用户名: 密码: 验证码:
紫外接枝制备亲水性纳滤膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳滤膜由于其工作压力低、渗透通量大、分离效率高、操作成本低在水处理和低分子量有机分子的分离中得到广泛的应用,是近年来发展迅速的膜分离技术。随着纳滤在生物、医药等领域中的广泛使用,提高膜的亲水抗污性已成为纳滤膜研究的热点。本文通过对超滤膜进行紫外辐照接枝的方法制备亲水性纳滤膜,创建了一种制备亲水性纳滤膜的新方法。实验系统研究了酚酞基聚醚酮(PEK-C)超滤膜表面的紫外辐照接枝反应,研究了反应条件、单体性质、链转移剂及共聚接枝等对膜的纳滤分离性能的影响,在此基础上探讨了PEK-C的光接枝反应的机理和Donnan效应对纳滤膜性能的影响。
     论文首先研究了在光敏剂BP存在下,通过紫外辐照在PEK-C超滤膜表面接枝亲水性单体丙烯酸(AA)和甲基丙烯酸β-羟乙酯(HEMA)单体制备纳滤膜的方法。用FTIR、AFM、表面接触角测定仪和改性膜对无机盐电解质的纳滤截留性能等方法系统研究了接枝反应的条件对亲水性纳滤膜结构和性能的影响。研究表明,AA和HEMA能够在光敏剂存在下,通过紫外接枝聚合的方法在PEK-C膜表面形成接枝层。其接枝率随辐照时间的增加而增加,膜的水接触角也同步下降,表明改性后膜表面的亲水性得到明显改善。对这两种单体改性的膜进行纳滤分离实验发现,尽管在相同接枝条件下,二者的接枝率相近,但膜的分离性能,特别是对电解质离子的截留率有很大的差别。如在光强为1.56 mW/cm~2时,用质量浓度均为10%的AA和HEMA溶液接枝90 min,改性膜对Na_2SO_4的截留率分别为94%和39.5%。这表明,通过在膜表面引入电负性强的单体对提高膜的纳滤分离性能十分有利。
     论文也研究了在单体溶液中不加任何光敏剂,用紫外光对PEK-C超滤膜直接辐照接枝丙烯酸单体的反应。结果发现,AA同样能很好地接枝到PEK-C膜上,表明PEK-C具有良好的光敏性。通过增大光强、延长接枝时间和提高单体的浓度,均有利于提高膜表面的接枝率。同样,随着接枝率的提高,水在膜上的接触角变小,膜表面的亲水性提高。通过表面紫外辐照接枝,改性PEK-C膜显示了优良的纳滤分离性能。如当辐射强度为8.7 mW/cm~2时,在10%的AA单体溶液辐照5min后,改性膜对Na_2SO_4的截留率可高达99.6%。根据上述实验结果,论文用扩展的Nernst-Planck方程对接枝改性膜的成膜过程和分离机理进行了讨论,认为在微孔中形成的接枝链与溶液分子的磨擦阻力和静电排斥作用是接枝膜对盐离子呈现截留作用的主要原因。通过控制接枝率和接枝链长,改变膜表面的静电排斥力可有
Nanofiltration (NF), a pressure-driven separation process, has various applications in many fields, especially in water treatments and the separation of low molecular weight organic compounds. Because of its advantages such as low operating pressures, high fluxes, high retentions of multivalent salts, low investment and operation costs, this technology has rapidly developed in the last ten years. The new applications of nanofiltration in the fields of biotechnology and pharmacy, where the fluid phases to be treated are generally complex and heavily loaded with colloidal matters, require hydrophilic membranes with better fouling resistances.In this article, a novel method was used to prepare hydrophilic nanofiltration membrane by UV irradiation graft polymerization from Polyetherketone (PEK-C) ultrafiltration membrane. The grafting condition and effect of monomer nature on the membrane performance such as salt rejection and permeate flux have been systematically studied. By introducing chain transfer agent and other polar monomer in the grafting solution, the surface nature and structure of the membrane have been changed. The results showed that the function of Donnan effect on the membrane performance, which are very helpful to understand the mechanism of nanofiltration.We introduced at first the graft polymerization of PEK-C ultrafiltration membrane by hydrophilic monomer such as acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) in presence of benzophenone BP as photosensitive agent. Several analytic methods such as FTIR-ATR, AFM, CAs were employed to characterize the chemical and physical properties of modified membranes. FTIR-ATR spectra detected AA and HEMA grafts on the surface of PEK-C, and the relative grafting ratio increased with irradiation time, while the contact angle of water on the modified membrane surface measured by CAs decreased. That means the hydrophilicity can be improved by hydrophilic monomers grafting onto the surface of PEK-C membranes. The modified PEK-C membrane showed a good retention to salt that is a characteristic of nanofiltration. The difference in separation performance