用户名: 密码: 验证码:
压缩感知与超宽带信道建模的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超宽带(UWB)无线信道建模是超宽带系统设计的前提,也是评估系统性能的关键因素,最近兴起的压缩感知(CS)理论在超宽带信道估计与建模中有良好的应用潜力。本文选题来源于国家重大科技专项等项目,具有重要的理论意义及应用价值。
     本文在深入研究压缩感知理论的基础上,依据超宽带信道实测数据,对压缩感知在超宽带信道建模和接收机设计方面的应用进行了深入研究,主要完成了以下具有创新性的研究成果:
     针对IEEE802.15.3a/4a信道模型不完全适用于中国超宽带信道的局限性,本文依据中国超宽带频谱规范,对室内、室外和行业12个典型场景进行了大规模超宽带信道测量。基于信道实测数据和分簇信道模型,提出了一种新颖的基于小波分析的自动分簇算法,并完成了信道模型参数拟合。通过模型评测,验证了所提的超宽带信道模型比IEEE信道模型更符合中国超宽带技术的实际应用情况。
     依据实测数据反映的信道特性,针对严重遮挡非视距(NLOS)情况下的办公室环境提出了一种新颖的分段双指数信道模型。与IEEE802.15.4a信道模型相比,所提的办公室NLOS模型在时延扩展和多径个数等关键信道特性上与实测数据更加符合。另外,本文还设计一种基于压缩感知的UWB信道多径分析模型。通过深入分析揭示出在可接受的信号重构概率条件下,CS所需的采样点数与UWB信道平均多径个数之间所存在的确定函数关系。
     针对超宽带信道测量要求高采样速率的难题,本文提出了一种基于压缩感知的解卷积算法。对于频域和时域两种测量方式,分别利用频域窗函数对应的时域脉冲和模板信号构造出参数化的波形字典,以增强时域测量信号的稀疏表达,并通过贪婪重构算法对时域测量信号进行解卷积,最终得到离散信道响应估计。相比传统解卷积算法CLEAN算法,所提的基于CS的解卷积算法在获得相近解卷积性能的前提下,有效降低了测量系统所需的观测点数。通过对比分析,验证了在采用特定字典的情况下,匹配追踪(MP)算法等价于CLEAN算法。考虑超宽带信道所呈现出的特有的频率依赖性失真,本文设计出一种多模板压缩感知解卷积算法,进一步提高了解卷积性能。
     针对经典超宽带信道估计要求高采样速率的缺陷,本文提出了一种基于部分信道状态信息的压缩感知信道估计算法。通过利用平均功率延时剖面(APDP)信息对字典原子进行加权,并依据概率式匹配追踪算法(PMP)的原理对重构算法中原子选择方式进行改进,不仅有效降低了接收机按Nyquist速率所需的采样数,同时设计的重构算法可充分利用信道先验信息,从而显著提高在低信噪比情况下的重构性能。仿真结果表明,所提出的新算法不仅能有效降低传统接收机所需的采样点数,且在复杂度保持不变的前提下,相比其他重构算法,其信道估计性能得以显著提升。
     针对脉冲超宽带(UWB-IR)接收机高采样率导致的硬件复杂度过高的问题,提出了一种基于压缩感知的非相干检测算法。通过充分发掘UWB-IR接收信号分块稀疏的特点,利用分块重构算法BOMP算法,大幅降低了计算复杂度;同时,进一步利用APDP先验信息辅助设计字典以提高检测性能。仿真结果表明,相比于能量检测方法,新方案不仅提高了非相干检测的性能,还降低了接收机采样速率。
     论文最后对全文进行了总结,并对压缩感知技术在超宽带系统的应用发展方向进行了展望。
Ultra Wide-band (UWB) wireless channel modeling is a prerequisite for UWB system design. Compressed sensing (CS) has a great potential in the UWB channel estimation and modeling. This thesis is supported by Important National Science&Technology Specific Projects and attempts to make a contribution to the theory and application of UWB system.
     In this paper, based on UWB channel measurement data, the basic principle of compressed sensing technology and its application in UWB system channel modeling and receiver design are investigated. Several creative algorithms are developed in this thesis.
