-Doped a-sialon Ceramics," J. Mater. Sci. Lett.16 (1997) 263-66.
    [39]R. J. Xie, N. Hirosaki, M. Mitomo, Y. Yamamoto, T. Suehiro, Optical Properties of Eu2+ in α-SiAlON, The Journal of Physical Chemistry B 108 (2004) 12027-12031.
    [40]L. H. Liu, R. J. Xie, N. Hirosaki, T. Takeda, J. G. Li, X. D. Sun, Temperature Dependent Luminescence of Yellow-Emitting a-Sialon:Eu2+ Oxynitride Phosphors for White Light-Emitting Diodes, Journal of the American Ceramic Society 92 (2009) 2668-2673.
    [41]R. J. Xie, N. Hirosaki, K. Sakuma, Y. Yamamoto, M. Mitomo, Eu2+-doped Ca-alpha-SiAlON: A yellow phosphor for white light-emitting diodes, Applied Physics Letters 84 (2004) 5404-5406.
    [42]H. L. Li, G. H. Zhou, R. J. Xie, N. Hirosaki, X. J. Wang, Z. Sun, Optical properties of green-blue-emitting Ca-α-Sialon:Ce3+, Li+ phosphors for white light-emitting diodes (LEDs), Journal of Solid State Chemistry 184 (2011) 1036-1042.
    [43]T. Suehiro, H. Onuma, N. Hirosaki, R. J. Xie, T. Sato, A. Miyamoto, Powder Synthesis of Y-α-SiAlON and Its Potential as a Phosphor Host, The Journal of Physical Chemistry C 114 (2010) 1337-1342.
    [44]N. Hirosaki, R. J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, M. Mitomo, Characterization and properties of green-emitting b-SiAlON:Eu2+ powder phosphors for white light-emitting diodes, Applied Physics Letters 86 (2005) 211905.
    [45]H. A. H□ppe, F. Stadler, O. Oeckler, W. Schnick, Ca[Si2O2N2]—A Novel Layer Silicate, Angewandte Chemie International Edition 43 (2004),5540-5542.
    [46]Y. Q. Li, A. C. A. Delsing, G. de With, H. T. Hintzen, Luminescence Properties of Eu2+-Activated Alkaline-EarthSilicon-Oxynitride MSi2O2-δN2+2/3δ (M=Ca, Sr, Ba):A Promising Class of Novel LED Conversion Phosphors, Chemistry of Materials 17 (2005) 3242-3248.
    [47]X. F. Song, R. L. Fu, S. Agathopoulos, H. He, X. R. Zhao, S. D. Zhang, Photoluminescence properties of Eu2+-activated CaSi2O2N2:Redshift and concentration quenching, Journal of Applied Physics 106 (2009) 033103.
    [48]X. F. Song, H. He, R. L. Fu, D. L. Wang, X. R. Zhao, Z. W. Pan, Photoluminescent properties of SrSi2O2N2:Eu2+phosphor:concentration related quenching and red shift behavior, Journal of Physics D:Applied Physics 42(2009) 065409.
    [49]Y. Q. Li, G. de With, H. T. Hintzen, Luminescence of a new class of UV-blue-emitting phosphors MSi2O2-δN2+2/3δ:Ce3+(M=Ca, Sr, Ba), Journal of Materials Chemistry 15 (2005) 4492-4496.
    [50]M. Zhang, J. Wang, Z. Zhang, Q. Zhang, Q. Su, A tunable green alkaline-earth silicon-oxynitride solid solution (Ca1-xSrx)Si202N2:Eu2+and its application in LED, Appl Phys B 93(2008) 829-835.
    [51]V. Bachmann, C. Ronda, O. Oeckler, W. Schnick, A. Meijerink, Color Point Tuning for (Sr,Ca,Ba) Si2O2N2:Eu2+ for White Light LEDs, Chemistry of Materials 2009,21,316-325
    [52]B. Y. Han, K. S. Sohn, Ternary Combinatorial Library of (Sr,Ca,Ba)Si2O2N2:Eu2+ Phosphors in Terms of Photoluminescence and Color Chromaticity, Electrochemical and Solid-State Letters 13 (2010) J62-J64.
    [53]B. Lei, K. Machida, T. Horikawa, Reddish-Orange Long-Lasting Phosphorescence of Ca2Si5N8:Eu2+, Tm3+ Phosphor. Journal of the Electrochemical Society 157 (2010) J196-J201.
