用户名: 密码: 验证码:
利用卫星编队探测地球重力场的方法研究与仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本世纪初重力测量卫星CHAMP、GRACE和GOCE的成功发射,昭示着人类迎来了一个前所未有的卫星重力探测时代。尤其是GRACE任务,提供了月时间尺度的时变重力场信息,为研究物质迁移、全球变化、自然灾害等提供了新的重要途径。目前CHAMP任务已经结束,GRACE任务将在三年之内结束,GOCE卫星已经完成其重力场探测的使命。为保证时变重力场探测的连续性,进一步提高静态重力场的探测精度,研究和发展新一代卫星重力任务已经迫在眉睫。利用卫星编队来确定地球重力场可以提高重力卫星任务的时空分辨率,并在一定程度上削弱GRACE任务存在的混频和重力场精度各向异性等问题的影响,已成为国内外相关学者研究的热点问题。本文在此背景下,系统研究了利用各种卫星编队来反演地球重力场的理论方法;通过仿真实验深入探讨了各种卫星编队和卫星星座对不同阶次重力场反演的影响,比较分析了它们解决现有问题的能力;并探索了利用卫星编队来解决混频问题的可行性,可为重力卫星任务的设计与分析提供参考技术依据。
     本文的主要研究工作和成果包括:
     (1)深入地研究了卫星编队飞行的原理与方法,分析并给出了适应于重力任务的各种卫星编队和卫星星座构形。
     提出并实现了利用线性化的C-w方程及其解析解来设计适应于重力任务的卫星编队的方法。本文在圆参考轨道、线性化相对运动、除二体引力外无其它摄动和编队中各卫星具有相同轨道周期这几个假设条件下,推导出描述编队卫星相对运动的C1ohessy-Wiltshire方程及其解析解。通过不同初始相对运动状态设计,给出几种可用于重力任务的卫星编队构形:GRACE-type、Pendulum-type、Cartwheel-type和GRACE-Pendulum-type;分析了卫星编队和卫星星座的主要区别,并以两组GRACE-type卫星编队为基础设计了三种卫星星座模式(ΔM、ΔΩ、Δi)。
     (2)基于动力法全面分析了重力卫星关键轨道参数和观测值误差对重力场反演的影响,并进行仿真验算,进而给出了重力卫星轨道关键参数设计的依据。
     提出重力卫星轨道高度的选择应以长重复周期和满足卫星寿命为主要参考,选择290km以上并且重复周期较长的高度是重力卫星的最佳合理高度;而轨道倾角则以长重复周期和极空白的影响为依据,尽量选择近极轨的倾角。在轨道参数选定的前提下,对GRACE-type编队中不同类型观测量的误差特性进行了全方位仿真分析,重点分析了定轨误差和星间测距误差对重力场反演精度的影响。结果表明,定轨精度对于重力场低阶项贡献较大,星间测距数据则对重力场中高阶贡献较大;在当前定轨精度2-3cm下,重力场解算的精度主要取决于低低跟踪数据,其精度越高,重力场反演精度也越高;但当星间距离变率精度达到纳米级而轨道误差不变时,定轨精度在一定程度上会影响重力场反演精度,尤其是低阶项部分。
     (3)仿真分析了各种卫星编队构形探测地球重力场的能力,结果表明单一的星间观测量是造成重力场条纹误差的关键因素,而联合多方向的观测量有利于去条纹和提高重力场解算精度。
     针对GRACE-type、Pendulum-type、Cartwheel-type和GRACE-Pendulum-type这四种卫星编队,比较分析了它们30天数据所反演的不同阶次(n=60、90、120阶)地球重力场的结果。只有沿轨方向观测量的GRACE-type的误差全球分布图显示出明显的南北方向条纹误差,而法向观测量占优Pendulum-type编队则表现出东西方向的条纹误差,这在一定程度上验证了条纹误差是由于轨道设计所造成的固有问题,单一的星间观测量的强相关性导致了重力场各向异性的敏感度。无论解算阶次高低,GRACE-Pendulum-type编队(均衡的沿轨方向+法向观测量)和Cartwheel-type编队(均衡的沿轨方向+径向观测量)的重力场反演精度都较高,与GRACE-type编队相比,对于重力场解算精度的提高可达9%-65%,并明显的消除了条纹误差。这说明均衡的多方向的观测量有利于去条纹和提高重力场解算精度。
     (4)首次分析了东西径向Cartwheel和南北径向Cartwheel编队在重力场反演精度上的差异,并提出南北径向Cartwheel编队是适合高阶重力场解算的最优编队构形。
     当n=60时,两种Cartwheel编队对于重力场反演的精度相当。但随着解算阶次的增高,发现东西径向编队的重力场反演精度降低,高阶扇谐和田谐系数误差急剧增大,提出地球扁率的影响是导致这种编队在重力场高阶部分的误差增大的主要因素。而南北径向的Cartwheel编队对于高阶重力场反演十分敏感,无论解算阶次高低,都能得到精度较高且各向同性的重力场解算结果。当n=120时,与GRACE-type相比,这种由两颗卫星构成的卫星编队对于重力场解算精度的提高可达50%,已经接近由三颗卫星构成的GRACE-Pendulum-type编队结果,是适合于高阶重力场解算的最优编队构形。
     (5)给出了沿轨方向、法向和径向星间观测量对带谐、扇谐和田谐重力场球谐系数的敏感程度,从一个新的角度(即利用不同方向观测量)为设计特定应用需求的重力卫星任务提供了参考。
     各卫星编队都包含着不同方向的星间观测量,从它们反演的重力场系数的误差谱图可知,星间沿轨方向观测量和东西径向观测量对高阶扇谐和近扇谐系数反演能力最差,而法向观测量会影响带谐项系数的反演精度,南北径向观测量和均衡的多方向联合的观测量能得到最好的接近各向同性敏感度的全阶次重力场系数分布。
     (6)分析了各种卫星星座探测地球重力场的能力,发现采用不同倾角组合(极轨+低倾角)的卫星星座能得到较好的重力场解算结果,并给出低倾角卫星的倾角最优选择范围。
     由两组GRACE-type的卫星编队构成的各种卫星星座基于15天观测数据仿真计算了地球重力场,发现可在较短的任务周期中得到较高的重力场解算精度。尤其是采用不同倾角的卫星星座,与30天GRACE-type编队结果相比,对重力场解算的精度提高可达34%。从仿真结果来看,低倾角卫星应选择在70°-75°之间,才能获得全球一致的高精度结果,同时要顾及选择能得到与近极轨卫星重复周期一致的倾角度数。
     (7)提出在目前时变信号模型误差的影响下,利用卫星编队并通过动力法确定重力场并不能有效降低混频误差。
     分析了海洋潮汐这种时变信号模型误差造成的混频现象对地球重力场反演精度的影响。结果表明,当考虑真实时变信号模型误差时,即使提高了星间观测精度,利用Pendulum-type(?)Cartwheel-type编队也不能消除混频影响。其中,Pendulum-type(?)GRACE-type卫星编队的重力场解算精度相当,而Cartwheel-type编队则显示出较大的误差,这是由于径向观测量对重力场的高频信号更为敏感,包含了更多的海潮模型误差的高频信号。
The launch of gravity satellites CHAMP, GRACE, GOCE at the beginning of this century illustrated an unprecedented era of gravity satellite exploration. The GRACE mission, in particular, provides time-variable gravity field in monthly scale, and serves as a new important tool to investigate mass transformation, global changing, natural disaster and so on. Till now, the CHAMP mission has already finished, the GRACE mission will finish in three years, and the GOCE mission has already finished its mission of gravity field exploration. To keep continuity of gravity field mission and improve exploration precision of static gravity field, it is urgent to develop a new generation of gravity field satellite mission. Using satellite formation technology to determine earth gravity field has been hot issues, since this method could improve spatial-temporal resolution, reduce aliasing effects in GRACE mission and eliminate anisotropy. Under this background, gravity field inverse theories using different types of satellite formation are systematically studied. Through simulation experiments, effects of different types of satellite formation on the gravity field with different orders are analyzed. Then comparative analyses are carried out on their capabilities of solving current problems. The feasibility of solving the problem of aliasing using satellite formation is also studied in the dissertation, which could provide technical reference basis for orbit design of future gravity satellite mission.