of membrane modified by AA or HEMA under the similar grafting condition demonstrated that the membrane negatively charged has a higher salt retention. For example, the retentions to sodium sulfate of the membrane grafted AA and HEMA for 90 min under UV intensity of 1.6 mW/cm~2 was 94.1 % and 39.5 % at 0.4 MPa, respectively.The UV irradiation graft polymesization of PEK-C membrane has been also studied in the absence of photoinitiator. The analysis with FTIR, CAs and AFM detected that the graft polymerization took place as well as in the presence of BP too. It showed that the PEK-C is a
    photosensitive polymer. According to its chemical formula, we suggested that the structure of benzophenone in main chain of PEK-C could be the photosensitive center. In presence of hydrogen-donor, under UV irradiation, benzophenone would transfer to pinacol radical, and initiated the graft polymerization.The effect of irradiation condition and monomer nature on the membrane performances of modified membrane was systematically investigated. The results obtained by means of FT1R-ATR, AFM, CAs showed that the irradiation graft polymerization of hydrophilic monomer on the PEK-C UF membrane in the absence of BP followed the similar trend that the grafting degree on the membrane surface and their hydrophilicity increased with increasing in irradiation intensity or irradiation time. The retention of sodium sulfate of the membrane modified with 10% of acrylic acid for 5 min irradiation with a UV intensity of 8.7 mW/cnr was very high, about 99.6 % at 0.8 MPa. This result suggested that part of AA chains grafted on the micro-porous wall and decrease the pore sizes on the nanometer order under suitable irradiation condition within a few minutes. According to the experiment results, we discussed the membrane forming process and the mechanism of nanofiltration separation based on extended Nernst-Planck equation. It suggests that the rejection of a charged solute depends on the steric exclusion from partially occluded by grafted PAA chains in the membrane pores and the static expulsion by Donnan potential of PAA chains. It means that the membranes performance can be controlled with varying the length of grafting chain, the grafting ratio and their electronegative properties.UV direct irradiation grafting and polymerization and the nanofiltration performance of four different hydrophilic grafted monomers [neutral (acrylamide (AM), weak acid (2-hydroxyethyl methacrylate (HEMA), acrylic acid (AA), and strong acid (2-acrylamido-2-l-propanesulfonic acid (AMPS)) on PEK-C membranes were measured. Although all the grafted and polymerized monomers increased the surface hydrophilicity of the PEK-C grafted membrane over that for the unmodified PEK-C membranes, their effect on nanofiltration performance was quite different. Using the PEK-C membranes for grafting, membrane with superior performance (high salt retention, high salt solution flux) was obtained with the AMPS. Grafting of AM resulted in substantial decrease in permeability due to the membrane pores were largely occlude by PAM chains, but their retention to salt were very low, even at high AM graft ratio. Those results also testified that more electronegativity of the monomer is, the better nanofiltration performance of the modified membrane. The use of chain transfer agent, iso-propane alcohol (1PA) was use in producing hydrophilic
引文
[1] 时钧,袁权,高从堦,膜技术手册,化学工业出版社,2001
    [2] W. Juda, Mcrae, W. A., J. Am. Chem. Soc., 1950, 72, 1044
    [3] Loeb, S., Sourirajan, S., Adv. Chem. Ser., 1962, 38, 117
    [4] Mulder, M., Basic principles of Membrane Technology (2nd edition), Kluwer Academic Publishers, Hardbound, 1996
    [5] 卢红梅,过滤与分离,2002,12,38
    [6] 环国兰,张宇峰,杜启云,吴云,天津工业大学学报,2001,22,47
    [7] 普文英,张卫东,赵汉臣,中国药房,2000,11,234
    [8] Yaroshchuk, A. E., Vovkogon, Y. A., J. Membr. Sci., 1994, 86, 19
    [9] Alami-Younssi, S., Larbot, A., Persin, M., J. Membr. Sci., 1995, 102, 123
    [10] Chaufer, B., Rabiller-Baudry, M., Guihard, L., Desalination, 1996, 104, 37
    [11] Bardot, C., Gaubert, E., Yaroschchuk, A. E., J. Membr Sci., 1995, 103, 11
    [12] Bowen, W.R., Mukhtar, H., J. Membr Sci., 1996, 112, 263
    [13] Martin-Ore, C., Bouhallab, S., Garem, A., J. Membr Sci., 1998, 142, 225
    [14] Van der Bruggen, B., Schaep, J., Wilms, D., Membr Sci., 1999, 156, 29
    [15] Kedem, O., Katchalsky, A., Trans. Faraday Soc., 1962, 59, 1918
    [16] Katchatsky, A., curran, P. F., Nonequilibrium thermodynamics in biophysics. Massachusetts: Harvard University Press, 1965
    [17] Spielger, K. S., Kedem, O., Desalination, 1966, 1, 311
    [18] Pappenheimer, J. R., Renkin, E. M., Borrero, L.M.,Am. J. Physiol., 1951, 167, 12
    [19] Pappenheimer, J. R., Am. J. Physiol., 1954, 169, 387
    [20] Renkin, E. M., J. Gen. Physiol., 1954, 38, 225
    [21] Bean, C. P., The physics of porous membranes-neutral pores. In: Eisenman G, ed. Membranes. A series of advances. Vol. 1. New York: Marcel Dekker, 1972
    [22] Nakao, S., Kimura, S., J. Chem. Eng. Japan, 1982, 15, 200
    [23] 王晓琳,中尾真一,南京化工大学学学报,1998,20,36
    [24] Anderso, J. L., Quinn, J. A., Biophys. J., 1974, 14, 130
    [25] Malone, D. M., Anderson, J. L., Chem. Eng. Sci., 1978, 33, 1429
    [26] Deen, W. M., AICHE J., 1987, 33, 1409
    [27] Nakao, S., J. Membr. Sci., 1994, 96, 131
    [28] Oldham, I. B., Young, F. J., Osterle, J. F., J. ColloidSci., 1963, 18, 328
    [29] Morrison, F. A., Osterle, J. F., J. Chem. Phys., 1965, 43, 2111
    [30] Gross, R. J., Osterle, J. F., J. Chem. Phys., 1968, 49, 228
    [31] Neogi, P., Ruckenstein, E., J. Colloid Interf. Sci., 1981, 79, 159
    [32] Sasidhar, V., Ruckenstein, E., J. Colloid Interf Sci., 1981, 82, 439
    [33] Sasidhar, V., Ruchenstein, E., J. Colloid Interf Sci., 1982, 85, 332
    [34] Christoforou, C. C., Westermann-Clerk, G. B., Anderson, J. L., J. Colloid Interf Sci., 1985, 106, 1
    [35] Westermann-Clerk, G. B., Anderson, J. L., J. Electrochem. Soc., 1983, 130, 839
    [36] Hijnen, H. J. M., Van Daalen, J., Smit, J. A. M., J. Colloid Interf Sci., 1985, 107, 525
    [37] Smit, J. A. M., J. Colloid Interf Sci., 1989, 132, 413
    [38] Meyer, K. H., Sievers, J. F., Helv, Chim. Acta, 1936, 19, 649, 665, 987; Teorell, T., Progr. Biophysics, 1953, 3, 305
    [39] Kobatake, Y., Takeguchi, N., Yoyoshima, Y., J. Phys. Chem., 1965, 69, 3981
    [40] Hoffer, E., Kedem, O., Desalination, 1967, 2, 25
    [41] Tsuru, T., Nakao, S., Kimura, S., J. Chem. Eng. Japan, 1991, 24, 511
    [42] Tsuru, T., Urairi, M., Nakao, S., J. Chem. Eng. Japan, 1991, 24, 518
    [43] Wang, X. L., Tsuru, T., Nakao, S., J. Membr. Sci., 1995, 103, 117
    [44] 王晓琳,天津城市建设学院学报,2003,9,82
    [45] 沈钟,王果庭,胶体与表面化学(第二版),北京:化学工业出版社,1996
    [46] Wang, X. L., Tsuru, T., Togoh, M., J. Chem. Eng. Japan, 1995, 28, 372
    [47] Wang, X. L., Tsuru, T., Nakao, S., J. Membr. Sci., 1997, 135, 19
    [48] Bowen, W. R., Mohammad, A. W., Hilal, N., J. Membr. Sci., 1997, 126, 91
    [49] 丁涛,耐溶剂聚酰亚胺纳滤膜的研制,天津大学硕士论文,2003,p10
    [50] 梁雪梅,陆晓峰,王彬芳,许汝谟,功能高分子学报,1999,12,102
    [51] 蒲通,曾作祥,高分子通报,2001,3,57
    [52] 马丽霞,纳滤脱盐处理循环冷却水排污水的应用研究,河北工业大学硕士论文,2003,p7
    [53] 杜润红,聚甲基丙烯酸二甲氨基乙酯/聚砜荷正电复合纳滤膜的研究,天津工业大学硕士论文.2002,p4
    [54] Hildenbrand, K., Dhein, R., Ebert, W., DE, 4325650, 1994
    [55] 郭明远,杨牛珍,水处理技术,1996,22,97
    [56] Jian, X. G., Dai, Y., He, G. H., J. Membr. Sci., 1999, 161, 185
    [57] 杨少华,董声华,金龙秀,水处理技术,1993,19,138
    [58] Cabasso, I., Tran, C. N., J. Appl. Polym. Sci., 1979, 23, 2967
    [59] 刘淑秀,姚仕仲,郑大威,膜科学与技术,1997,17,20
    [60] Bowen, W. R., Doneva, T. A., Yin, H. B., J. Membr. Sci., 2001, 181, 253
    [61] 郝继华等,水处理技术,1987,13,255
    [62] 高从堦等,水处理技术,1987,13,140
    [63] 夏冰,董声华,莫剑雄,水处理技术,1992,18,75
    [64] 何昌生,孙雪雁,水处理技术,1998,24,265
    [65] Petersen, R. J., J. Membr. Sci., 1993, 83, 81
    [66] 夏长荣,孟广辉,材料研究学报,1998,12,133
    [67] 俞三传,高从堦,张建飞,水处理技术,1997,23,139
    [68] 梁雪梅,陆晓峰,刘光全,华东理工大学学报,1999,25,297
    [69] 夏永清,高从堦,鲁学仁,水处理技术,1993,19,197
    [70] 俞三传,高从堦,鲁学仁,膜科学与技术,1995,15,31
    [71] Noel, I. M., Lebrun, R. E., Bouchard, C. R., Desalination, 2003, 155, 229
    [72] Morgan, RW., Condensation polymers. By interfacial and solution methods, NY: Interscience Publishers. 1965
    [73] Kumano A, Oguro H, Hayashi T. FR, 2723856, 1996
    [74] 高从堦,鲁学仁,刘玉荣,全国RO、UF、MF膜技术报告讨论会,兴城,1993,15
    [75] 俞三传,金可勇,潘巧明,高从堦,膜科学与技术,2001,21,1
    [76] 翟晓东,陆晓峰,梁国明,华东理工大学学报,2001,27,643
    [77] 翟晓东,陆晓峰,梁国明,张仪,许振良,王彬芳,化东理工大学学报,2001,27,648
    [78] 梁雪梅,陆晓峰,梁国明,上海市化学化工学会膜技术及应用专业委员会年会论文集,1998,43
    [79] 宋玉军,刘福安,赵晨阳,孙本惠,北京化工大学学报,1999,26,38
    [80] Mohammad, A. W., Hilal, N., Seman, M. N. A., Desalination, 2003, 158, 73
    [81] Zhang, W., He, G. H., Gao, P., Chen, G. H., Sep. and Purif. Tech., 2003, 30, 27
    [82] Sforea, M. L., Nunes, S. P., Peinemann, K. V., J. Membr. Sci., 1977, 135, 179
    [83] Miyama, H., Tanaka, K., Nosaka, Y., J. Appl. Polym. Sci., 1998, 36, 925
    [84] Hicker, H. G., Beeker, M., Paul, D., DE, 4427736, 1996
    [85] Chang, Y. A., Kulkarni, S. S., Funk, E.W., US, 4595507, 1986
    [86] 张丹霞,王保国,陈翠仙,膜科学与技术,2002,22,65
    [87] 郭明远,樊芷芸,杨牛珍,陈杰,田伟,蒋莉,膜科学与技术,1997,17,10
    [88] Liang, L., Shi, M., Viawanathan, V. V., Peurrung, L. M., Young, J. S., J. Membr. Sci., 2000, 177, 97
    [89] Yamaguchi, T., Suzuki, T., Kai, T., Nakao, S., J. Membr. Sci., 2001, 194, 217
    [90] Wavhal, D. S., Fisher, E. R., J. Membr. Sci., 2002, 209, 255
    [91] Wavhal, D. S., Fisher, E. R., Langmuir, 2003, 19, 79
    [92] Zhao, Z. P., Li, J. D., Zhang, D. X., Chen, C. X., J. Membr Sci., 2004, 232, 1
    [93] 邓建平,杨万泰,膜科学与技术,1999,19,13
    [94] 张国亮,陈益棠,水处理技术,2000,26,67
    [95] Siddiqui, M., Amy, G., Ryan, J., Wat. Res., 2000, 34, 3355
    [96] Visvanathan, C., Marsono, B. D., Basu, B., Wat. Res., 1998, 32, 2983
    [97] Ducom, G., Cabassud, C., Desalination, 1999, 124, 115
    [98] Escobar, I., Hong, S., Randall, A.A., J. Membr Sci., 2000, 175, 1
    [99] van der Bruggen, B., Schaep, J., