用户名: 密码: 验证码:
含盐高浓度有机废液的蒸发结晶及流化床焚烧处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化工、制药、造纸等行业的发展排放了大量的含低熔点碱金属盐和碱土金属盐的高浓度有机废液,这些废液往往毒性较高,如果直接排放将造成严重的环境污染,而常规的生化处理方法等又无法解决此类污染问题。焚烧法是一种有效的高浓度有机废液处理方法,但是在将传统的焚烧法应用于处理含盐高浓度有机废液时,却遇到了低熔点碱金属盐和碱土金属盐造成的焚烧炉结焦、结渣等问题。因此,开发一种更为可靠、更为有效的含盐高浓度有机废液处理方法已是废液污染治理的迫切需求。本文结合蒸发脱盐预处理和流化床焚烧的优点,开发了蒸发结晶脱盐和流化床焚烧处理含盐高浓度有机废液的方法,有效地解决了焚烧过程中碱金属盐和碱土金属盐导致的结焦问题,为含盐高浓度有机废液的连续稳定无害化处理提供了一种可靠、可行的方法,具有重要的环保效益和应用价值。
     本文在全面综述含盐高浓度有机废液排放和处理技术现状的基础上,首先建立了蒸发结晶脱盐和循环流化床焚烧方法的系统,然后对含盐有机废液处理过程中涉及的化学分析方法进行了探讨,建立了离子色谱快速测定高浓度有机废液中常见碱金属、碱土金属离子含量的方法。在此基础上,搭建试验台架,对蒸发脱盐过程的有机物挥发和无机盐脱除效果进行了全面的试验研究;并分别进行了蒸发残液的萃取分离和脱盐后的有机废液蒸气流化床焚烧特性的试验研究;最后建立了废液蒸发和焚烧机理的动力学反应模型。
     含氯化钠的苯酚模拟废液通过蒸发结晶可以达到脱盐的效果。有机物的析出率与苯酚的初始浓度、氯化钠的初始浓度及蒸发速度有关。由于有“盐析”效应,氯化钠初始浓度的升高有利于挥发性有机物和半挥发性有机物的挥发。蒸发速度从1.67ml/min提高到2.73ml/min,氯化钠的总去除率在99.88%~99.99%。在蒸发比为0.97的情况下,蒸发结晶技术对氯化钠、硫酸钠和碳酸钠均具有高于99.0%的去除率;降低蒸发比、提高原废液中氯化钾的浓度能提高氯化钾中钾离子的去除率。当模拟废液中含有氯化钠、硫酸钠和氯化钾这些中性碱金属盐时,有机物的析出率都很高。
     如果有机废液中主要含挥发性较大的有机物时,蒸发量可以达到比较大,则蒸发残液体积少,残液中含有高浓度的无机盐和高沸点有机物,在蒸发结晶—流化床焚烧工艺中,蒸发产生的残液可喷入流化床焚烧炉中焚烧处理。当有机废液中含有大量高沸点有机物时,蒸发量不能达到很大,则残液中无机盐的量较高,这些蒸发残液可通过溶剂萃取的方法进行有机物和无机盐的分离。以含氯化钠的对硝基苯酚作为模拟废液,乙酸乙酯的萃取效率较正辛醇的高。当油水比为1∶5时,含30,000mg/L氯化钠和1,000mg/L对硝基苯酚的模拟废液经过1min剧烈振荡和10min静置后的一级萃取效率和二级萃取效率分别达到97.12%和99.89%。萃取效率受到水油比、氯化钠初始浓度、萃取剂等因素的影响。萃取对无机盐的去除效果均很明显。当实际的废液含水量很低,有机物和无机盐含量都很高时(如一些垃圾、危险废弃物的浸出液等),萃取—焚烧工艺也可以使用。
     蒸发脱盐后的有机废液蒸气直接通入流化床焚烧炉进行焚烧处理。流化床的床料采用氧化铝空心小球。有机物焚烧分解产物利用在线烟气分析仪进行测定。通过CO和CO_2含量的变化确定焚烧效果。结果显示焚烧处理的效率受到焚烧温度、烟气停留时间、有机废液蒸气中有机物浓度等因素的影响。如:当焚烧炉的温度从650℃升高到800℃时,进样时间为18min时的焚烧效率从88.74%升高到99.80%;CO的浓度则从200ppm下降到0.6ppm。焚烧
Great deals of organic salty liquid wastes are discharged by industries of chemical engineering, pharmacy and paper making, which are easy to lead irreversible environmental pollution. High concentration organic liquid wastes cannot be disposed effectively by routine treatment methods. Incineration is a very potential method for disposal of these liquid wastes. However, low-melting point alkali metal and alkaline-earth metal salts bring the problems of agglomeration, fouling, sintering and defluidization during incineration. So, development and study of organic salty liquid wastes is strigent need in this field.
    A new wastewater incineration system with evaporation-desalination pretreatment equipment was put forward to treat organic salty liquid wastes in this dissertation. Volatilization of VOCs(volatile organic compounds) and SVOCs(semi-volatile organic compounds) and desalination were analyzed roundly. Analysis of ion chromatography and COD(chemical oxygen demand) was discussed. Extraction for dedalination of evaporation residues and incineration of desalinated organic steam were also studied. In addition, kinetics of evaporation and combustion reactions were investigated.
    An ion chromatographic method for the determination of alkali and alkaline-earth metal cations in high concentration organic wastewater was developed. The separation of cations was achieved on an IonPac CS12A column with 20 mmol/L methanesulfonic acid as the eluent. The detection was performed by a conductivity detector. Na~+、 K~+、 Mg~(2+) and Ca~(2+) could be identified within 14 minutes. A C18 cleanup column was used for direct sample injection. The method is sensitive, selective, and simple, which is convenient to be used for determination of cations in the samples in the incineration of liquid wastes. Determination of COD in these organic liquid wastes is dominant for design of burner and estimation of incineration efficiency. High-speed catalytic method for organic liquid with high concentration of chloride ion and organic compounds was presented in this dissertation. Relative error is 0.15%~5.8% when the concentration of CY is 20,000~60,000mg/L. Accuracy of the method is good, the relative error is less than 2% and the recovery is 98%~102%. There is no "prominent difference" between standard method and high-speed catalytic method.
    Simulated phenol liquid wastes containing sodium chloride was evaporated and concentrated and sodium chloride was crystallized in different parameters. The experimental results showed that the higher initial concentration of sodium chloride increases the ratio of volatilization of VOCs and SVOCs, which is due to the effect of "salting out". When evaporation speed was increased from 1.67 ml/min to 2.73 ml/min, the total removal coefficient of sodium chloride was about 99.88%~99.99%. When the ratio of evaporation was 0.97, the efficiency of removal of NaCl, Na_2SO_4, and Na_2CO_3 was higher than 99.0%; while, the efficiency of removal of KCl was lower due to high mechanical and selective schlepp in vapour. The efficiency could be improved by reducing the ratio of evaporation or increasing the concentration of KCl. Volatile organic compounds had high ratio of volatilization when the pH of the wastewater was neutral and acidic. The volatilization ratio of organic compounds is affected by initial content of phenol, NaCl and evaporation velocity.
    Evaporation residues contain high concentration inorganic salts and non-volatile organic compounds, which can be incinerated after desalination. Simulated para-nitrophenol (PNP) liquid
引文
[1] 国家环境保护总局.1998年中国环境状况公报.http://www.sepa.gov.cn/eic/649368286009491456/index.shtml.
    [2] 国家环境保护总局.1999年中国环境状况公报.http://www.sepa.gov.cn/eic/649368281714524160/index.shtml.
    [3] 国家环境保护总局.2000年中国环境状况公报.http://www.sepa.gov.cn/eic/649368277419556864/index.shtml.
    [4] 国家环境保护总局.2001年中国环境状况公报.http://www.sepa.gov.cn/eic/649368273124589568/index.shtml.
    [5] 国家环境保护总局.2002年中国环境状况公报.http://www.scpa.gov.cn/cic/649368298894393344/index.shtml.
    [6] 国家环境保护总局.2003年中国环境状况公报.http://www.zhb.gov.cn/eic/649368268829622272/index.shtml.
    [7] 国家环境保护总局.2004年中国环境状况公报.http://www.zhb.gov.cn/eic/649368268829622272/index.shtml.
    [8] 国家统计局.中国统计年鉴—2000[M].北京:中国统计出版社,2000,771-772.
    [9] 国家统计局.中国统计年鉴—2001[M].北京:中国统计出版社,2001.779-780.
    [10] 国家统计局.中国统计年鉴—2002[M].北京:中国统计出版社,2002,818-819.
    [11] 国家统计局.中国统计年鉴—2003[M].北京:中国统计出版社,2003,852-855.
    [12] 国家统计局.中国统计年鉴—2004[M].北京:中国统计出版社,2004,426-428.
    [13] 国家统计局.中国统汁年鉴-2005[M].北京:中国统计出版社,2005,400-402.
    [14] 沈阳化工研究院环保室.农药废水处理[M].北京:化学工业出版社.2001,54-58.
    [15] 石建敏,黄新文,林春绵.周红艺.无机盐对生物接触氧化处理法的影响[J].浙江工业大学学报,2003,31(1):97-100.
    [16] 杨润昌,周书天.复合电化学法处理含盐有机废水[J].环境污染与防治,2002,24(3):162-164.
    [17] 杨晔,陆芳,潘志彦,林备绵.高盐度有机废水处理研究进展[J].中国沼气,2003,21(1):22-25.
    [18] 李家珍.染料染色行业的给水排水[J].化工给排水设计,1993,4:12-20.
    [19] 刘占孟,鲍东杰.李静.高盐度染料中间体废水电化学处理研究[J].邢台职业技术学院学报,2004,21(3):43-44,61.
    [20] 柏云杉,柏文彦.好氧管式膜生物反应器处理高含盐有机废水的研究[J].化工时刊,2003,17(12):23-25.
    [21] 杨学富.制浆造纸工业废水处理.北京:化学工业出版社.2001,2-5.
    [22] 刘正,高浓度含盐废水生物处理技术[J].化工环保,2004,24(增刊):209-211.
    [23] 施阳,洪育才,含高浓度无机盐的肝素钠废水的处理[J].环境科学与技术,2004,27(2):78-79.
    [24] 吴慧芳.黄文宜.吴平,等.难降解有机废水的高级氧化技术[J].南京工业大学学报,2003,25(3):83-88
    [25] V. S. Mishra. V. V. Mahajani. J. B. Joshi. Wet Air Oxidation[J]. Industry & Engineering Chemistry Research, 1995.34(1): 2-48.
    [26] F.J. Zimmermann, D. G.Diddams. The Zimmermann process and its application in pulp and paper industry [J]. TAPPI, 1960, 43(8): 710-715.
    [27] M. J. Dietrich, T. L. Randall, P. J. Canney. Wet air oxidation of hazardous organics in wastewater[J]. Envir Prog, 1985, 4(3): 171-177.
    [28] 李家珍.染料、染色工业废水处理[M].北京:化学工业出版社,1997,161-162.
    [29] 雷乐成,史惠祥,汪大翠.高浓度脱浆污水的湿式氧化法处理研究[J].环境污染与防治,1996,18(3):9-12.3.
    [30] 侯纪蓉.湿式氧化法处理乐果废水[J].化工环保,1999,19(1):6-11.
    [31] 雷乐成,汪大翚.湿式氧化法处理高浓度活性染料废水[J].中国环境科学,1999,19(1):42-46.
    [32] D. Mantzavions, R. Hellenbrand, A. G Livingston, I. S. Metcalfe. Catalytic wet oxidation of p-coumaric acid: partial oxidation intermediates, Reaction Pathways and Catalyst Leaching[J]. Applied Catalysis B: Environmental, 1996, 7(3-4): 379-396.
    [33] 肖峻,谢勇.湿式氧化法在废水处理中的应用[J].城市公用事业,2002,16(6):19-21.
    [34] 汪大翚,雷乐成.水处理新技术及工程设计[M].北京:化学工业出版社,2001,54-60.
    [35] 邹宗柏,吕锡武,孔青春.UV—微O_3法去除饮用水中CCl_4的研究[J].环境与健康杂志,1997,14(2):54-56.
    [36] 王光辉.纳米TiO_2光催化技术及其在环境污染治理中的应用[J].环境科学与技术,2001,6:18-20.
    [37] W. Choi, M. R. Hoffmann. Photoreductive mechanism of CCl_4 degradation on TiO_2 particles and effects of eletron donors[J]. Environmental Science & Technology, 1995, 29(6): 1646-1654.
    [38] T. Ohno, S. Saito, K. Fujihara, et al. Photocatalyzed production of hydrogen and iodine from aqueous solutions of iodine using platinum-loaded TiO_2 powder[J]. Bulletin of Chemical Society of Japan, 1996, 69(11): 3059-3064.
    [39] 王文保,岳永德.纳米TiO_2光催化降解水溶性染料溶液的研究[J].农村生态环境,1999,15(3):58-60.
    [40] H. Hidaka, Y. Asai, J. Zhao, et al. Photoelectrochemical decomposition of surfactants on a TiO_2/TCO particulate film electrode assembly[J]. Journal of Physical Chemistry, 1995, 99(20): 8244-8248.
    [41] Y. Sun, J. J. Pignatello. Evidence for a surface dual hole-radical mechanism in the dioxide photocatalytic oxidation of 2,4-D[J]. Environmental Science & Technology, 1995, 29(8): 2065-2072.
    [42] 周明华,吴祖成,汪大翠.电化学高级氧化工艺降解有毒难生化有机废水[J].化学反应工程与工艺,2001,17(3):263-271.
    [43] K. Rajeshar, J. G. Ibanez, G. M. Swain. Electrochemistry and the environment[J]. Journal of Applied Electrochemistry, 1994, 24(11):1077-1091.
    [44] N. B. Tahar, A. Savall. Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide: A comparison of the activities of various electrode formulation[J]. Journal of Applied Electrochemistry, 1999, 29(3):277-283.
    [45] J. D. Rodgers, W. Jedral, N. J. Bunce. Electrochemical oxidation of chlorinated phenols[J]. Environmental Science & Technology, 1999, 33(9): 1453-1457.
    [46] Zucheng Wu, Minghua Zhou. Partial degradation of phenol by advanced electrochemical oxidation process[J]. Environ. Sci. Technol. 2001, 35: 2698-2703.
    [47] Minghua Zhou, Zucheng Wu, Xiangjuan Ma, et al.A novel fluidized electrochemical reactor for organic pollutant abatement[J]. Seperation and Purification Technology. 2004, 34:81-88.
    [48] 王慧,王建龙,占新民,钱易.电化学法处理含盐染料废水[J].中国环境科学.1999.19(5):441-444.
    [49] 林春绵,潘志彦.超临界氧化技术在有机废水处理中的应用[J].浙江化工,1996,27(2):16-20.
    [50] 林春绵,袁细宁,杨馗.超临界水氧化法降解甲胺磷的研究[J].环境科学学报,2000,20(6):714-718.
    [51] J. Yu,P. E. Savage. Catalytic oxidation of phenol over MnO_2 in supercritical water[J]. Industry & Engineering Chemistry Research, 1999, 38(10): 3793-3801.
    [52] Yoshito Oshima. Kengo tOmita, Seiichiro Koda. Kinetics of the catalytic oxidation of phenol over mangaese oxide in supercritical water[J]. Industry & Engineering Chemistry Research, 1999, 38(11): 4183-4188.
    [53] H. H. Yang. C. A. Eckert. Homogeneous catalysis in the oxidation ofp-chlorophenol in supercritical water[J]. Industry & Engineering Chemistry Research, 1988, 27(11): 2009-2014.
    [54] L. Jin, Z. Y. Ding, M. A. Abraham. Catalytic supercritical water oxidation of 1,4- dichlorobenzene[J]. Chem. Eng. Sci., 1992, 47: 2659-2664.
    [55] S. Aki, M. A. Abraham. Catalytic supercritical water oxidation of pyridine: comparison of catalysts[J]. Industry & Engineering Chemistry Research. 1999, 38(2): 358-367.
    [56] Z. Y. Ding, L. Li, D. Wade, et al. supercritical water oxidation of NH_3 over a MnO_2/CeO_2 catalyst[J]. Industry & Engineering Chemistry Research, 1998, 37(5): 1707- 1716.
    [57] E. Santiago, G. Jaime, C. Sandra. et al. Comparison of different advanced oxidation processes for phenol degradation[J]. Water Research, 2002, 36(4): 1034-1042.
    [58] 顾平,刘奎,杨造燕.Fenton试剂处理活性黑KBR染料废水研究[J].中国给水排水,1997,13(6):16-18.30.
    [59] G.Bonizzoni, E. Vassallo. Plasma physics and technology; industrial applications[J]. Vacuum, 2002, 64(3-4): 327-336.
    [60] Jen-Shih Chang. Recent development of plasma pollution control technology: a critical review[J]. Science and Technology of Advanced Materials, 2001, 2(3-4): 571-576.
    [61] 孙晓丹.滑动弧等离子体降解模拟有机废水的初步研究[D].浙江大学硕士学位论文,2005.
    [62] Jian-hua Yan, Chang-ming Du. Xiao-dong Li, et al. Plasma chemical degradation of phenol in solution by gas-liquid gliding arc discharge[J]. Plasma Sources Science and Technology, 2005, 14: 637-644.
    [63] 杜长明,严建华,李晓东,等.气液两相流滑动弧放电降解苯酚废水[J].工程热物理学报.2005 26(3):534-536.
    [64] H.Gulyas. Processes for the Removal of Recalcitrant organics from Industrial Wastewaters[J], Wat.Sci.Tech., 1997,36(2-3):9-16.
    [65] 钱易,汤鸿霄,文湘华等著.水体颗粒物和难降解有机物的特性与控制技术原理[M].北京:中国环境科学出版社.2000.
    [66] 马静颖.高浓度含盐有机废液焚烧技术[J].能源工程,2005,1:45-48.
    [67] 《造纸工业碱回收》编写组编,造纸工业碱回收[M],轻工业出版社,1977:1-2.
    [68] 化学工业部环境保护设计技术中心站组织编写,化工环境保护设计于册[M].化学工业出版社,2001,58-62.
    [69] 李家珍,简述国外高浓度含盐染料废水焚烧技术[J],化工给排水设计,1993,(3):1-7.
    [70] 别如山.杨励丹.李季.等,国内外有机废液的焚烧处理技术[J].化工环保,1999,19(3):148-154.
    [71] 孙大光.高浓度有机废液焚烧技术及系统研究[D].吉林大学硕士学位论文,2003.
    [72] 焚烧炉.http://www.chinacp.net/feiwu/fsl/.
    [73] 古家越译.美国的溶剂废液处理技术[J].国环境科学技术.1987.(1):67-71.
    [74] 钱惠国.回转窑式废弃物焚烧炉的设计[J].动力工程.2002.22(3):1819-1823.
    [75] 吴承坚.邓华龙.杜静.有机废物的水泥回转窑处理技术[J].上海环境科学,1991,10(10):42-43.
    [76] 岑可法.徐旭.谷月玲.等.工业废弃物和生活垃圾流化床焚烧技术的研究[J].西安交通大学学报, 2000,34(1):1-8.
    [77] 李晓东,杨家林,池涌,等.150t/D城市生活垃圾流化床焚烧炉的设计及其运行[J].动力工程,2002,22(1):1598-1602.
    [78] 别如山,李炳熙,陆慧林,等.处理高浓度有机废水流化床焚烧炉[J],锅炉制造,2000,2(1):40-44.
    [79] 陈晓平,赵长遂,沈来宏,等.流化床焚烧技术在有机废液无害化处理领域的应用[J].锅炉技术,2001,32(9):25-28.
    [80] 李斌,杨家林,蒋旭光,等.高浓度有机废液的流化床焚烧技术及二次污染物排放特性研究[J].浙江大学学报(工学版),2000,34(2):152-157.
    [81] Wastewater incineration - An overview, http://www.us-erc.org/greenchannel/gc8/wastewater.php.
    [82] 芈振明,高忠爱,祁梦兰,等.固体废物的处理与处置[M].北京:高等教育出版社,1993:202-203.
    [83] J. C. Kramlich. Observations on Waste Destruction in Liquid Injection Incinerators[J]. Combustion Science and Technology, 1990, 74(1-6): 17-30.
    [84] K. Kerr, S. D. Probert. Fluidised-Bed Incineration of Acid Tar Wastes[J]. Applied Energy, 1990, 35(2): 189-243.
    [85] Karel Svoboda, Miloslav Hartman. Formation of NOx in fluidized bed combustion of model mixtures of liquid organic compounds containing nitrogen[J]. Fuel, 1991, 70(7): 865-871.
    [86] J. C. W. Evans. Fluid-bed incineration is used by Menasha at NSSC pulp mills[J]. Pulp & Paper, 1975, 49(2): 140-141.
    [87] Kenneth E Lowe. Menasha expands and modernizes NSSC pulp mill at North Bend, Ore[J]. Pulp & Paper, 1976, 50(6): 80-83.
    [88] D. F. Kimbro, R. J. McCormick, Phil Knisley, et al. Emissions performance results for a liquid waste incinerator upgraded to meet the HWC MACT standards. http://www.croll.com/_website/ca/pdf/test_results.pdf.
    [89] 李家珍.意大利某公司染料废水综合处理技术[J].国外环境科学技术,1992,2:42-45.
    [90] S. N. Kaul, T. Nandy, C. V. Deshpande, et al. Application of Full-scale Evaporation-incineration Technology for Hazardous Wastewater[J]. Wat. Sci. Tech., 1998, 38(4-5): 363-372.
    [91] INERTRONTM, CYKL Technology Inc, http://www.cykltech.com.
    [92] Japanese Advanced Environment Equipment: Liquid Waste Incineration Plant, http://www.gec.jp/JSIM_DATA/WASTE/WASTE_6/html/Doc_543.html.
    [93] A. C. Roos, R. J. Verschuur, B. Schreurs, R. Scholz and P. J. Jansens. Development of a Vacuum Crystallizer for the Freeze Concentration of Industrial Waste Water[J]. Trans IchemE, 2003, 81 (A): 881-892.
    [94] K. M. Nichols. Combustion of Concentrates Resulting from Ultrafiltration of Bleached Kraft Effluents[J]. Tappi Journal, 1992,75(4):153-158.
    [95] Evaporation-incineration combination lowers cost of treating liquid wastes[J]. Chemical Engineering, 2001, 108 (6): 23.
    [96] Nittetu Chemical Engineering Ltd. NCE's Submerged Combustion Process: Incineration with air stripping system, http://www.nce-ltd.co.jp/.
    [97] T. Yasuhir, A .Takio. Treatment of industrial wastewaters by extraction and incineration[P]. JP: 2000055335, 2000.
    [98] H. Takami, E. Yamamoto, N. Noda, et al. Incineration of wasted liquids with combustion of methane in CFB[A]. Proceedings of the 14th Inter Confon FBC[C], Vancouver, Canada,May 11-14, 1997.
    [99] H. Takami, N. Noda, M. Hasatani, et al. Incineration Behavior of Wasted Liquid Droplets and NOx Emission with Combustion of Methane in Riser[J]. J. Chem. Eng. Japan, 1997, 30(6): 1059-1064.
    [100] E. J. Anthony. D. Y. Lu. The Fluidized Bed Combustion of Heavy Liquid Fuels[A]. Proceedings of the 16th Inter Confon FBC[C], 2001, 1041-1055.
    [101] E. J. Anthony, D. Y. Lu, J. Q. Zhang. Combustion Characteristics of Heavy Liquid Fuels in a Bubbling Fluidized Bed[J]. J Energy Resources Technology, 2002, 124(1): 40-46.
    [102] Alain Bissonier, Christian Chauveau, Jean-Louis Delfau, et al. An experimental investigation of the combustion of technical tetrachlorobenzene in a laboratory scale incinerator[J]. Combustion and Flame, 2002, 129(3): 239-252.
    [103] F. M. Okasha, S.H. El-Emam, H. K. Mostafa. The fluidized bed combustion of a heavy liquid fuel[J]. Experimental Thermal and Fluid Science, 2003, 27(4): 473-480.
    [104] K. Chaiyatud. An experimental investigation of liquid waste incineration and exhaust gas emissions in a rotary kiln[D]. Thailand: King Mongkut's Institute of Technology North Bangkok, 1997.
    [105] 孟令和,杜庆平.焦化污水焚烧处理技术的研究及应用[J],冶金环境保护.2000,2:50-51,29.
    [106] 徐扣珍,陆文维,宋甲,等.焚烧法处理氯霉索生产废水[J].环境科学,1998,19(4):69-71.
    [107] 李壮,叶洪武,周小群,等.糖蜜酒精废液燃烧处理技术研究[J].广西轻工业,2001,(1):29-32,26.
    [108] 丑明,窦吉平,李念慈.等.焚烧处理焦化污水的生产应用[J].冶金能源,2001,20(6):56-59.
    [109] 胡文伟,高亚岳.焚烧法处理含酚废水[J].工业用水与废水,2000,31(4):28-29.
    [110] 边晓明.采用焚烧法处理高校化学实验废液[J].科技创业月刊.2003,(7):78-79.
    [111] 赵亮,李德付,崔峨.丙烯腈废液焚烧炉改善燃烧与污染排放试验研究[J].节能,2001,2:6-8.
    [112] 何焕靖.在1000吨/时炉上用焚烧法处理有机酸废液的实践[J].电力环境保护,1992,8(4):19-20,24.
    [113] 卞华松,施强孙.焚烧法处理高浓度有机废水[J].上海环境科学,1994,13(9):31-32.
    [114] W. G. Lin, K. Dam-Jahansen, F.Frandsen. Agglomeration in bio-fuel fired fluidized bed combustors[J]. Chemical Engineering Journal. 2003, 96:171-185.
    [115] Jouko Latva-Somppi, Mikko Moisio, Esko I. Kauppinen, et al. Ash formation during fluidized-bed incineration of paper mill waste sludge[J]. J. Aerosol Sci., 1998, 29(4): 461-480.
    [116] Bengt-Johan Skrifvars, Rainer Backman. Mikko Hupa. Characterization of the sintering tendency of ten biomass ashes in FBC conditions by a laboratory test and by phase equilibrium calculations[J]. Fuel Processing Technology, 1998, 56(1-2): 55-67.
    [117] Robert Rourd Bakker. Biomass fuel leaching for the control of fouling, slagging and agglomeration in biomass power generation[D]. Dissertation for phD. Wageningen University. 2000.
    [118] S. Arvelakis, P. Vourliotis, E. Kakaras, E.G. Koukios. Effect of leaching on the ash behavior of wheat straw and olive residue during fluidized bed combustion[J]. Biomass and Bioenergy. 2001, 20: 459-470.
    [119] C. Tangsathitkulchai, M. Tangsathitkulchai. Effect of bed materials and additives on the sintering of coal ashes relevant to agglomeration in fluidized bed combustion[J]. Fuel Processing Technology. 2001, 72: 163-183.
    [120] 吴星娥,刘秉钺,周景辉.碱回收锅炉清灰处理[J].国际造纸.2002,21(5):49-52.
    [121] S. Nemoda, V. Pavasovic. Experimental verification of some characteristics of FB for combustion of liquid wastes. IBK-ITE. 1981.
    [122] 别如山,杨励丹.周定.焚烧含盐有机废液添加剂对流化床床料烧结的影响[J].化工学报,2002.53(12):1253-1259.
    [123] 李晓东,吕宏俊,徐茂蓉,等.流化床焚烧处理有机浓缩废液的结焦结渣特性[J].化工学报,2005,56(11):2166-2171
    [124] K. P. Beck. C. J. Wall. Fluid bed incincration of wastes[J]. Chemical Engineering Progress. 1976. 72(10): 61-68.
    [125] P. Acharya. Process challenges and evaluation of bed agglomeration in a circulating bed combustion system incinerating red water[J]. Environmental Progress. 1997, 16(1): 54-64.
    [126] S. Wu, Kumar M. Sellakumar, et al. Test Study of Salty Paper Mill Waste in a Bubbling Fluidized Bed Combustion[A]. Proceedings of the 15th International Conference on Fluidized Bed Combustion[C], 1999, Paper No. FBC99-0157.
    [127] W. G. Lin and K. Dam-Hohansen. Agglomeration in Fluidized Bed Combustion of Biomass- Mechanisms and co-firing With Coal[A]. Proceedings of the 15th International Conference on Fluidized Bed Combustion[C], 1999, Paper No. FBC99-0120.
    [128] Borislav Grubor, Dragoljub Daki, Mladen lli, Aleksandar Vu(?)anovi. Fluidized Bed Incineration Tests of Toxic Liquid Waste[A]. Proceedings of the 15th International Conference on Fluidized Bed Combustion[C], 1999, Paper No. FBC99-0121.
    [129] M. Olazar, R. Aguado, J.L.Sánchez, R. Bilbao, J. Arauzo. Thermal processing of straw black liquor in fluidized and spouted bed[J]. Energy & fuels. 2002, 16: 1417-1424.
    [130] 徐慧芳,孙粉梅,周平,赵翔.有机废液水煤浆沾污、结渣传热及污染物排放特性试验研究[J].电站系统工程,2004,20(6):4-6.
    [131] 赵国方,赵红斌.废水高温深度氧化处理技术[J],现代化工,2001,21(1):47-50.
    [132] 沈来宏,陈晓平,赵长遂等.高浓度化工废液流化床焚烧炉的研制与应用[J],江苏化工,1999,27(16):27-30.
    [133] T. E.-D.Hisham, H.M. Ettouney. Multiple-effect evaporation desalination systems: thermal analysis[J]. Desalination, 1999, 125: 259-276.
    [134] 《化学分离富集方法及应用》编委会 编著.化学分离富集方法及应用[M].湖南:中南工业大学出版社.1997,555-602.
    [135] 张根生,周长发,缪道英等编著.电渗析水处理技术[M].北京:科学出版社.1981,20-36.
    [136] 高廷耀,顾国维.水污染控制工程(下册)(第二版)[M].北京:高等教育出版社,1999:224-250.
    [137] 谭天恩,麦本熙、丁惠华编著,化工原理(上)(第一版)[M],北京:化学工业出版社,1986,317-347.
    [138] A. Chouai, M. Cabassud, M. V. Le Lann, et al. Use of neural networks for liquid-liquid extraction column modeling: an experimental study[J]. Chemical Engineering and Processing, 2000, 39:171-180.
    [139] P. Venkateswaran, K. Palanivelu. Solvent extraction of hexavalent chromium with tetrabutyl ammonium bromide from aqueous solution[J]. Seperation and Purification Technology, 2004, 40(3):279-284.
    [140] 冯旭东.萃取技术在难降解有机废水处理中的应用[J].北京工商大学学报(自然科学版).2003,21(4):7-9.
    [141] 曹玉春.流化床垃圾焚烧炉内流动和燃烧污染物生成数值模拟研究[D],浙江大学博士学位论文,2005.
    [142] R. V. Ravikrishna, N. M. Laurendeau. Laser-induced fluorescence measurements and modeling of nitric oxide in counterflow partially premixed flames[J]. Combustion and Flame, 2000, 122(4): 474-482.
    [143] 曾庭华.污泥在流化床中的焚烧特性及其二次污染研究[D],浙江大学博士学位论文,1997.
    [144] 别如山,樊庆锌,梁志华等.含稀硝酸己二胺有机废水焚烧时的NO_x排放特性[J],化工学报,2002,53(9):989-993.
    [145] 别如山.己二胺有害有机废水在流化床中的焚烧处理研究[D],哈尔滨工业大学博士学位论文,1998.
    [146] 徐旭.燃烧过程中二恶英的生成及排放特性的研究[D].浙江大学博士学位论文,2001.
    [147] Department of the environment. Dioxin in the environment[M]. London: HMSO, 1989. Pollution Paper No.27.
    [148] H. Fiedler. Thermal formation of PCDD/PCDF: a survey[J]. Environmental Engineering Science, 1998, 15(1): 49-58.
    [149] B. R. Stanmore. The formation of dioxins in combustion systems[J]. Combustion and Flame, 2004, 136(3):398-427.
    [150] Incineration and dioxins: Review of formation processes. http://erin.gov.au/industry/chcmicals/dioxins/pubs/rcvicw.pdf.
    [151] O. Hutzinger, M. J. Blumich, M. V. D. Berg, et al. Sources and fate of PCDDs and PCDFs: an overview[J]. Chemosphere, 1985, 14(6~7): 581-600.
    [152] R. D. Griffin. A new theory of dioxin formation in municipal solid waste combustion[J]. Chemosphere, 1986, 15: 1987-1990.
    [153] P.H. Ruokoj(?)rvi, I. A. Halonen, K. A. Tuppurainen, et al. Effect of gaseous inhibitors on PCDD/F formation[J]. Environmental Science & Technology, 1998, 32:3099-3103.
    [154] K. Tuppurainen, M. Aatamila, P.Ruokoj(?)rvi, et al. Effect of liquid inhibitors on PCDD/F formation: Prediction of particle-phase PCDD/F concentrations using PLS modeling with gas-phase chlorophenol concentrations as independent variables[J]. Chemosphere, 1999, 38(10): 2205-2217.
    [155] Brian K. Gullet and Paul M. Lemleux, Lemieux, James E. Dunn. Role of combustion and sorbent parameters in prevention of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran formation during waste combustion[J]. Environmental Science & Technology, 1994, 28: 107-118.
    [156] 陆胜勇.垃圾和煤燃烧过程中二恶英的生成、排放和控制机理研究[D].浙江大学博士学位论文.2004.
    [157] 国家环境保护总局,水和废水监测分析方法编委会编.水和废水监测分析方法(第四版)[M],中国环境科学出版社.北京.2002:409-415.
    [158] 刘静.离子选择性电极研究概述[J].陕两师范大学继续教育学报(西安).2002,19(4):107-108.
    [159] 张慧敏,曾芳.直接电位法测量误差分析[J].电力环境保护.2002,18(2):51-52.
    [160] 牟世芬,叶维邦.离子色谱在电镀工业分析中的应用[J].化学通报,1987,(6):39-42.
    [161] Yan Zhu, Feifang Zhang, Changlun Tong, Weiping Liu. Determination of glyphosate by ion chromatograohy[J]. Journal of Chromatography A, 1999, 850(1~2): 297-301.
    [162] 朱岩,蒋银十,叶明立,等.离子色谱荧光检测法测定废水中痕量2-氨基联苯和4-氨基联苯[J].分析化学,2001,29(9):1024-1026.
    [163] P.E. Jackson. Determination of inorganic ions in drinking water by ion chromatography[J]. Trends in analytical chemistry, 2001.20 (6~7): 320-329.
    [164] 冯俊凯,沈幼庭.锅炉原理与设计(第二版)[M].北京:科学出版社,1992,397-399.
    [165] 中国环境保护标准汇编(水质分析方法)[M].中困标准出版社,2001,GB1194-89:280-283.
    [166] 韦利杭.化学需氧量快速测定的研究[J].环境污染与防治.1995,17(3):36-37.
    [167] 战宇宏.杨玉柱.康平利.催化快速法测定工业废水中的化学需氧量[J].辽宁大学学报(自然科学版),1999,26(1):74-77.
    [168] 武汉大学主编.分析化学[M].北京:高等教育出版社,1995,426-432.
    [169] 吕成军,魏文义,李成华,分光光度法测定废水中对硝基酚的含量[J].辽宁省交通高等专科学校学报,2004.6(3):56-57
    [170] J. Y. Ma. Z. Y. Ma. J. H. Yan. et al. Development of an evaporation crystallizer for desalination of alkaline organic wastewater before incineration[J]. Journal of Zhejiang University SCIENCE. 2005, 6A(10): 1100-1106.
    [171] C. Namasivayam and D. Kavitha. Adsorptive removal of 2.4-Dichlorophenol from Aqueous Solution by Low-Cost Carbon from an Agricultural Solid Waste: Coconut Coir Pith[J]. Separation Science & Technology, 2004, 39(6): 1407-1425
    [172] Rong Yan, David Tee Liang, Karin Laursen. et al. Formation of Bed Agglomeration in a Fluidized Multi-Waste Incinerator]J]. Fuel, 2003, 82(7): 843-851.
    [173] W. F. Furter and R. A. Cook, Salt effect in distillation: a literature review]J], int. J. Heat Mass Transfer., 1967, 10: 23-36.
    [174] W. F.Furter, Production of fuel-grade ethanol by extractive distillation employing the salt effect[J]. Separation and Purification methods, 1993, 22(1): 1-21.
    [175] 徐茂蓉.高浓度有机废液焚烧二次污染物排放特性研究[D].浙江大学硕士学位论文.2005.
    [176] Dimple Mody Quyn, Hongwei Wu, Chun-Zhu Li. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅰ. Volatilisation of Na and Cl from a set of NaCl-loaded samples[J]. Fuel, 2002,81(2): 143-149.
    [177] D. W. Sevon. An experimental and theoretical investigation of combustion efficiency in a circulating fluidized bed, organic liquid incinerator]D]. Ph. D thesis, University of Connecticut. 1990.
    [178] C. Z. Li, C. Sathe, J. R. Kershaw, Y. Pang. Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal]J]. Fuel, 2000, 79(3-4): 427-438.
    [179] A. A. Wiltsee, C. R. McGowin,. and E. E. Hughes. Biomass combustion technologies for power generation]C]. Proceeding of 1st Biomass Conference of the Americas, 1993, 347-367.
    [180] 吕宏俊.流化床焚烧处理高浓度有机废液的结焦结渣特性研究[D].浙江大学硕士学位论文,2005.
    [181] Rong Yan, David Tee Liang, Leslie Tsen. Case studies- problem solving in fluidized bed waste fuel incineration]J]. Energy Conversion and Management. 2005, 46(7-8): 1165-1178.
    [182] 吴永生,方可人.热工测量及仪表(第二版)[M].北京:中国电力出版社,2002.
    [183] 陆王琳.有机废气流化床焚烧处理方法研究[D].浙江大学本科毕业(论文)设计.2005.
    [184] 赵由才主编,实用环境工程手册(固体废物污染控制与资源化)[M],北京:化学工业出版社,2002,230.
    [185] D. W. Sevon. and D. J. Cooper. Modelling combustion efficiency in a circulating fluid bed liquid incinerator]J]. Chemical Engineering Science, 1991, 46, 2983-2996.
    [186] C. J. King. Handbook of separation process technology [M]. new York: John Wiley & Sons, 1987.
    [187] 于佩潜,谢美菊,余自力.溶剂萃取法处理含六甲基磷酰三胺的废水[J].化学研究与应用,2002,14(3):342-343.
    [188] 林泉,朱慎林,戴猷元.溶剂萃取法回收与处理含DMAc废水的研究[J].水处理技术.2002,28(4):196-199.
    [189] 卜龙利,陈硕,全燮,刘希涛,赵慧敏,微波辅助湿式氧化处理对硝基酚溶液的研究[J].中国科学(E辑),2005,33(3):324-336.
    [190] 吕成军,魏文义,李成华,分光光度法测定废水中对硝基酚的含量[J].辽宁省交通高等专科学校学报,2004,6(3):56-57.
    [191] 周守勇,崔世海,彭盘英,三辛胺萃取间苯二酚的盐效应[J].南京师大学报(自然科学版),2002,259(1):119-121.
    [192] 谭天恩,麦本熙,丁惠华编著.化工原理(下册)(第一版)[M].北京:化学工业出版社,1986,93.
    [193] C. P. Fenimore and G. W. Jones. The water-catalyzed oxidation of carbon monoxide by oxygen at high temperature]J]. J. Physical Chemical, 1957, 61:651-654.
    [194] G.I. Kozlov. On high-temperature oxidation of methane]A]. Seventh Symp. (Int.) on combustion[C], 1959. 142-149.
    [195] G. K. Sobolev, High-temperature oxidation and burning of carbon monoxidelJ]. Seventh Symp. (Int.) on Combustion, 1959, 386-391.
    [196] H. C. Hottel, G. C. Williams, N. M. Nerheim and G. R. Schneider. Kinetiv studies in stirred reactors: combustion of carbon monoxide and propane[A]. Tenth Syrup. (Int.) on Combustion[C], 1965, 111-121.
    [197] F. L. Dryer and I. Glassman. High-temperature oxidation of CO and CH_4[A]. Fourteenth Sympo. (Int.) on Combustion[C], 1973, 987-1003.
    [198] J. B. Howard, G. C. Williams and D. H. Fine. Kinetics of carbon monoxide oxidation in postflame gases[A]. Fourteenth Sympo. (Int.) on Combustion[C], 1973, 975-986.
    [199] Z. M. Djurisic. Detailed kinetic modeling of benzene and toluene oxidation at high temperaturew[D]. Masters thesis, University of Delaware, Newark, DE, November 1999.
    [200] F. J. Wright. Gas phase oxidation of the xylenes. General kinetics[J]. J. Phys. Chem., 1960, 64: 1944-1950.
    [201] N. Fujii, T. Asaba. Shock tube study of the reation of rich mixtures of benzene and oxygen[A]. Fourteenth symposium(International) on Combustion[C], The combustion Institute: Pittsburgeh, 1973: 433-442.
    [202] C. Venkat, K. Brezensky, I. Glassman. High temperature oxidation of aromatic hydrocarbons[A]. Nineteenth symposium (International) on Combustion [C], 1982:143-152.
    [203] R. P. Lindstedt, G.Skevis. Detailed kinetic modeling of premixed benzene flames[J]. Combustion and Flame. 1994, 99: 551-561.
    [204] Y, Tan, P. Frank. A detailed comprehensive kinetic model for benzene oxidation using the recent kinetic results[A]. Twenty-sixty symposium (International) combustion [C], The Combustion Institute: Pittsburgh. 1996, 677-684.
    [205] H. Wang, K. Brezensky. Computational study on the thermochemistry of cyclopentadiene derivatives and kinetics of cyclopentadienone thermal decomposition[J]. J. Phys. Chem(A). 1998, 102(9): 1530-1541.
    [206] M. U. Alzueta, P. Glarborg. K. D. Johansen. Experimental and kinetic modeling study of the oxidation of benzene[J]. International Journal of Chemical Kinetics. 2000, 32: 498-522.
    [207] I. D. Costa, R. Fournet, F. Billaud,F. B. Leclerc. Ecperimental and modeling study of the oxidation of benzene[J]. International Journal of Chemical Kinetics. 2003.35(10): 503-524.
    [208] S. G.Davis, C. K. Law and H. Wang. Propene pyrolysis and oxidation kinetics in a flow reactor and laminar flames[J]. Combustion and Flame. 1999, 119: 375-399.
    [209] A. Laskin. H. Wang and C. K. Law. Detailed kinetic modeling of 1,3-butadiene oxidation at high temperatures[J]. International Journal of Chemical Kinetics. 2000, 32: 589-614.
    [210] C, A. Bertran, C. S. T. Marques and R. V. Filho. Reburning and burnout simulations of natural gas for heavy oil combustion[J]. Fuel. 2004.83: 109-121.
    [211] 秦静,尧命发.二甲基醚/天然气双燃料均质压燃过程详细化学反应动力学数值模拟研究(Ⅰ)——二甲基醚反应机理研究[J].内燃机学报,2004,22(4):296-304.
    [212] A. Martinez. C. D. Cooper, C. A. Clausen. C. Geiger. Kinetic modeling of the H2O2 enhanced incineration of heptane and chlorobenzenc[J]. Waste Management. 1995. 15(1): 43~53.
    [213] P. A. Glaude, C. Melius. W. J. Pitz, C. K. Westbrook. Detailed chemical kinetic reaction mechanisms for incineration of organophosphorous and fluoro-organophosphorus compounds[A]. Proceedings of the Combustion Institute[C]. 2002.29: 2469-2476.
    [214] O. P. Korobeinichev. V. M. Shvartsberg. A. G.Shmakov. T. A. Bolshova, T. M. Jayaweera, C. F. Melius, W. J. Pitz. C. K. Westbrook. H. Curran. Flame inhibition by phosphorus-containing compounds in lean and rich propane flames[A], Proceedings of the Combustion Institute[C]. 2004.30(2): 2350-2357.
    [215] T. M. Jayaweera. C. F. Melius. W. J. Pitz, C. K. Westbrook. O. P. Korobeinichev. V. M. Shvartsberg. A. G. Shmakov, I. V. Rybitskaya, H. Curran. Flame inhibition by phosphorus-containing compounds over a range of equivalence ratios[J]. Combustion and flame. 2005, 140(1-2): 103-115.
    [216] A. B. Lovell, K. Brezinsky, I. Glassman. The gas phase pyrolysis of phenol[J]. International Journal of Chemical Kinetics. 1989, 21(7): 547-560.
    [217] P. Frank, J. herzler., Th. Just, C. Wahl. High temperature reactions of phenyl oxidation[A]. Twenty-fifth symposium (International) on Combustion [C]. The Combustion Institute: Pittsburgh, 1994, 833-840.
    [218] X. Zhong, J. Bozzelli. Thermochemical and kinetic analysis of the H, OH, HO_2, O and O_2 association reactions with cyclopentadienyl radical[J]. J. Phys. Chem. (A). 1998, 102: 3537-3555.
    [219] Z. M. Djurisic. Chemical kinetics of nitrogen fixation in hydrocarbon flame fronts[D]. PhD dissertation. The University of Utah. 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700