     Contents and contributions of this dissertation paper mainly include:
     (1) Principles and methods of satellite formation are studied. Satellite formation and constellation adaptable to the gravity mission are analyzed and put forward.
     Under the assumptions of circular orbit, linear relative motion, only two-body gravitation without any other perturbation, together with identical orbital period, Clohessy-Wiltshire equation and its analytical solution describing relative motions of satellite formation are deduced. By setting different initial relative motion status, the following satellite formation configurations which might be used for gravity field mission: GRACE-type, Pendulum-type, Cartwheel-type and GRACE-Pendulum-type are put forward. Main differences between satellite formation and constellation are given. Then three types of satellite constellation configuration (ΔM, ΔΩ, Δi) are designed based on the condition of containing two types of GRACE-type satellite formation.
     (2) Based on the dynamic method, effects of key orbital parameters and observation error on gravity field reflection precision are analyzed and verified through simulation experiments. Then references of gravity satellite orbit key parameters are proposed.
     The gravity satellite altitude should refer to long repeated period and satellite lifetime. Altitude of at least290km and that of longer repeated period is suggested. The gravity satellite inclination should refer to long repeated period and consider the effect of polar gap. Inclination of near polar orbit is suggested. In the premise of setting orbital elements, comprehensive simulation analysis of various type of observation error characteristics in GRACE-type is performed, especially the effects of orbital error and inter-satellite ranging error in gravity field inverse. Results show that orbital determination precision contributes on gravity field with low-order, while the inter-satellite ranging precision contributes on the gravity field with middle-to-high order. When orbital precision stays at2~3cm level, resolution accuracy of gravity field depends on inter-satellite ranging data, that is, the higher precision of inter-satellite ranging data, the higher inverse precision of gravity field. However, orbital determination precision impact low order part of gravity field when inter-satellite ranging-rate reaches nano-meter level with invariable orbital error.
     (3) Capability of gravity field exploration of various satellite formation is analyzed through simulation experiments. The key factor causing gravity field stripes due to single inter-satellite observation is proposed. Conclusions are drawn that de-striping and resolution improvement of gravity field can be achieved by multi-direction observations.
     Inversed30-day gravity field with different orders (n=60,90,120) from four formations:GRACE-type, Pendulum-type, Cartwheel-type and GRACE-Pendulum-type are analyzed. From the global error distribution curves, the north-south stripes error appears obviously in GRACE-type configuration which has only along-track observation, while the east-west stripes error appears obviously in Pendulum-type configuration of which the cross-track observation is the main factor. It proves the theory that stripes error is the inherent problem caused by orbit design partly, and single inter-satellite observation results in gravity anisotropy sensitivity. Despite of orders, GRACE-Pendulum-type configuration (balanced along-track+cross-track observation) and Cartwheel-type configuration (balanced along-track+radial observation) can get better gravity field inversion result, whose solution precision is about9%-65%higher than the one from GRACE-type configuration, and the stripes error is removed significantly. It is concluded that balanced multi-direction observation is useful for de-striping and improving gravity field solution precision.
     (4) Difference of gravity field inversion precision between east-west along-track Cartwheel configuration and north-south along-track Cartwheel configuration is analyzed for the first time. The latter one is the optimal formation configuration for high-order gravity field solution.
     Inversed gravity field is comparative in precision for both Cartwheel formation when n=60. With the order increasing, the precision of east-west radial formation decreases, while the high-order sectorial harmonic and tesseral harmonic coefficient error increases dramatically. The influence of earth oblateness is regarded as the main factor causing high-order error increment of the gravity field under this type of formation. While the north-south Cartwheel formation is beneficial to the inversion of gravity field with high-order, the gravity field solution result of higher precision with isotropy can be obtained under all orders. When the order reaches120, the gravity field solution precision of this type of satellite formation consisting of two satellites is50%better than the result from GRACE-type formation, and close to the result of GRACE-Pendulum-type formation consists of three satellites. It is the optimal formation configuration for high-order gravity field solution.
     (5) Response of along-track, cross-track and radial inter-satellite observations to zonal harmonics, sectorial harmonic and tesseral harmonic coefficients are given, which provides a brand new angle for specified application of gravity field.
     All types of satellite formation containing inter-satellite observations from various directions, from the error spectrum of inversed gravity field coefficients, satellite-satellite along-track observation and east-west radial observation has the worst inverse result to high-order sectorial harmonic and near-sectorial harmonic coefficient, while cross-track observation can impact the inverse precision of zonal harmonic coefficient. The north-south radial observation and balanced multi-direction combined observations shall be the best way to get the gravity field coefficient close to the isotropy sensitivity.
     (6) Capability of gravity field exploration with various satellite constellation is analyzed. Combination of different inclinations (polar+low inclination) constellation can obtain better gravity field solution result. The optimal ranges of inclination is also suggested.
     Gravity fields are simulated with15-day observations based on various satellite constellations, and better precision of gravity field can be achieved in short period. In particular, the resolution precision improves by34%with various inclinations of satellite constellation compared with30-day GRACE-type formation results. Simulation results suggest that lower inclined satellite between70°~75°can get globally consistent results with high-precision. Meanwhile, those inclination should agree with repeated period of the near polar orbit satellite.
     (7) Under the influence of time-varying signal model error, aliasing error cannot be solved effectively through satellite formation and gravity field determination from dynamic method.
     The effect of aliasing caused by time-varying signal of ocean tide on gravity field inverse precision is analyzed. Results show that when real time-variable signal is considered, aliasing effect cannot be eliminated through Pendulum-type and Cartwheel-type satellite formation even if the inter-satellite observations precision is improved. Resolution of Pendulum-type and GRACE-type satellite formation is comparable, while that of Cartwheel-type shows large error. Possible explanation is that the radial observation is much sensitive to high-frequency signal, which contains more high-frequency signals of ocean tide model errors.
引文
[1]边少锋.大地测量边值问题数值解法与地球重力场逼近.1992.武汉测绘科技大学.博士学位论文.
    [2]晁定波.关于Stokes公式的球面卷积和平面卷积的注记.武汉大学学报信息科学版,2003,28(SI):52-54.
    [3]晁定波.论高精度卫星重力场模型和厘米级区域大地水准面的确定及水文学时变重力效应.测绘科学,2006,31(6):16-18.
    [4]陈力,申敬松,胡松杰.卫星星座的相对几何和区域覆盖重复周期.宇航学报,2003,24(3):278-281.
    [5]陈杰,周荫清,李春升.分布式SAR小卫星编队轨道设计方法研究.中国科学E辑,2004,34(6):654-662.
    [6]陈俊勇,魏子卿,胡建国,杨元喜,李建成等.即将迈入新千年的大地测量学.测绘学报,2000,29(2):95-101.
    [7]陈俊勇,李建成,宁津生,张燕平,张骥.中国新一代高精度高分辨率大地水准面的研究和实施[J].武汉大学学报,2001,26(4):283-299.
    [8]褚永海,李建成,姜卫平,张燕.利用Jason-1数据监测呼伦湖水位及变化.大地测量与地球动力学,2005,25(4):11-16.
    [9]高云峰,李俊峰.卫星编队飞行中的队形设计研究.工程力学,2003,20(4):128-131.
    [10]高云峰,宝音贺西,李俊峰.卫星编队飞行中C-W方程与轨道根数法的比较.应用数学和力学,2003,24(8):799-804.
    [11]管泽霖,宁津生编.地球形状及外部重力场(上、下).北京:测绘出版社,1981.
    [12]郭俊义编著.地球物理学基础[M].北京:测绘出版社,2001.
    [13]郭靖GRACE卫星时变重力场模型反演理论与若干精化方法研究.2011.武汉大学.硕士学位论文.
    [14]海斯卡涅,H.莫里兹著,卢福康等译.物理大地测量学.北京:测绘出版社,1979.
    [15]赫尔默特.莫里兹著,宁津生,管译霖译,陈俊勇校.高等物理大地测量学.北京:测绘出版社,1984.
    [16]黄刚NCEP/NCAR和ERA-40再分析资料以及探空观测资料分析中国北方地区年代际气候变化.气候与环境研究,2006,11(3):310-320.
    [17]姜卫平.卫星测高技术在大地测量学中的应用.2001.武汉大学.博士学位论文.
    [18]姜卫平,李建成,王正涛.联合多种测高数据确定全球平均海面WHU2000.科学通报,2002,47(15):1187-1191.
    [19]姜卫平,章传银,李建成.重力卫星主要有效载荷指标分析与确定.武汉大学学报信息科学版,2003,28(SI):104-108.
    [20]李建成.物理大地测量中的谱方法.1993.武汉测绘科技大学.博士学位论文.
    [21]李建成,陈俊勇,宁津生,晁定波.地球重力场逼近理论与中国2000似大地水准面的确定.武汉:武汉大学出版社,2003.
    [22]李建成,张守建,邹贤才,姜卫平GRACE卫星非差运动学厘米级定轨.科学通报,2009,54(16):2355-2362.
    [23]李俊峰,雪丹.编队卫星相对运动描述方法综述.宇航学报,2008,29(6):1689-1694.
    [24]李征航,徐德宝,董挹英,刘彩璋.空间大地测量理论基础.武汉:武汉测绘科技大学出版社,1998.
    [25]林来兴主编.微小卫星编队飞行及应用论文集.北京:国家高技术航天领域专家委员会微小卫星技术组,2000.
    [26]刘林编著.人造地球卫星轨道力学.北京:高度教育出版社,1992.
    [27]刘林编著.航天器轨道理论.北京:国防工业出版社,2000.
    [28]陆仲连,吴晓平.人造地球卫星与地球重力场.北京:测绘出版社,1994.
    [29]刘基余,李征航,王跃虎,桑吉章.全球定位系统原理及其应用.北京:测绘出版社,1993.
    [30]罗佳.利用卫星跟踪卫星技术确定地球重力场的理论和方法.2003.武汉大学.博士学位论文.
    [31]罗志才,晁定波,宁津生.卫星重力梯度张量的球谐分析.武汉测绘科技大学学报,1997,22(4):346-349.
    [32]宁津生,李建成,晁定波.由地面重力数据确定扰动位径向二阶梯度.武汉测绘科技大学学报,1996,21(3):201-206.
    [33]宁津生,李建成.地球重力场研究的进展.海峡两岸测绘学术交流会论文集,1998,,36-345.
    [34]宁津生.跟踪世界发展动态致力地球重力场研究.武汉大学学报信息科学版,2001,26(6):471-474.
    [35]宁津生.卫星重力探测技术与地球重力场研究.大地测量与地球动力学,2002,22:1-5.
    [36]沈云中.应用CHAMP卫星星历精化地球重力场模型的研究.2000.中国科学院测量与地球物理研究所.博士学位论文.
    [37]施闯,朱圣源,胡小.1GRACE重力场的解算和初步结果.2004.
    [38]王虎妹,李俊峰,杨卫.利用参照轨道要素设计卫星编队轨道.工程力学,2006,23(4):144-148.
    [39]王昆杰,王跃虎,李征航.卫星大地测量.北京:测绘出版社,1990.
    [40]王信峰,李言俊,侯黎强.基于Hill方程的编队卫星群运动分析与轨道设计.系统仿真学报,2008,20(22):6273-6277.
    [41]王正涛.卫星跟踪卫星测量确定地球重力场的理论与技术.2005.武汉大学.博士学位论文.
    [42]王志刚,陈士橹.伴随卫星在空间站系统中的应用.中国航天,2000(1):16-19.
    [43]吴霞.小卫星编队飞行队形控制与仿真.2006.中国科学院空间科学与应用研究中心.硕士学位论文.
    [44]郗晓宁,王威.近地航天器轨道基础.长沙:国防科技大学出版社,2003.
    [45]杏建军.编队卫星周期性相对运动轨道设计与构形保持研究.2007.国防科学技术大学.博士学位论文.
    [46]许才军,申文斌,晁定波.地球物理大地测量学原理与方法.武汉:武汉大学出版社,2006.
    [47]许厚泽,陆仲元等.中国地球重力场与大地水准面.北京:解放军出版社,1997.
    [48]徐天河.利用CHAMP卫星轨道数据和加速度计数据推求地球重力场模型.2004.中国人民解放军信息工程大学.博士学位论文.
    [49]徐新禹.卫星重力梯度及卫星跟踪卫星数据确定地球重力场的研究.2008.武汉大学.博十学位论文.
    [50]徐新禹,李建成,邹贤才,范春波,褚永海GOCE卫星重力探测任务.大地测量与地球动力学,2006,26(4):49-55.
    [51]徐新禹,李建成,王正涛,邹贤才.利用参考重力场模型基于能量法确定GRACE加速度计校准参数的研究.武汉大学学报信息科学版,2008,33(1):72-75.
    [52]雪丹,曹喜滨,吴云华,吴宝林.基于轨道根数差的卫星编队自主定轨研究.系统仿真学报, 2006,18(10):2952-2955.
    [53]叶叔华,黄铖.天文地球动力学.济南:山东科学技术出版社,2000.
    [54]郑伟,许厚泽,钟敏,员美娟,周旭华,彭碧波.基于半解析法有效和快速估计GRACE全球重力场的精度.地球物理学报,2008,51(6):1704—1710.
    [55]郑伟,许厚泽,钟敏,员美娟.国际重力卫星研究进展和我国将来卫星重力测量计划.大地测量与地球动力学,2010,35(1):5-9.
    [56]郑伟,许厚泽,钟敏,员美娟,周旭华,彭碧波.利用解析法有效快速估计将来GRACE Follow-On地球重力场的精度.地球物理学报,2010,53(4):796—806.
    [57]郑伟,许厚泽,钟敏,员美娟.基于激光干涉星间测距原理的下一代月球卫星重力测量计划需求论证.宇航学报,2011,32(4):922—932.
    [58]张传定,陆仲连,吴晓平.广义球函数及其在梯度边值问题中的应用.测绘学报,1998,27(3):252-258.
    [59]张玉锟,戴金海,王石,任萱.基于Hill方程的编队卫星群运动分析与轨道设计.国防科技大学学报,2000,22(6):1-5.
    [60]张玉锟.卫星编队飞行的动力学与控制技术研究.2002.国防科学技术大学.博士学位论文.
    [61]章传银,李建成,晁定波.联合卫星测高和海洋物理数据计算近海平均海而地形.武汉测绘科技大学学报,1999,25(6):500-504.
    [62]周连童.比较NCEP/NCAR和ERA-40再分析资料与观测资料计算得到的感热资料的差异.气候与环境研究,2009,14(1):9-20.