    [54]Jang BY, Park JS, Luminescence properties of Eu2O3-doped Ca2Si5N8 phosphors, Journal of Ceramic Processing Research 10 (2009) 844-847.
    [55]X. D. Wei, L. Y. Cai, F. C. Lu, X. L. Chen, X. Y. Chen, Q. L. Liu, Structure and luminescence of Ca2Si5N8:Eu2+ phosphor for warm white light-emitting diodes Chinese Physics B 18 (2009) 3555-3562.
    [56]K. S. Sohn, B. Lee, R. J. Xie, N. Hirosaki, Rate-equation model for energy transfer between activators at different crystallographic sites in Sr2Si5N8:Eu2+, Optics Letters 34 (2009) 3427-3429.
    [63]R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, M. Mitomo,2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors. Applied Physics Letters 90 (2007) 191101-1.
    [64]X. Piao, K. I. Machida, T. Horikawa, H. Hanzawa, Self-propagating high temperature synthesis of yellow-emitting Ba2Si5N8:Eu2+ phosphors for white light-emitting diodes Applied Physics Letters 91 (2007) 041908-1.
    [65]H. L. Li, R. J. Xie, N. Hirosaki, Y. Yajima, Synthesis and Photoluminescence Properties of Sr2Si5N8:Eu2+ Red Phosphor by a Gas-Reduction and Nitridation Method, Journal of the Electrochemical Society 155 (2008) J378-J381.
    [66]R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, M. Mitomo, A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes, Chemistry of Materials 18 (2006)5578-5583.
    [67]K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, H. Yamamoto, Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes, Electrochemical and Solid-State Letters,9 (2006) H22-H25.
    [68]J. W. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Low-Temperature Crystallization of Eu-Doped Red-Emitting CaAlSiN3 from Alloy-Derived Ammonometallates, Chemistry of Materials 19 (2007) 3592-3594.
    [69]H. Watanabe, H. Wada, K. Seki, M. Itou, N. Kijima, Synthetic Method and Luminescence Properties of SrxCa1-xAlSiN3:Eu2+ Mixed Nitride Phosphors, Journal of the Electrochemical Society 155 (2008) F31-F36.
    [70]JiaYe Tang, WenJie Xie, Kai Huang, LuYuan Hao, Xin Xu, and RongJun Xie, A High Stable Blue Phosphor for White LEDs and Display Applications, Electrochem Solid S.T.14 (2011) J45-J47.
    [71]W. M. Jadwisienczak, H. J. Lozykowski, I. Berishev, A. Bensaoula, I. G. Brown, Visible emission from AlN doped with Eu and Tb ions, Journal of Applied Physics 89 (2001) 4384.
    [72]N. Hirosaki, R.-J. Xie, K. Inoue, T. Sekiguchi, B. Dierre, K. Tamura, Blue-emitting AlN:Eu2+ nitride phosphor for field emission displays, Applie Physics Letters 91(2007) 061101.
    [73]L. J. Yin, X. Xu, W. Yu, J. G. Yang, L. X. Yang, X. F. Yang, L.Y. Hao, X. J. Liu, Synthesis of Eu2+-Doped AlN Phosphors by Carbothermal Reduction, Journal of the American Ceramic Society 93 (2010) 1702-7.
    [74]L. J. Yin, W. Yu, X. Xu, L. Y. Hao, Synthesis and photoluminescence of Eu, Mg-alon phosphors by carbothermal reduction, Journal of Luminescence,132 (2012) 671-675.
    [75]L. J. Yin, X. Xu, L. Y. Hao, W. J. Xie, Y. F. Wang, L. X. Yang, X. F. Yang, Synthesis and photoluminescence of Eu2+-Mg2+ co-doped gamma-AlON phosphors, Materials Letters,63 (2009) 1511-1513.
    [76]Y. F. Wang, X. Xu, L. J. Yin, L.Y. Hao, High Photoluminescence of Si-N-Co-Doped BaAl12O19:Mn2+ Green Phosphors, Electrochemical and Solid State Letters 13 (2010) J119-J121.
    [77]Y. F. Wang, X. Xu, L. J. Yin, L. Y. Hao, High Thermal Stability and Photoluminescence of Si-N-Codoped BaMgAl10O17:Eu2+ Phosphors, Journal of the American Ceramic Society 93 (2010) 1534-1536.