     The IEEE802.15.3a/4a channel models are not applicable for the UWB channels of China. Based on the UWB frequency regulation specification of China, large scale channel measurements were performed for indoor, outdoor and industrial12scenarios. A novel aumated cluster identification based on wavelet analysis is proposed. All parameters for modified S-V channel models are obtained by fitting from the channel measurement data. The proposed channel models are verified by tesing with the measurement data and are more effective than the IEEE channel models for China environments.
     A new piecewise double exponential channel model for office non-line of sight (NLOS)case is proposed based on the measurement data. Compared to the IEEE802.15.4a channel model, the proposed office NLOS channel model for has more similar channel characteristic on delay spread and number of paths with measurement data. Another compressed sensing based average number of multipath model of UWB channel is proposed. It reveals that there exists a functional relation between the number of compressive samples required by CS and the average number of UWB channel.
     To solve the high sampling rate problem in UWB channel model measurement, this thesis proposed deconvolution algorithm based on compressed sensing. For frequency-domain and time-domain measurement approach, the time-domain window pulse corresponding with the frequency domain window function and the template signal is used to construct a parameterized waveform dictionary respectively. The dictionary can enhance the sparse representation of time-domain measurement data. Greedy restruction algorithms can be used to perform deconvolution. Discrete channel impulse response are obtained. Compared to the traditional CLEAN deconvolution algorithm, the CS based deconvolution algorithm can achieve similar deconvolution performance with much fewer samples required by Nyquist sampling rate. We also demonstrated that with a dictionary designed specifically, MP algorithm is an equivalent of CLEAN algorithm. When the frequency dependent distortion of UWB channel is considered, a multi-template CS-based deconvolution is proposed, which improves deconvolution performance.
     Consider the high sampling rate of traditional UWB channel estimation, we present a compressed channel estimation algorithm with channel state a priori information. By using the partial channel state information Average Power Delay Profile (APDP) to weight the atoms of dictionary, modifying the atoms selection procedure based on the principle of Probablistic MP (PMP), the proposed reconstruction algorithm not only reduces the requirement of highg sampling rate, but also improves the performance under low Signal-to-Noise Ratio (SNR) using channel a priori information. The simulation results show that the prosed CS-SWMP algorithm achieves higher channel estimation accuracy than other reconstruction algorithm, with almost identical complexity.
     Considering the high sampling rate of traditional UWB noncoherent detection, we present a compressed channel estimation algorithm with channel state a priori information APDP. To make the CS-based noncoherent detection feasible for real-time application, the block sparse reconstruction algorithm Block Orthogonal Mathcing Pursuit (BOMP) is exploited for the block sparsity characteristic of received UWB-IR signal. The CS-based noncoherent detection algorithm outperforms the energy detection algorithm and reduces sampling rate.
     Finally, the content of the whole dissertation is summarized, and several valuable research directions of compressed sensing and UWB channel modeling are discussed.
引文
[1]Liuqing Yang and Giannakis, GB.. Ultra-wideband communications:an idea whose time has come. IEEE Signal Processing Magazine.2004,21(6):26-54
    [2]Maria-Gabriella Di Benedetto, Guerino Giancola. Understanding ultra wide band radio fundamentals. New Jersey:Prentice Hall Professional Technical Reference,2004:241-293
    [3]张中兆沙学军张钦宇等.超宽带通信系统.北京:电子工业出版社.2010:12-49
    [4]王金龙,王呈贵,阚春荣等.无线超宽带(UWB)通信原理与应用.北京:人民邮电出版社,2005:26-46
    [5]石磊.压缩感知在超宽带信道估计中的应用研究[博十论文].北京:北京邮电大学,2011
    [6]Gabriella M, Benedetto D, Giancola G.葛利嘉,朱林,袁晓芳等译.超宽带无线电基础.北京:电子工业出版社,2005:1-51
    [7]曾永波.超宽带信道估计技术的研究[博士学位论文],北京:北京邮电大学,2007.