    [63]周旭华.卫星重力及其应用研究.2005.中国科学院测量与地球物理研究所.博士学位论文.
    [64]周忠谟,易杰军.GPS卫星测量原理与应用.北京:测绘出版社,1992.
    [65]朱广斌.卫星重力梯度测量技术确定地球重力场的理论方法研究.2010.武汉大学.博士学位论文.
    [66]朱彦良,凌超,陈洪滨,张金强,彭亮,余予.两种再分析资料与RS92探空资料的比较分析.气候与环境研究,2012(待刊)
    [67]詹金刚,王勇,郝晓光GRACE时变重力场位系数误差的改进去相关算法.测绘学报,2011,40(4):442-446.
    [68]赵天保,符淙斌.中国区域ERA-40、NCEP-2再分析资料与观测资料的初步比较与分析.气候与环境研究,2006,11(11):4-32.
    [69]赵倩,姜卫平,徐新禹,等GRACE卫星重力场解算中混频误差影响的探讨.大地测量与地球动力学,2011,31(4):123-126.
    [70]邹贤才.卫星轨道理论与地球重力场模型的确定.2007.武汉大学.博士学位论文.
    [71]Aguirre-Martinez M., Nico Sneeuw. Needs and tools for future gravity measuring missions. Space Science Reviews,2002,108,409-416.
    [72]Ales Bezdek,et. Simulation of free fall and resonances in the forthcoming GOCE mission. Preprint submitted to Journal of Geodynamics.2008.
    [73]Alfriend K.T., Schaub H., Gim D.W. Gravitational Perturbations,Nonlinearity and Circular Orbit Assumption Effects on Formation Flying Control Strategies. Proceedings of the Annual AAS Rocky Mountain Conference, Breckenridge, CO,2000, Feb.26, pp.139158.
    [74]Brian Christopher Gunter. Computational methods and processing strategies for estimating Earth's gravity gield.2004, PhD thesis, University of Texas at Austin, Austin, Texas, USA.
    [75]Bender.P., Hall J.L., Ye J., Klipstein W.M. Satellite-satellite laser links for future gravity missions. Space Science Reviews,2003,108,377-384, doi:10.1023/A:1026195913,558.
    [76]Bender.P., Wiese D.N., Nerem R.S. A possible dual-GRACE mission with 90 degree and 63 degree inclination orbits, in Proceedings of the Third International Symposium on Formation Flying,Missions and Technologies,2008, pp.1-6, ESA/ESTEC, Noordwijk, The Netherlands.
    [77]Bender.P. et al,. LISA:Laser Interferometer Space Antenna. Technical Report, European Space Agency, MPQ 208.
    [78]Brouwer D. Solution of the problem of artificial satellite theory without drag. Astronaut Journal, 1959,64,378-397.
    [79]Bruinsma S., Lemoine J.M., Biancale R., Vales N. CNES/GRGS 10-day gravity field models(release 2) and their evaluation. Advances in Space Research.,2010,45,587-601, doi:10.1016/j.asr.2009.10.012.
    [80]Chen J.L., Wilson C.R., Swo K.W. Optimized smoothing of gravity recovery and climate experiment(GRACE) time-variable gravity observations. Journal of Geophysical Research,2006, 111, B06,408, doi:10.1029/2005JB004,064.
    [81]Christopher Jekeli. spherical harmonic analysis aliasing and filtering. J. Geod.,1996,70: 214-223.
    [82]Clohessy W.H., Wiltshire R.S. Terminal Guidance System for Satellite Rendezvous. J.Aerospace Sci.,1960,27 (5F):653-674.
    [83]Colombo O.L. Altimetry,orbits and tides.NASA Tech.Memo.1984, NASA TM-86180.
    [84]Colombo O.L. The global mapping of gravity with two satellite. Tech. Rep.3, Netherlands, Geodetic Commission, Publications on Geodesy, New Series,1984.
    [85]Duan X.J., Guo J.Y., Shum C.K., Wal W. van der. On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions. Journal of Geodesy,2009,83,1095-1106, doi:10.1007/s00,190-009-0327-0.
    [86]Einarsson, I. Sensitivity analysis for future gravity satellite missions.2011, Ph.D. thesis, Deutsches GeoForschungsZentrum GFZ, Potsdam.
    [87]Elsaka B., Ilk K.H. Global Gravity Field Solutions from Simulated Satellite Formation Flight Missions. NRIAG Journal of Geophysics, Special Issue,2008.
    [88]Elsaka Basem. Simulated satellite formation flights for detecting temporal variations of the earth's gravity field.2010, Ph.D. thesis, University of Bonn.
    [89]Encarnacao J., Ditmar P., Liu X.. Analysis of satellite formations in the context of gravity field retrieval. Procedings of the 3rd international symposium on formation flying,missions and technologies,2008, ESA Communication Production Office, ESA SP-654.
    [90]Flury J, Bettadpur S, Tapley B. Precise accelerometry onboard the GRACE gravity field satellite mission. Adv Space Res.2008,42:1414-1423. doi:10.1016/j.asr.2008.05.004.
    [91]Flechtner Frank. AOD1B Product Description Document for Product Releasea 01 to 04. GRACE 327-750 (GR-GFZ-AOD-0001), Rev.3.0, GeoForschungszentrum Potsdam, Department 1: Geodesy and Remote Sensing,2007.
    [92]Flechtner Frank. Introduction, in GRACE Science Team Meeting, Potsdam, Germany,2010.
    [93]Frommknecht B. Integrated sensor analysis of the GRACE mission. Number 617 in DGKReiheC.Verlag der BayerischenAkademie der Wissenschaften, Munchen. ISBN (Print),2008, 3-7696-5056-5, ISSN 0065-5325
    [94]Forste C., Schmidt R., Stubenvoll R., Flechtner F., Meyer U., Konig R., Neumayer H., Biancale R., Lemoine J.-M., Bruinsma S., Loyer S., Barthelmes F., Esselborn S. The GeoForschungsZentrum Potsdam/Groupe de Recherche de Geodesie Spatiale satellite-only and combined gravity field models:EIGEN-GL04S1 and EIGEN-GL04C. J. Geod.,2008,82:3310346, doi: 10.1007/s00190-007-0183-8.
    [95]Gooding R.H., Wagner C. A., Klokocnik J., Kostelecky J., Gruber Ch. CHAMP and GRACE resonances and the gravity field of the Earth. Advances in Space Research.,2007,39,1604-1611, doi:10.1016/j.asr.2007.02.086.
    [96]Gruber T., Peters T., and Zenner L. The Role of the Atmosphere for Satellite Gravity Field Missions. M.G. Sideris (ed.), Observaing our Changing Earch, International Association of Geodesy Symposia 133.2009, Springer-Verlag Berlin Heidelberg.
    [97]Gruber T., Bamber J.L., Bierkens M.F.P., Dobslaw H., Murbock M., Thomas M., et al., Simulation of the time-variable gravity field by means of coupled geophysical models. Earth System Science Data,2011,3,19-35,10.5194/essd-3-19-2011.
    [98]Hametz M.E., Conway D.J., and Richon K. Design of a Formation of Earth Orbiting Satellite:The Auroral Lites Mission. Proceedings of the 1999 NASA GSFC Flight Mechanics and Estimation Conference,1999,295-308.
    [99]Han Shin-Chan., Jekeli C., and Shum C.K. Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field. J. geophys. Res., 2004,109, B04403, doi:10.1029/2003JB002501.
    [100]Han Shin-Chan., Shum C.K., Jekeli C., Kuo C., Wilson C.R., Seo K.W. Nonisotropic filtering of GRACE temporal gravity for geophysical signal enhancement. Geophy J. Int.,2005,163:18-25.
    [101]Han Shin-Chan., Pavel Ditmar. Localized spectral analysis of global satellite gravity fields for recovering time-variable mass redistributions. J. Geod.,2008,82:423-430, doi:10.1007/s 00190-007-0194-5.
    [102]Hill G.W. Researches in the Lunar Theory. American Journal of Mathematics,1878,1 (1): 5-26,129-147,245-260.
    [103]Horwath M., Lemoine J.-M., Biancale R., Bourgogne S. Improved GRACE science results after adjustment of geometrix biases in the Level-1B K-band ranging data. J. Geod.,2010, doi: 10.1007/s00190-010-0414-2. First online.
    [104]Kalnay E., Kanamitsu M., Kistler R., et al. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc.,1996,77:437-471.
    [105]Kanamitsu M., Ebisuzaki W., Woollen J., et al. NCEP/DOE AMIP-Ⅱ Reanalysis(R-2). Bull. Amer. Meteor. Soc.,2002,83:1631-1643.
    [106]Kaula W. M. Theory of satellite geodesy.1966, Blaisdell, Waltham, MA.
    [107]Keller W, Sharifi M.A. Gradiometry using a satellite pair. Journal of Geodesy,2005,78:544-557.
    [108]Kim Jeongrae. Simulation Study of A Low-Low Satellite-to-Satellite Tracking Mission.2000, PhD thesis, University of Texas at Austin, Austin, Texas, USA.
    [109]Klees R., Revtova E.A, Gunter B.C., Ditmar P., Oudman E.,Winsemius H.C., Savenije H.H.G. The design of an optimal filter for monthly GRACE gravity models. Geophys J Int.,2008, 175:417-432. doi:10.1111/j.1365-246X.2008.03922.x.
    [110]Klokocnik J., Kostelecky J., Gooding R.H. On fine orbit selection for particular geodetic and oceanographic missions involving passage through resonances. J. Geod.,2003,77:30-40, doi:10.1007/s00190-002-0276-3.
    [111]Klokocnik J., Wagner C.A., Kostelecky J., Bezdek A., Novak P., McAdoo D. Variations in the accuracy of gravity recovery due to ground track variability:GRACE,CHAMP,and GOCE. J. Geod., 2008,82:917-927, doi:10.1007/s00190-008-0222-0.
    [112]Kong E., Tollefson M., Skinner J., et al. TechSat 21 Cluster Design Using AI Approaches and the Cornwell Metric. In. Proceedings of the 1999 AIAA Space Technology Conference and Exposition. Albuquerque, NM,1999, AIAA 99-4635.
    [113]Koop R. Global Gravity Field Modeling using Satellite Gravity Gradiometry. Netherlands Geodetic Commission, Publications on Geodesy, New Series, No.38,1993.
    [114]Koop R., Rummel R. The future of satellite gravimetry. Report from the workshop on the future of satellite gravimetry, ESTEC, Noordwijk, The Netherlands,2007.
    [115]Kurtenbach E., Mayer-Gurr T, Eicker A. Deriving daily snapshots of the Earth's gravity field from GRACE LIB data using Kalman filtering. Geophysical Research Letters,2009, L17102, doi:10.1029/2009GL039564.
    [116]Loomis Bryant D. Simulation study of a follow-on gravity mission to GRACE.2009, Ph.D. thesis, University of Colorado at Boulder.
    [117]Loomis Bryant D., Nerem R.S., Luthcke S.B.. Simulation study of a follow-on gravity mission to GRACE. J. Geod.,2012,86:319-335, doi:10.1007/s00190-012-0566-3.
    [118]Lyard F., Lefevre F., Letellier T., Francis O. Modelling the global ocean tides:modern insights from FES2004. Ocean Dynamics,2006,56,394-415.