    [78]Y. F. Wang, X. Xu, H. Qin, L. J. Yin, L. Y. Hao. Optimization of BaMgAli0O17:Eu2+ phosphors by the substitution of Si-N bonds for Al-O bonds. Journal of Rare Earths 28 (2010) 281-284.
    [79]高积强,杨建锋,王红洁,《无机非金属材料制备方法》西安交通大学出版社2009。
    [80]R. J. Xie, N. Hirosaki, Silicon-based oxynitride and nitride phosphors for white LEDs—A review, Science and Technology of Advanced Materials 8 (2007) 588-600.
    [81]J. Y. Tang, X. F. Yang, L. Y. Hao, X. Xu, W. H. Zhang, Synthesis and Luminescence Properties of Highly Uniform Spherical SiO2@SrSi2O2N2:Eu2+ Core-Shell Phosphors, Journal of Materials Chemistry 22 (2012) 488.
    [82]Y. Zhou, Y. Yoshizawa, K. Hirao, Z. Lences, Pavol Sajgalik, Combustion synthesis of LaSi3N5:Eu2+ phosphor powder, Journal of the European Ceramic Society 31(2011) 151-157.
    [83]C. L. Yeh, F. S. Wu, Y. L. Chen, Effects of α- and β-Si3N4 as precursors on combustion synthesis of (α+β)-SiAlON composites, Journal of Alloys and Compounds 509 (2011) 3985-3990.
    [84]J. W. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Low-Temperature Crystallization of Eu-Doped Red-Emitting CaAlSiN3 from Alloy-Derived Ammonometallates, Chemistry of Materials 19 (2007) 3592-3594.
    [1]唐伟忠,薄膜材料制备原理,技术及应用(第二版).北京:冶金工业出版社,2003
    [2]周玉,材料分析方法(第二版).北京:机械工业出版社,2004
    [3]常铁军,刘喜君,材料近代分析测试方法,哈尔滨,哈尔滨工业大学出版社2007.
    [4]Crozier ED. A review of the current status of XAFS spectroscopy. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 1997; 133:134-144.
    [5]Sayers DE, and Bunker BA, X-ray Absorption, Principles, Appl ications, Techniques of EXAFS, SEXAFS and XANES, P.211, edited by Koningsberger DC, and Prins R., John Wiley and Sons, Inc. (1988).
    [6]钟文杰,贺博,李征等,USTCXAFS 2.0软件包,中国科学技术大学学报,31(2001)328-333.
    [7]韦世强,谢亚宁,徐法强等,同步辐射XAFS实验站及其应用,物理,31(2002)40-44
    [1]P. Dorenbos, Energy of the first 4f(7)→4f(6)5d transition of Eu2+ in inorganic compounds, Journal of luminescence 104 (2003) 239-260
    [2]R. J. Xie, N. Hirosaki, K. Sakuma, Y. Yamamoto, M. Mitomo, Eu2+-doped Ca-alpha-SiAlON: A yellow phosphor for white light-emitting diodes, Applied Physics Letters 84 (2004) 5404-5406
    [3]S. H. M. Poort, W. P. Blokpoel, G. Blasse, Luminescence of Eu2+ in barium and strontium aluminate and gallate, Chemistry of Materials 7(1995) 1547-1551
    [4]R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, M. Mitomo,2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors, Applied Physics Letters 90 (2007) 191101
    [5]Y. Q. Li, A. C. A Delsing, G. de With, H. T. Hintzen, Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-deltaN2+2/3delta (M= Ca, Sr, Ba):A promising class of novel LED conversion phosphors, Chemisty of Materials 17 (2005) 3242-3248
    [6]G. Blasse, B. C. Grabmaier, Luminescent Materials Springer-Verlag, Berlin,1994
    [7]K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, H. Yamamoto, Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes, Electrochem. Electrochemical and Solid-State Letters 9 (2006) H22
    [8]X. F. Song, H. He, R. L. Fu, D. L. Wang, X. R. Zhao, Z. W. Pan, Photoluminescent properties of SrSi2O2N2:Eu2+phosphor:concentration related quenching and red shift behavior, Journal of Physics D:Applied Physics 42(2009) 065409.
    [9]B. Henderson, G. F. Imbush, Optical Spectroscopy of Inorganic Solids, Oxford Science Publications 1989.
    [10]K. S. Bartwal, H. Ryu, M. G. Brik, I. Sildos, Studies of electron-vibrational interaction and crystal field splitting in 5d states of Eu2+ in CaAl2O4 co-doped with Eu2+ and Er3+, Journal of Physics D:Applied Physics 42 (2009) 245401.