    [8]Molisch A F. Ultra-wide-band propagation channels. Proceedings of the IEEE.2009,97(2): 353-371
    [9]J. Foerster and Q. Li, UWB Channel Modeling Contribution from Intel. IEEE P802.15-02/279-SG3a
    [10]A. F. Molisch, "Ultrawideband propagation channels-Theory, measurement,and modeling," IEEE Trans. Veh. Technol., vol.54, pp.1528-1545, Sep.2005.
    [11]J. Foerster. Channel Modeling Sub-Committee Report-Final. IEEE P802.1502/490r1 SG3a, Feb.2003
    [12]Molisch A F. IEEE 802.15.4a Channel Model-Final Report. Channel Model Subcommittee, http://www.ieee802.org/15/pub/TG4a.html,2005:1-40
    [13]Molisch A.F. Ultra-Wideband Propagation Channels. Proceedings of the IEEE. vol.97, no.2, 2009:353-370
    [14]阮颖铮.电磁射线理论基础.成都:电子科技大学出版社,1989:1-52
    [15]扈罗全,朱洪波.脉冲无线通信信道特性与建模研究进展.26(2),2006:1-11
    [16]D. Cassioli, M. Z. Win, and A. F. Molisch, A statistical model for the UWB indoor channel, in Proc.53rd IEEE Veh. Technol. Conf., May 2001, vol.2, pp.1159-1163
    [17]Win M Z, Scholtz R A. Characterization of ultra-wide bandwidth wireless indoor channels:a communication-theoretic view. IEEE Journal on Selected Areas in Communications, vol.20, no.9,2002, pp.1613-1627
    [18]Chia-chin chong, Youngeil Kim and Seong-soo Lee. UWB indoor propagation channel measurement and data analysis in various types of high-rise apartments. Proc. IEEE 60th Vehical Technology Conference, Los Angeles, CA, USA. September 2004:150-154.
    [19]Chia-chin Chong, Youngeil Kim and Seong-soo Lee. Statistical characterization of the UWB propagation channel in various types of high-rise apartments. IEEE Communications society, WCNC 2005:944-94.
    [20]C. Kim, X. Sun, L. Chiam, B. Kannan, F. Chin, and H. Garg, Characterization of ultra-wideband channels for outdoor office environment, in Proc. IEEE Wireless Commun. Networking Conf., vol.2,2005, pp.950-955.
    [21]J.Karedal, S.Wyne, P.Almers. Statistical analysis of the UWB channel in an industrial environment. Proc.60th IEEE Vehicular Technology Conf. Los Angeles, CA, USA, Sept. 2004:81-85
    [22]J.Karedal, S.Wyne, P.Almers etc. A measurement-based statistical model for industrial ultra-wideband channel. IEEE transactions on wireless communications, vol.6, no.8 August 2007:3028-3037
    [23]J. Jemai, R. Piesiewicz, R. Geise et al. UWB channel model whin an aircraft cabin. Proceedings of the IEEE ICUWB 2008, vol.2,2008:5-8
    [24]J. Y. Lee. "UWB channel modeling in roadway and indoor parking environments", IEEE Transactions on Vehicular Technology, vol.59, no.7, pp.3171-3180,2010
    [25]Noori, N., Karimzadeh-Baee, R., Abolghasemi, A. An empirical ultra wideband channel model for indoor laboratory environments. Radioengineering, vol.18, no.1,2009, pp.68-74
    [26]Q. Liang. "Radar sensor wireless channel modeling in foliage environment:UWB versus narrowband", IEEE Sensors Journal, vol.11, no.6, pp.1448-1457,2011
    [27]Telmo Santos, Fredrik Tufvesson, and Andreas F. Molisch, Modeling the Ultra-Wideband Outdoor Channel:Model Specification and Validation, IEEE Trans. Wireless Commun., vol.9, no.l, Jan.2010.
    [28]Wang Y, Zhang QY, Zhang NT, Wang YS. A statistical model for indoor UWB LOS channels. 2006 International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM2006), Wuhan, China, September 2006.
    [29]Y. Wang, J. Zhang, Q. Y. Zhang and N. T. Zhang. Evaluation of an ultra-wide bandwidth wireless indoor non-line-of-sight channels, wireless communications and mobile computing, vol.9,2009, pp.169-179.