    [119]Mackenzie R.A. Gravity Field Recovery Using Two Low Satellites in Different Orbital Planes. 1995, Ph.D. Thesis, The university of Aston in Birmingham, England.
    [120]Marchetti P., Blandino J.J., Demetriou M.A. Electric propulsion and controller design for drag-free spacecraft operation. J.Spacecraft Rockets,2008,44(6),1303-1315, doi:10.2514/l. 36307.
    [121]Massonnet D. The interferometric Cartwheel:a constellation of passove satellite to produce radar images to be coherently combined. Int.J.Remote Sensing,2001,22:2413-2430.
    [122]NASA,2010. http://www.jpl.nasa.gov/mobile/news/index.cfm?release=2010-195.
    [123]Pavel Ditmar, Joao Teixeira da encarnacao, Hassan Hashemi Farahani. Understanding data noise in gravity field recovery on the basis of inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE. J Geod,2011, doi:10.1007/s00190-011-0531-6.
    [124]Ray R.D., Rowlands D.D. and Egbert G.D. Tidal models in a new era of satellite gravimetry. Space Sci. Rev.,2003,108:271-282.
    [125]Ray R.D. and Luthcke S.B. Tide model errors and GRACE gravimetry:towards a more realistic assessment. Geophys. J. Int.,2006,167:1055-1059.
    [126]Reubelt T., Sneeuw N., Sharifi M. Future mission design options for spatio-temporal geopotential recovery, in Proceedings of Gravity, Geoid, and Earth Observation, Chania, Crete, Greece, June 23-27,2008.
    [127]Rodell M.,et al. The Global Land Data Assimilation System. Bulletin of the American Meteorological Society,2004,85,381-394.
    [128]Rowlands D.D., Ray R.D., Chinn D.S., Lemoine F.G. Short-arc analysis of inter-satellite tracking data in a gravity mapping mission. Journal of Geodesy,2002,76,307-316, doi:10.1007/s00,190-002-0255-8.
    [129]Rummel R. The future of Satellite Gravimetry. Presentation given at the Workshop on The Future of Satellite Gravimetry,12-13 April 2007, ESA/ESTEC, Noordwijk, Netherlands.
    [130]Sabaka T.J., Rowlands D.D., Luthcke S.B., Boy J.B. Improving global mass flux solutions from Gravity Recovery and Climate Experiment(GRACE) through forward modeling and continuous time correlation. Journal of Geophysical Research,2010,115, B11,403, doi:10.1029/2010JB007533.
    [131]Sabol C., Burns R., McLaughlin C.A. Satellite Formation Flying Design and Evolution. Journal of Spacecraft and Rocked,2001,38 (2):270-278.
    [132]Savcenko R., Bosch W. EOT08a-empirical ocean tide model from multi-mission satellite altimetry. Report No.81.Deutsches Geodatisches Forschungsinstitut(DGFI),2008, Munchen, Germany.
    [133]Schaub and Alfriend K.T. J2 Invariant Relative Orbits for Spacecraft Formations. Celestial Mechanics and Dynamical Astronomy,2001,79:77-95.
    [134]Schrama E.J.O., Wouters B., Lavallee D.A. Signal and noise in gravity recovery and climate experiment(GRACE) observed surface mass variations. Journal of Geophysical Research,2007, 112, B08,407, doi:10.1029/2006JB004,882.
    [135]Sedwick J., Kong E.M.C. and Miller D.W. Exploring Orbital Dynamics and Micro propulsion for Aperture Synthesis Using Distributed Satellite Systems:Applications to TechSat21. AIAA Defense and Civil Space Programs Conference and Exhibit, AL,1998:AIAA 98-5289.
    [136]Seo K.W., Wilson C.R., Han S.C., Waliser D.E. Gravity Recovery and Climate Experiment (GRACE) alias error from ocean tides. J. geophys. Res.,2008a,113/B03405, doi:10.1029/ 2006JB004747, March 2008.
    [137]Seo K.W., Wilson C.R., Chen J., Waliser D.E. GRACE's spatial aliasing error. Geophys. J. Int., 2008b,172,41-48, doi:10.1111/j.1365-246X.2007.03611.x.
    [138]Sharifi M.,Sneeuw N., Keller W. Gravity recovery capability of four generic satellite formations. Institute of Geodesy, Universitat Stuttgart, Geschwister-Scholl-Str.2007,24D, D-70174 Stuttgart, Germany.
    [139]Sheard B.S., Heinzel G., Danzmann K., Shaddock D.A., Klipstein W.M., Folkner W.M. Intersatellite laser ranging instrument for the GRACE follow-on mission. J. Geod.,2012, doi:10.1007/s00190-012-0566-3.
    [140]Silvestrin P., Aguirre M., Massotti L., Leone B., Cesare S., Kern M., Haagmans R. The Future of the Satellite Gravimetry after the GOCE Mission. Geodesy for Planet Earth, International Association of Geodesy Symposia 136,2012, DOI:10.1007/978-3-642-20338-1_27.
    [141]Simmons A.J., Gibson J.K. The ERA-40 Project Plan. ECMWF Re-Analysis Project Report Series No.1,2000.
    [142]Simmons A., Uppala S., Dee D., et al. ERA-Interim:New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter,2006,110:25-35.
    [143]Sneeuw N. A semi-analytical approach to gravity field analysis from satellite observations. Deutsche Geod atische Kommission,2000, Series C, Nr.527.
    [144]Sneeuw N., Schaub H.. Satellite Cluster for future gravity field missions. In:Proc of IAG symposia'Gravity,Geoid and space missions'Jekeli C Bastos L Fernandes J(eds) Vol.129,2005, pp12-17, Springer.
    [145]Sneeuw N., Flury J., Rummel R. Science requirements on future missions and simulated mission scenarios. Earth,Moon,and Planets,2005,94,113-142.
    [146]Sneeuw N., Gerlach C., Foldvary L., Gruber T., Perters T., Rummel R., Svehla D. One year of time-variable CHAMP-only gravity field models using kinematic orbits.In:Sanso F(ed)A window on the future of geodesy,vol 128. International Association of Geodesy Symposia,2005, Springer,Berlin,pp288-293.
    [147]Sneeuw N., Sharifi M.A., Keller W. Gravity Revovery from Formation Flight Missions. In:Proc of IAG symposia Hotine-Marussi Symposium of Theoretical and Computational Geodesy: Challenge and Role of Modern Geodesy, Wuhan,29 May to 2 June 2006.
    [148]St.Rock B., Blandino J.J., Demetriou M.A.. Propulsion requirements for drag-free operation of spacecraft in low Earth orbit. J. Spacecraft Rockets,2006,43(3),594-606, doi:10.2514/1.15819.
    [149]Tapley B.D., Bettadpur S., Ries J.C., Thompson P.F., Watkins M.M. GRACE measurements of mass variability in the Earth system.2004, Science 305:503-505.
    [150]Tapley B. D., Ries J., Bettadpur S., Chambers D., Cheng M., Condi F., Gunter B., Kang Z., Nagel P., Paster R., Pekker T., Poole S., Wang F. GGM02 and Improved Earth Gravity Field Model from GRACE. J. Geod.,2005,79:467-478, doi 10.1007/s00190-005-0480-z.
    [151]Thompson P.F., Bettadpur S.V., Tapley B.D. Impact of short period, non-tidal, temporal mass variability on GRACE gravity estimates. Geophysical Research Letters,2004,31, L06,619, doi:10.1029/2003GL019,285.
    [152]van Dam T., Visser P., Sneeuw N., Losch M., Gruber T., Bamber J., Bierkens M., King M., Smit M. Monitoring and modeling individual sources of mass distributions and transport in the Earth system by means of satellites.2008, Tech. rep., Final Report, ESA Contract 20403.
    [153]Visser P.N.A.M., Sneeuw N., Reubelt T., Losch M., van Dam T. Space-borne gravimetric satellite constellations and ocean tides:aliasing effects. Geophys. J. Int.,2010,181,789-805, doi:10.1111/j.1365-246X.2010.04557.x.
    [154]Wagner C., McAdoo D., Klokocnik J., Kostelecky J. Degradation of geopotential recovery from short repeat-cycle orbits:application to GRACE monthly fields. Journal of Geodesy,2006,80, 94-103.
    [155]Wahr J., Molenaar M., Bryan F. Time variability of the Earth's gravity field:hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res.,1998, 103(B12):30205-30229.
    [156]Wahr J., Swenson S., Zlotnicki V, Velicogna I. Time-variable gravity from GRACE:First results. Geophys. Res. Lett.,2004,31, L11501, doi:10.1029/2004GL019779.
    [157]Wahr J., Swenson S., Velicogna I. Accuracy of GRACE mass estimates. Geophys. Res. Lett., 2006,33, L06401, doi:10.1029/2005GL025305.
    [158]Walker J.G. The geometry of satellite clusters. Journal of the British Interplanetary Society,1982, 35:345-354.
    [159]Wagner C.,et. Degradation of geopotential recovery from short repeat-cycle orbits:application to GRACE monthly fields. J. Geod.,2006,80:94-103, doi:10.1007/s00190-006-0036-x.
    [160]Wiese D.N., Folkner W.M., Nerem R.S. Alternative mission architectures for a gravity recovery satellite mission. J. Geod.,2009,83:569-581.
    [161]Wiese D.N., Robert S.Nerem, F.G.Lemoine. Design considerations for a dedicated gravity recovery satellite mission consisiting of two pairs of satellites. J. Geod.,2011, doi:10.1007/s00190-011-0493-8.
    [162]Wiese D.N., Pieter Visser, Robert S.Nerem. Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors. Advances in Space Research,2011 (48):1094-1107.
    [163]Wiese D.N. Optimizing Two Pairs of GRACE-like Satellites for Recovering Temporal Gravity Variations.2011, PhD thesis, University of Colorado, USA.
    [164]Wiese D.N., Nerem R.S., S.C.Han. Expected improvements in determining continental hydrology, ice mass variations, ocean bottom pressure signals, and earthquakes using two pairs of dedicated satellites for temporal gravity recovery. Journal of Geophysical Research,2011, VOL.116, B11405, 17 pp., doi:10.1029/2011JB008375.
    [165]Wouters B., Schrama E.J.O. Improved accuracy of GRACE gravity solutions through empirical orthogonal function filtering of spherical harmonics. Geophys. Res. Lett.,2007,34, L23711, doi:10.1029/2007GL032098.
    [166]Xu C, Tsoi R.., Sneeuw N. Analysis of J2-Perturbed Relative Orbits for Satellite Formation Flying. Gravity, Geoid and Space Missions. International Association of Geodesy Symposia,2005, Volume 129, Session 1:,30-35, DOI:10.1007/3-540-26932-0_6.
    [167]Yamamoto K., Otsubo T., Kubooka T., Fukuda Y. A simulation study of effects of GRACE orbit decay on the gravity field recovery. Earth Planets Space,2005,57:291-295.
    [168]Yun Fan, Huug van den Dool. Climate Prediction Center global monthly soil moisture data set at 0.5°resolution for 1984 to present. Journal of Geophysical Research,2004, VOL.109, D10102, doi:10.1029/2003 JD004345.
    [169]Zenner L., Gruber T., Jaggi A., Beutler G. Propogation of atmospheric model errors to gravity potential harmonics-impact on GRACE de-aliasing. Geophys. J. Int.,2010,182,797-807, doi:10.1111/j.1365-246X.2010.04669.x.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700