    [11]X. F. Song, R. L. Fu,S. Agathopoulos,H. He,X. R. Zhao,S. D. Zhang, Photoluminescence properties of Eu2+-activated CaSi2O2N2:Redshift and concentration quenching, Journal of Applied Physics 106 (2009) 033103.
    [12]M. Nazarov, B. Tsukerblat, D. Y. Noh, Electron-vibrational interaction in 4f-5d optical transitions in Ba, Ca, Sr thiogallates doped with Eu2+ ions, Journal of Luminescence 128 (2008) 1533-1540.
    [13]V. Bachmann, T. Jiistel, A. Meijerink, C. Ronda, P. J. Schnidt, Luminescence properties of SrSi2O2N2 doped with divalent rare earth ions, Journal of Luminescence 121 (2006) 441-449.
    [14]V. Bachmann, C. Ronda, O. Oeckler, W. Schnick, A. Meijerink, Color point tuning for (Sr,Ca,Ba)Si2O2N2:Eu2+ for white light LEDs, Chemistry of Materials 21 (2009) 316-325.
    [15]K. Y. Jung, H. W. Lee, Y. C. Kang, S. B. Park, Y. S. Yang, Luminescent Properties of (Ba,Sr)MgAl10O17:Mn,Eu Green Phosphor Prepared by Spray Pyrolysis under VUV ExcitationChem. Mater.17 (2005) 2729-2734.
    [16]Y. F. Wang, X. Xu, H. Qin, L. J. Yin, L.Y Hao. Optimization of BaMgAl10O17:Eu2+ phosphors by the substitution of Si-N bonds for Al-O bonds. Journal of Rare Earths 28 (2010) 281-284.
    [17]J. Y. Tang, J. H. Chen, L. Y. Hao, X. Xu, W. J. Xie, Q. X. Li, Green Eu2+-doped Ba3Si60,2N2 phosphor for white light-emitting diodes:Synthesis, characterization and theoretical simulation, Journal of Luminescence 131 (2011) 1101-1106
    [18]M. Zhang, J. Wang, Z. Zhang, Q. Zhang, Q. Su, A tunable green alkaline-earth silicon-oxynitride solid solution(Ca 1-xSrx)Si202N2:Eu2+ and its application in LED, Appl Phys B 93 (2008)829-835.
    [19]B. Y. Han, K. S. Sohn, Ternary combinatorial library of (Sr,Ba,Ca)Si2O2N2 phosphors in terms of photo luminescence and color chromaticity, Electrochemical and Solid-State Letters 13 (2010) J62-J64
    [20]R. S. Liu, Y. H Liu, N. C. Bagkar, S. F. Hu, Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+,Mn2+, and Dy3+ ions, Applied Physics Letters 91 (2007) 061119.
    [21]Song X F, Fu R L, Gatchopoulos S, He H, Zhao X R, Zeng J, Luminescence and energy transfer of Mn2+ co-doped SrSi2O2N2:Eu2+ green-emitting phosphors Materials Science and Engineering B 164(2009) 12-15.
    [22]Y X. Gu, Q. H. Zhang, Y. G Li, H. Z. Wang, R. J. Xie, Enhanced emission from CaSi2O2N2:Eu2+ phosphors by doping with Y3+ ions, Materials Letters 63 (2009) 1448-1450.
    [23]W. M. Yen, S. Shionoya., H. Yamamoto, Phosphor Handbook,2nd ed:CRC Press:New York, 2007.
    [24]T. G. Kim, H. S. Lee, C. C. Lin, T. Kim, R. S. Liu, T. S. Chan, S. J. Im, Effects of additional Ce3+doping on the luminescence of Li2SrSi04:Eu2+ yellow phosphor, Applied Physics Letters 96(2010)061904.
    [25]D. de Graaf, H. T. Hintzen, G. de With, K. V. Ramanujachary, C. Lanci, S. E. Lofland, Quantitative determination of Eu2+ and Eu3+ content in (Eu,Y)-Si-Al-O-N glasses by magnetic measurements, Solid State Communications 131 (2004),693-696.
    [26]Y. F. Wang, X. Xu, L. J. Yin, L.Y. Hao. High Thermal Stability and Photoluminescence of Si-N-Codoped BaMgAl10O17:Eu2+ Phosphors, Journal of the American Ceramic Society 93 (2010) 1534-1536.