    [30]Liu L, Wang Y, Zhang N, et al. UWB channel measurement and modeling for the intra-vehicle environments[C]//ICCT 2010.Nanjing:IEEE Press,2010:381-384
    [31]孟娟.海洋石油平台环境下的超宽带信道建模[硕士学位论文],东营:中国石油大学(华东),2009.
    [32]E J Candes, J Romberg, T Tao. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory. 2006,52 (2):489-509
    [33]李树涛,魏丹.压缩传感综述.自动化学报,35(1),2009:1369-1378
    [34]石光明,刘丹华,高大化等,压缩感知理论及其研究进展,电子学报,37(5),2009:1070-1081
    [35]D L Donoho.Compressed sensing[J]..IEEE Trans.on Informa-tion Theory.2006,52 (4):1289-1306.
    [36]E J Candes and T Tao. Near optimal signal recovery from random projections:Universal encoding strategies [J]. IEEE Trans.Info.Theory.2006,52 (12):5406-5425.
    [37]Candes E, Romberg J, Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information.IEEE Transactions on Information Theory.2006,52 (2):489-509
    [38]周美霞.压缩感知在脉冲超宽带中的应用研究[硕士学位论文].北京:北京邮电大学,2009.
    [39]J. A. Tropp and A. C. Gilbert, Signal recovery from random measurements via Orhogonal Matching Pursuit. IEEE Transactions on Information Theory, vol.53, no.12, Dec.2007, pp.4655-66
    [40]Baron, Wakin M B, Duarte et al. Distributed compressed sensing [OL]. http://www.dsp.rice.edu./-drorb/pdf/DCS112005.pdf
    [41]Paredes, J. L.; Arce, G.R.; Wang Z:Compressed Sensing for Ultrawideband Impulse Radio. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007. vol.3,2007, pp.553-556.
    [42]Paredes, J. L.; Arce, G.R.; Wang Z:Ultra-Wideband Compressed Sensing:Channel Estimation. IEEE Journal of Selected Topics in Signal processing, vol.1, no.3, pp.383-395, 2007
    [43]Barbieri A., Pancaldi F., Vitetta, G. M. Compressed channel estimation and data detection algorithms for IR-UWB. IEEE International Conference on UWB (ICUWB 2011).2011: 360-364
    [44]Ted C.-K.Liu,Xiaodai Dong and Wu-sheng Lu,Compressed Sensing Maximum Likelihood Channel Estimation for Ultra-Wideband Impulse Radio, Proceedings of IEEE ICC 2009, pp.1-5:2009
    [45]Peng Zhang; Zhen Hu; Qiu, R.C.; Sadler, B.M.:A Compressed Sensing Based Ultra-Wideband Communication System. IEEE International Conference on Communications, pp.1-5,2009.
    [46]Dejian Li, Zheng Zhou, Weixia Zou, Bin Li, "Noncoherent Detection Based On Compressed Sensing for Ultra-Wideband Impulse Radio", Proceedings of IEEE ISCIT 2010, Oct.,27-29, 2010, Tokyo, Japan.pp.1-5
    [47]Depeng Yang; Husheng Li; Peterson, G.D.; Fathy, A.E.; UWB signal acquisition in positioning systems- Bayesian compressed sensing with redundancy. CISS 2009.43rd Annual Conference on. pp.192-197
    [48]M. Duarte, M. Davenport, M.Wakin, and R. Baraniuk, "Sparse signal detection from incoherent projections," in Proc. of IEEE ICASSP, vol.3, pp.305-308,2006
    [1]A. A. M. Saleh and R. A. Valenzuela, A statistical model for indoor multipath propagation, IEEE J. Sel. Areas. Commun., vol.5, pp.128-137, Feb.1987.
    [2]H. Suzuki. A statistical model for urban radio propagation. IEEE Trans. Comm, July 1977: 674-680
    [3]Rappaport T S. Wireless Communications:Principles and Practice (2nd edn), Prentice Hall PTR:Upper Saddle River, NJ, USA,2002.
    [4]Molisch A F. IEEE 802.15.4a Channel Model-Final Report. Channel Model Subcommittee, http://www.ieee802.org/15/pub/TG4a.html,2005:1-40
    [5]C. C. Chong, Y.-E. Kim, S. K. Yong, and S.-S. Lee, Statistical characterization of the UWB propagation channel in indoor residential environment, Wireless Commun. Mobile Comput., vol.5,2005, pp.503-512.
    [6]R. C. Qiu and I.-T. Lu, Wideband wireless multipath channel modeling with path frequency dependence,in Proc. IEEE Int. Conf.Commun., Dallas, TX, Jun.1996, pp.277-281.
    [7]R. C. Qiu and I.T. Lu, Multipath Resolving With Frequency Dependence for Broadband Wireless Channel Modeling, IEEE Trans. Veh. Tech., vol.48, No.1, pp.273-285, Jan.1999
    [8]Kunisch J, Pamp J. Measurement results and modeling aspects for the UWB radio channel. IEEE Conference on UWB Systems and Technologies (UWBST02); 19-23.
    [9]Foerster J R. Channel Modeling Sub-committee Report (Final). IEEE P802.15-02/490r1-SG3a, February 2003.
    [10]R.J.M. Cramer, R.A. Scholtz and M.Z Win, Evaluation of an Ultra-Wide-Band Propagation Channel, Antennas and Propagation, IEEE Transactions on, vol.50, no.5, May 2002, pp. 561-570
    [11]Foerster J R, Li Q. UWB channel modeling contribution from Intel. IEEE P802.15-02/279r0-SG3a, June 2002.
    [12]L. Hentilal, A. Taparungssanagorn, H. Viittala and M. Hamalainen, Measurement and modelling of an UWB Channel at hospital. In Proc. of IEEE Int. Conf. on Ultra-Wideband, 2005, p.113-117.
    [13]Li Q., Wong, W. S. Measurement and analysis of the indoor UWB channel. In Proc. of IEEE Vehicular Technologies Conf. (VTC 2003-Fall),2003, pp.1-5.
    [14]Cassioli, D., Win, M. Z., Molisch, A. F. The ultra-wide bandwidth indoor channel:from statistical model to simulations. IEEE J. Sel. Areas Commun.,2002, vol.20, no.6, pp. 1247-1257.
    [15]Zhu, R, Wu, Z., Nassar, C. R. Generalized fading channel model with application to UWB. In Proc. of IEEE Conf. UWB Systems and Technologies,2002, pp.13-18.
    [16]Chia-Chin Chong, Su Khiong Yong, A Generic Statistical-Based UWB Channel Model for High-Rise Apartments, IEEE Transactions On Antennas And Propagation, vol.53, no.8, Aug.2005, pp.2389-2399
    [17]Pagani P., Pajusco, P. Experimental assessment of the UWB channel variability in a dynamic indoor environment. In Proc. of IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC 2004),2004, pp.2973-2977
    [18]Noori, N., Karimzadeh-Baee, R., Abolghasemi, A. An empirical ultra wideband channel model for indoor laboratory environments. Radioengineering, vol.18, no.1,2009, pp.68-74
    [19]张中兆沙学军张钦宇等.超宽带通信系统.北京:电子工业出版社.2010:12-49
    [20]Donlan B M, McKinstry D R and Buehrer R M. The UWB indoor channel:large and small scale modeling. IEEE Transactions on Wireless Communication.2006,5(10):2863-2873
    [21]Q. Liang. "Radar sensor wireless channel modeling in foliage environment:UWB versus narrowband", IEEE Sensors Journal, vol.11, no.6, pp.2011, pp.1448-1457
    [22]Ghassemzadeh S.S., Jana, R., Rice C.W., et al. Measurement and modeling of an ultra-wide bandwidth indoor channel, IEEE Trans. Commun., Vol.52, No.10,2004, pp.1786-1796.
    [23]J. Karedal, S. Wyne, P. Almers, F. Tufvesson, and A. F. Molisch, A measurement-based statistical model for ultra-wideband industrial channels, IEEE Trans. Wireless Commun., vol. 6, pp.3028-3037,2007
    [24]Chong C C, Kim Y, Lee S S. A modified S-V clustering channel model for the UWB indoor residential environment [C]//Vehicular Technology Conference,2005-spring:2159-2163.
    [25]Molisch A F. Ultra-wide-band propagation channels. Proceedings of the IEEE.2009,97(2): 353-371
    [26]李德建,周正.超宽带信道建模中基于压缩感知的解卷积算法[J].电子与信息学报,2012,34(3):644-649
    [27]Vaughan R G and Scott N L. Super-resolution of pulsed multipath channels for delay spread characterization [J]. IEEE Transactions on Communications.1999,47(3):343-347
    [28]Yano S M. Investigating the ultra-wideband indoor wireless channel[C]. Proceeding of 55th IEEE Vehicle Technology (VTC'2002-Spring). May 6-9,2002, Birmingham, Al, USA. 2002:1200-1204
    [29]Chuang, J., S. Bashir, and D. G. Michelson. Automated identification of clusters in UWB channel impulse responses, Proc. of Canadian Conference on Electrical and Computer Engineering (CCECE),761-764,2007
    [1]Molisch A.F. Ultra-Wideband Propagation Channels. Proceedings of the IEEE Volume 97, Issue 2, Feb.2009 Page(s):353-370
    [2]E J Candes, J Romberg, T Tao. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory. 2006,52 (2):489-509
    [3]Paredes, J.L.; Arce, G.R.; Wang Z:Ultra-Wideband Compressed Sensing:Channel Estimation. IEEE Journal of Selected Topics in Signal processing, vol.1, no.3, pp.383-395, 2007
    [4]Win M Z, Scholtz R A. Characterization of ultra-wide bandwidth wireless indoor channels:a communication-theoretic view. IEEE Journal on Selected Areas in Communications.2002, 20(9):1613-1627
    [5]Cramer R J, Scholtz R A, and Win M Z. Evaluation of an ultra-wide-band propagation channel. IEEE Transactions on Antennas and Propagation.2002,20(5):561-570
    [6]Win M Z, Scholtz R A. Characterization of ultra-wide bandwidth wireless indoor channels:a communication-theoretic view. IEEE Journal on Selected Areas in Communications.2002, 20(9):1613-1627
    [7]R. A. Scholtz, R. J.-M. Cramer, and M. Z. Win, "Evaluation of the propagation characteristics of ultra-wideband communication channels," in Proc. IEEE Int. Symp. Antennas Propagation., vol.2, June 1998, pp.626-630
    [8]Yano S M. Investigating the ultra-wideband indoor wireless channel.2002, Proceeding of 55th IEEE Vehicle Technology (VTC'2002-Spring). May 6-9,2002, vol 3, Birmingham, Al, USA.2002:1200-1204
    [9]Liu T C, Kim D I, and Vaughan R G. A high-resolution, multi-template deconvolution algorithm for time-domain UWB channel characterization. Canadian Journal of Electrical and Computer Engineering.2007,32(4):207-213
    [10]W. Yang and Z. Naitong, "A new multi-template CLEAN algorithm for UWB channel impulse response characterization," in Proc. Int. conference of communication Technology, Nov.2004, pp.1-4
    [11]J. L. Paredes, G. R. Arce, and Z. Wang. "Ultra-Wideband compressed sensing:channel estimation," IEEE Journal of Selection Topics in Signal Processing, vol.1, no.3, pp. 383-395,2007.
    [12]Duarte M F, Wakin M B, and Baraniuk R G. Fast reconstruction of piecewise smooth signals from random projections. Proceedings of the Workshop on Signal Processing with Adaptative Sparse Structured Representations (SPARS), November 16-18,2005, Rennes, France.2005: 1-4
    [13]Molisch A F. Ultra wideband propagation channel:theory, measurement and modeling. IEEE Transactions on Vehicle Technology.2005,54(5):1528-1545
    [14]A. Muqaibel at al. "UWB channelimpulse response characterization using deconvolution techniques," in Proc.45th Midwest Symp. Circuits Syst., Aug.2002, pp. Ⅲ-605-608
    [1]A. A. M. Saleh and R. A. Valenzuela, A statistical model for indoor multipath propagation, IEEE J. Sel. Areas. Commun., vol.5, pp.128-137, Feb.1987.
    [2]Chang W J, Tarng J H. Effects of bandwidth on observable multipath clustering in outdoor/ indoor environments for broadband and ultra wideband wireless systems. IEEE Trans on Vehicular Technology.2007,56(4):1913-1923
    [3]Ghassemzadeh S S, Jana R, Rice C W et al. Measurement and modeling of an ultra-wide bandwidth indoor channel. IEEE Transactions on Communications.2004,52(10):1786-1796
    [4]J. Y. Lee. "UWB channel modeling in roadway and indoor parking environments", IEEE Transactions on Vehicular Technology, vol.59, no.7, pp.3171-3180,2010
    [5]Donlan B M, McKinstry D R and Buehrer R M. The UWB indoor channel:large and small scale modeling. IEEE Transactions on Wireless Communication.2006,5(10):2863-2873
    [6]Q. Liang. "Radar sensor wireless channel modeling in foliage environment:UWB versus narrowband", IEEE Sensors Journal, vol.11, no.6, pp.2011, pp.1448-1457
    [7]Molisch A F. IEEE 802.15.4a Channel Model-Final Report. Channel Model Subcommittee, http://www.ieee802.org/15/pub/TG4a.html,2005:1-40
    [8]Rappaport T S. Wireless Communications:Principles and Practice (2nd edn), Prentice Hall PTR:Upper Saddle River, NJ, USA,2002.
    [9]Molisch, A. F., K. Balakrishnan, C. C. Chong, D. Cassioli,S. Emami, A. Fort, J. Karedal, J. Kunisch, H. Schantz, K. Siwiak, and M. Z. Win, A comprehensive model for ultra-wideband propagation channels, IEEE Trans. Antennas Propag.,3151-3166,2006.
    [10]Gabriella M, Benedetto D, Giancola G葛利嘉,朱林,袁晓芳等译.超宽带无线电基础.北京:电子工业出版社,2005:1-51
    [11]Foerster J R, Li Q. "UWB channel modeling contribution from Intel." IEEE P802.15-02/279r0-SG3a, June 2002.
    [12]Alvarez A, Valera G, Lobeira M, Torres R, Garcia JL. New channel impulse response model for uwb indoor system simulations. IEEE Vehicular Technology Conference (VTC 2003-Spring); 1-5.
    [13]Kunisch J, Pamp J. Measurement results and modeling aspects for the UWB radio channel. IEEE Conference on UWB Systems and Technologies (UWBST02); 9-23.
    [14]R. C. Qiu and I.T. Lu, Multipath Resolving With Frequency Dependence for Broadband Wireless Channel Modeling, IEEE Trans. Veh. Tech., vol.48, No.1, pp.273-285, Jan.1999
    [15]J. Karedal, S. Wyne, P. Almers, F. Tufvesson, and A. F. Molisch, A measurement-based statistical model for ultra-wideband industrial channels, IEEE Trans. Wireless Commun., vol. 6, pp.3028-3037,2007.
    [16]Alvarez A, Valera G, Lobeira M, Torres R, Garcia JL. New channel impulse response model for uwb indoor system simulations. IEEE Vehicular Technology Conference (VTC 2003-Spring); 1-5.
    [17]Molisch, A. F., Ultra-wideband propagation channels, IEEE Proc., Vol.97, No.2,353-371, Feb.2009.
    [18]Chong C C, Kim Y, Lee S S. A modified S-V clustering channel model for the UWB indoor residential environment [C]//Vehicular Technology Conference,2005-spring:2159-2163.
    [19]Hashemi Homayoun. Impulse response modeling of indoor radio propagation channels[J]. IEEE Jounal on Selected Areas in Communications, vol.11, no.7,1993:967-978
    [20]Foerster JR. Channel Modeling Sub-committee Report (Final).IEEE P802.15-02/490r1-SG3a, February 2003.
    [21]Molisch A F, Foerster J, and Pendergrass M. Channel models for ultrawideband personal area networks. IEEE Wireless Communication. Magazine,2003,10(6):14-21.