    [27]R. Vercaemst, D. Poelman, L. Fiermans, R. L. Van Meirhaeghe, W. H. Laflere, F. Cardon, A detailed XPS study of the rare earth compounds EuS and EuF3, Journal of electron spectroscopy and related phenomena 74 (1995) 45-56.
    [28]K. S. Sohn, S. S.Kim, H. D. Park, Luminescence quenching in thermally-treated barium magnesium aluminate phosphor, Applied Physics Letters 81 (2002) 1759-1761.
    [29]F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, M. H. Whangbo, Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration, Chemistry of Materials 18 (2006) 3212-3220.
    [30]P. Dorenbos, Valence stability of lanthanide ions in inorganic compounds, Chemistry of Materials 17 (2005) 6452-6456.
    [31]R. M. Martin, Electronic Structure (Cambridge:Cambridge University) 2004
    [32]H. Bentmann, A. A. Demkov, R. Gregory, S. Zollner 2008 Electronic, optical, and surface properties of PtSi thin films, Physical Review B 78 (2008) 205302.
    [33]Giacomazzi L and Umari P First-principles investigation of electronic, structural, and vibrational properties of a-Si3N4, Physical Review B 80 (2009) 144201.
    [34]X. Xu, C. Cai, L. Y. Hao, Y. C. Wang, Q. X. Li, The photoluminescence of Ce-doped Lu4Si2O7N2 green phosphors, Materials Chemistry and Physics 118 (2009) 270-272.
    [35]D. M. Ceperley, B. J. Alder, Ground state of the electron gas by a stochastic method, Physical Review Letters 45 (1980) 566-569.
    [36]J. P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B 23 (1981) 5048-5079.
    [37]M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients, Reviews of Modern Physics 64 (1992) 1045-1097.
    [38]M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, First-principles simulation:ideas, illustrations and the CASTEP code, Journal of Physics:Condensed Matter 14(2002) 2717-2744.
    [39]S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, First principles methods using CASTEP, Zeitschrift fur Kristallographie 220 (2005) 567-570.
    [40]R. Mohammad-Rahimi, H.R. Rezaie, A. Nemati, Sintering of Al2O3-SiC composite from sol-gel method with MgO, TiO2 and Y2O3 addition, Ceramics International 37 (2011) 1681-1688.
    [41]X. Y. Yuan, F. Zhang, X. J. Liu, Z. Zhang, S. W. Wang, Fabrication of transparent AlON ceramics by solid-state reaction sintering, Journal of Inorganic Materials 26 (2011) 499-502.
    [42]H. Yang, X. P. Qin, J. Zhang, S. W. Wang, J. Ma, L. X. Wang, Q. T. Zhang, Fabrication of Nd:YAG transparent ceramics with both TEOS and MgO additives, Journal of Alloys and Compounds 509 (2011) 5274-5279.
    [43]W. Suchanek, M.Yashima, M. Kakihana, M. Yoshimura, Hydroxyapatite ceramics with selected sintering additives, Biomaterials 18 (1997) 923-933.
    [44]C. L. Lo, J. G. Duh, B. S. Chiou, C. C. Peng, L. Ozawa, Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method, Materials Chemistry and Physics 71 (2001) 179-189.
    [45]R. J. Xie, N. Hirosaki, M. Mitomo, Y. Yamamoto, T. Suehiro, Optical properties of Eu2+ in α-SiAlON, The Journal of Physical Chemistry B 108 (2004) 12027-12031.
    [1]J. C. G. Bunzli, C. Piguet, Taking advantage of luminescent lanthanide ions, Chemical Society Reviews 34 (2005) 1048-1077.
    [2]M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, M. P. Hehlen, Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems, Physical Review B 61 (2000)3337-3346.
    [3]B. M. Tissue, Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts, Chemistry of Materials 10 (1998) 2837-2845.
    [4]E. F. Schubert, J. K. Kim, H. L., J. Q. Xi, Solid-state lighting—a benevolent technology, Reports on Progress in Physics 69 (2006) 3069-3099.
    [5]L. Brewer, Energies of the Electronic Configurations of the Singly, Doubly, and Triply Ionized Lanthanides and Actinides, Journal of the Optical Society of America 61 (1971) 1666-1682.
    [6]G. Blasse and B. C. Grabmaier, Luminescent materials, Springer-Verlag, Berlin,1994.
    [7]R. P. Rao, Preparation and characterization of fine-grain yttrium-based phosphors by sol-gel process, Journal of The Electrochemical Society 143 (1996) 189-197.
    [8]G. Blasse, A. Bril, Investigations of Tb3+-Activated Phosphors, Philips Research Reports 22 (1967)481
    [9]R. J. Xie, M. Mitomo, K. Uheda, F. F. Xu, Y. Akimune, Preparation and luminescence spectra of calcium-and rare-earth (R= Eu, Tb, and Pr)-codoped alpha-SiAlON ceramics, Journal of The American Ceramic Society 85 (2002) 1229-1234.
    [10]L. van Pieterson, M. F. Reid, G. W. Burdick, A. Meijerink,4fn->4n-1 15d transitions of the heavy lanthanides:experiment and theory, Physical Review B 65 (2002) 045114
    [11]L. van Pieterson, M. F. Reid, R. T. Wegh, S. Soverna, A. Meijerink,4fn→4n-1 15d transitions of the light lanthanides:Experiment and theory, Physical Review B 65 (2002) 045113.
    [12]P. Dorenbos, The 5d level positions of the trivalent lanthanides in inorganic compounds, Journal of Luminescence 91 (2000) 155-176.
    [13]Bing Han, Hongbin Liang, Yan Huang, Ye Tao, Qiang Su, Vacuum ultraviolet-visible spectroscopic roperties of Tb3+ in Li(Y, Gd)(PO3)4:tunable emission, quantum cutting, and energy transfer, The Journal of Physical Chemistry C 114 (2010) 6770-6777.
    [14]J. L. Yuan, J. Wang, D. B. Xiong, J. T. Zhao, Y. B. Fu, G. B. Zhang, C. S. Shi, Potential PDP phosphors with strong absorption around 172 nm:Rare earth doped NaLaP2O7 and NaGdP2O7, Journal of Luminescence 126 (2007) 717-722.
    [15]J. C. Zhang, Y. H. Wang, Z. Y. Zhang, Z. L. Wang, B. Liu, The relationship between photoluminescence quenching concentrations and excitation wavelengths in (Gd,Y)BO3:Tb, Materials Letters 62 (2008) 202-205.
    [16]D. S. Zang, J. H. Song, D. H. Park, Y. C. Kim, D. H. Yoon, New fast-decaying green and red phosphors for 3D application of plasma display panels, Journal of Luminescence 129 (2009) 1088-1093.
    [17]N. F. Zhu, Y. X. Li, X. F. Yu, Luminescence spectra of YGG:RE3+, Bi3+(RE= Eu and Tb) and Energy Transfer from Bi3+ to RE3+, Chinese Physics Letters 25 (2008) 703-706.
    [18]B. Han, H. B. Liang, Y. Huang, Y. Tao, Q. Su, Vacuum ultraviolet-visible spectroscopic properties of Tb3+ in Li(Y, Gd)(PO3)4:tunable emission, quantum cutting, and energy transfer, The Journal of Physical Chemistry C 114 (2010) 6770-6777.
    [19]G. H. Mhlongo, O. M. Ntwaeaborwa, H. C. Swart, R. E. Kroon, P. Solarz, W. Ryba-Romanowski, K. T. Hillie, Luminescence Dependence of Pr3+ activated SiO2 nanophosphor on Pr3+ concentration, temperature, and ZnO incorporation, The Journal of Physical Chemistry C 115 (2011) 17625-17632.
    [20]G. Stryganyuka, G. Zimmerera, N. Shiran, V. Voronova, V. Nesterkina, A. Gektind, K. Shimamura, E. Villora, F. Jing, T. Shalapska, A. Voloshinovskii, Spectral-kinetic characteristics of Pr3+ luminescence in LiLuF4 host upon excitation in the UV-VUV range, Journal of Luminescence 128 (2008) 1937-1941.
    [21]K. Selvaraju, K. Marimuthu, Structural and spectroscopic studies on concentration dependent Er3+ doped boro-tellurite glasses, Journal of Luminescence 132 (2012) 1171-1178.
    [22]K. Selvaraju, K. Marimuthu, Structural and spectroscopic studies on Er3+ doped boro-tellurite glasses, Physica B:Condensed Matter 407 (2012) 1086-1093.
    [23]Y. H. Wang, Y. Wen, F. Zhang, Novel Dy3+-doped Ca2Gd8(SiO4)6O2 white light phosphors for Hg-free lamps application, Materials Research Bulletin 45 (2010) 1614-1617.
    [24]T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, M. Senna, Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor, Applied Physics Letters 76 (2000) 1549-1551.
    [25]P. L. You, G. F. Yin, X. C. Chen, B. Yue, Z. B. Huang, X. M. Liao, Y. D. Yao, Luminescence properties of Dy3+-doped Li2SrSiO4 for NUV-excited white LEDs, Optical Materials 33 (2011) 1808-1812.
    [26]X. M. Liu, C. C. Yu, C. X. Li, J. Lin, Comparative study of Ga2O3:Dy3+ phosphors prepared by three methods, Journal of The Electrochemical Society 154 (2007) 86-91.
    [27]Y. L. Huang, W. F. Kai, H. S. Lee, E. Cho, K. Jang, Y. G. Cao, W. X. Zhao, H. Y. Ding, X. G. Wang, Spectroscopic characteristics of Olgite (Ba,Sr)(Na,Sr)2Na[PO4]2 crystals doped with Sm2+ ions, Materials Chemistry and Physics 111 (2008) 359-363.
    [28]Y. L. Huang,, K. W. Jang, W. X. Zhao, E. Cho, H. S. Lee, X. G. Wang, D. Qin, Y. Zhang, C. F. Jiang, H. J. Seo, Irradiation-induced reduction and luminescence properties of Sm2+ doped in BaBPO5, Journal of Solid State Chemistry 180 (2007) 3325-3332.
    [29]H. Lin, D. L. Yang, G. S. Liu, T. C. Ma, B. Zhai, Q. D. An, J. Y. Yu, X. J. Wang, X. R. Liu, E. Y. B. Pun, Optical absorption and photoluminescence in Sm3+-and Eu3+-doped rare-earth borate glasses, Journal of Luminescence 113 (2005) 121-128.
    [30]P. Dorenbos, Systematic behaviour in trivalent lanthanide charge transfer energies, Journal of Physics:Condensed Matter 15 (2003) 8417-8434.
    [31]A. M. Srivastava, P. Dorenbos, Charge transfer transitions and location of the rare earth ion energy levels in Ca-a-SiAlON, Journal of Luminescence 129 (2009) 634-638.
    [32]P. Dorenbos, The 4fn?4fn-1 5d transitions of the trivalent lanthanides in halogenides and chalcogenides, Journal of Luminescence 91 (2000) 91-106.
    [33]P. Dorenbos, f→d transition energies of divalent lanthanides in inorganic compounds, Journal of Physics:Condensed Matter 15 (2003) 575-594.
    [33]P. Dorenbos, Lanthanide charge transfer energies and related luminescence, charge carrier trapping, and redox phenomena, Journal of Alloys and Compounds 488 (2009) 568-573.
    [34]P. Dorenbosa, E. van der Kolk, Location of lanthanide impurity levels in the Ⅲ-Ⅴ semiconductor GaN, Applied Physics Letters 89 (2006) 061122.
    [35]G. H. Li, S. Lan, L. L. Li, M. M. Li, W. W. Bao, H. F. Zou, X. C. Xu, S. C. Gan, Tunable luminescence properties of NaLa(MoO4)2:Ce3+,Tb3+ phosphors for near UV-excited white light-emitting-diodes, Journal of Alloys and Compounds 513 (2012) 145-149.
    [36]H. P. You, X. Y. Wu, H. T. Cui, G Y. Hong, Luminescence and energy transfer of Ce3+ and Tb3+ in Y3Si2O8Cl, Journal of Luminescence 104 (2003) 223-227.
    [1]S. H. M. Poort, W. P. Blokpoel, G. Blasse, Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate, Chemistry of Materials 7 (1995) 1547-1551.
    [2]J. M. P. J. Verstegen A Surveyof a Group of Phosphors, Based on Hexagonal Aluminate and Gallate Host Lattices, Journal of The Electrochemical Society 121 (1974) 1623-1627.
    [3]D. Ravichandran, S. T. Johnson, S. Erdei, R. Roy, W. B. White, Crystal chemistry and luminescence of the Eu2+-activated alkaline earth aluminate phosphors, Displays 19 (1999) 197-203.
    [4]Y. F. Wang, X. Xu, L. J. Yin, L. Y. Hao, High Thermal Stability and Photoluminescence of Si-N-Codoped BaMgAl10O17:Eu2+ Phosphors, Journal of the American Ceramic Society 93 (2010) 1534-1536.
    [5]Y. F. Wang, X. Xu, L. J. Yin, L. Y. Hao, High Photoluminescence of Si-N-Co-Doped BaAl12O19:Mn2+ Green Phosphors, Electrochemical and Solid-State Letters 13 (2010) J119-J121.
    [6]X. Zheng, Q. N. Fei, Z. Y. Mao, Y. H. Liu, Y. Cai, Q. F. Lu, H. Tian, D. J. Wang, Incorporation of Si-N inducing white light of SrAl2Si208:Eu2+ r,Mn2+ phosphor for white light emitting diodes, Journal of Rare Earths 29 (2011) 522-526.
    [7]B. T. Liu, F. Zhang, G. Zhu, Y. Wen, S. Y. Xin, W. J. Wang, Y. H. Wang, Optical properties of Si-N doped BaMgAl10O17:Eu2+, Mn2+ phosphors for plasma display panels, Journal of Alloys and Compounds 509 (2011) 7100-7104.
    [8]T. G. Kim, H. S. Lee, C. C. Lin, T. Kim, R. S. Liu, T. S. Chan, S. J. Im, Effects of additional Ce3+doping on the luminescence of Li2SrSi04:Eu+ yellow phosphor, Applied Physics Letters 96(2010)061904.
    [9]K. S. Sohn, S. S.Kim, H. D. Park, Luminescence quenching in thermally-treated barium magnesium aluminate phosphor, Applied Physics Letters 81 (2002) 1759-1761.
    [10]Sushil K Misrat, Yongmao Changt, Vesselin Petkovt, Samih Isbed, Salam Charart, Claude Faut, Michel Averoust and Zbigniew Golacki, J. Phys.:Condens. Matter,1995,7,9897-9904.
    [11]S.K. Misra, S.I. Andronenko, Single-crystal EPR of the Eu2+ ion in pentacalcium-oxide trialuminate,5CaO·3Al2O3, J. Phy. and Chem. Solids,2000,61,1913-1917.
    [12]W. Y. Jia, H. B. L. Z. Yuan, L. Z. Lu, H. M. Liu, W. M. Yen, Crystal growth and characterization of Eu2+, Dy3+:SrAl2O4 and Eu2+, Nd3+:CaAl2O4 by the LHPG method, Journal of Crystal Growth 200 (1999) 179-184.
    [13]Holsa, J (Holsa, J); Jungner, H (Jungner, H); Lastusaari, M (Lastusaari, M); Niittykoski, J (Niittykoski, J), Persistent luminescence of Eu2+ doped alkaline earth aluminates, MAl2O4: Eu2+,Journal of Alloys and Compounds (2001)326-330.
    [1]G. R. Fonda, Characteristics of silicate phosphors, Journal of Physical Chemistry 43 (1939) 561-577.
    [2]R. P. Johnson, Luminescence of sulphide and silicate phosphors, Journal of the Optical Society of America 29 (1939) 387-391.
    [3]X. Ouyang, A. H. Kitai, T. Xiao, Electroluminescence of the oxide thin film phosphors Zn2Si04 and Y2Si05, Journal of Applied Physics 79 (1996) 3229-3234.
    [4]B. L. Zhang,, L. Y. Feng, Y. C. Qiang, Preparation and photoluminescence properties of the Sr1.55Ba0.4SiO4:0.04Eu2 +phosphor, Journal of Luminescence 132 (2012) 1274-1277.
    [5]P. Dorenbos, The 5d level positions of the trivalent lanthanides in inorganic compounds, Journal of Luminescence 91 (2000) 155-176.
    [6]V. Singh, R. P. S. Chakradhar, J. L. Rao, D. K. Kim, Mn2+ activated MgSrAl10O17 green-emitting phosphor—A luminescence and EPR study, Journal of Luminescence 128 (2008) 1474-1478.
    [7]Y Hao, Y. H. Wang, Synthesis and photoluminescence of new phosphors M2(Mg,Zn)Si2O7:Mn2+(M= Ca, Sr, Ba), Materials Research Bulletin 42 (2007) 2219-2223.
    [8]N. Suriyamurthy, B.S. Panigrahi, Luminescence of BaAl2O4:Mn2+,Ce3+ phosphor, Journal of Luminescence 127 (2007) 483-488.
    [9]Abanti Nag, T.R.N. Kutty, Photoluminescence due to efficient energy transfer from Ce3+to Tb3+ and Mn2+ in Sr3Ali0SiO20, Materials Chemistry and Physics 91 (2005) 524-531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700