    [1]Zhang P, Hu Z., Qiu R. C., et al, A compressed sensing based ultra-wideband communication system,IEEE International Conference on Communications, 2009.(ICC2009),14-18 June 2009
    [2]Paredes, J.L.; Arce, G.R.; Wang Z:Ultra-Wideband Compressed Sensing:Channel Estimation. IEEE Journal of Selected Topics in Signal processing, vol.1, no.3, pp.383-395,2007
    [3]Ted C.-K.Liu,Xiaodai Dong and Wu-sheng Lu,Compressed Sensing Maximum Likelihood Channel Estimation for Ultra-Wideband Impulse Radio, Proceedings of IEEE ICC 2009, pp.1-5:2009
    [4]Waheed U.Bajwa, Jarvis Haupt, Akbar M.Sayeed et al "Compressed Channel Sensing:A New Approach to Estimating Sparse Multipath Channels," Proceedings of the IEEE, vol.98, no.6, June 2010:1058-1076
    [5]E. J. Candes and T Tao. "The Danzig Selector:Statiscal estimation when p is much larger than n," Ann. Stat., vol.3, no.6, pp.2313-2351, Dec.2007
    [6]石磊.压缩感知在超宽带信道估计中的应用研究[博士论文].北京:北京邮电大学,2011
    [7]S. F. Ahmed, T. y. Al-naffouri and A. H. Muqaibei. "Low-Complexity MAP Based channel Support Estimation for Impulse Radio Ultra-Wideband Communications", IEEE International Conference on Ultra-Wideband, ICUWB 2011, pp.370-374
    [8]S.E. Ferrandol, E.J. Doolittle, A.J. Bernal,L.J. Bernal:Probabilistic matching pursuit with Gabor dictionaries. Journal of Signal Processing, Elsevier. vol.80, no.10, pp.2099-2120,2000
    [9]K. Witrisal, G. Leus, Gerard J.M. Janssen, et al, "Noncoherent Ultra-Wideband Systems," Signal Processing Magazine, IEEE, Vol.26, no.4, pp.48-66, July 2009
    [10]M. Duarte, M. Davenport, M.Wakin, and R. Baraniuk, "Sparse signal detection from incoherent projections," in Proc. of IEEE ICASSP, vol.3, pp.305-308,2006
    [11]Z. Wang, G. R. Arce, J. L. Paredes, and B. M. Sadler, "Compressed detection for Ultra-wideband impulsive radio," in Proc. of 8th IEEE Intl. Workshop SPAWC, Jun. 2007.
    [12]Z. Wang; G. Arce, B. Sadler, J. Paredes, X. Ma, "Compressed Detection for Pilot Assisted Ultra-Wideband Impulse Radio," in Proc. of IEEE ICUWB, pp.393-398, Sept.2007
    [13]Waheed U.Bajwa, Jarvis Haupt, Akbar M.Sayeed et al. Compressed Channel Sensing:A New Approach to Estimating Sparse Multipath Channels, Proceedings of the IEEE, vol.98, no.6, pp.1058-1076, Jun.2010
    [14]Weisenhorn, M.; Hirt, W.,"ML receiver for pulsed UWB signals and partial channel state information," IEEE International Conference on Ultra-Wideband,2005. pp.180-185, Sept.2005
    [15]Y C Eldar, M Mishali. Robust recovery of signals from a structured union of subspaces [J]. IEEE Trans on Information Theory,2009,55(11):5302-5316.
    [16]Y C Eldar, P Kuppinger, H Bolcskei. Compressed sensing of block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans on Signal Processing,2010, 58(6):3042-3054.
    [17]Mark A. Davenport, Petros T. Boufounos, Michael B. Wakin, Signal Processing With Compressive Measurements. IEEE Journal of Selected Topics in Signal Processing, vol.4, no.2, pp.445-460,2010
    [18]Foerster J R, Li Q. UWB channel modeling contribution from Intel. IEEE P802.15-02/279r0-SG3a, June 2002.
    [19]H.V. Poor, "An Introduction to Signal Detection and Estimation," New York: Springer-Verlag,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700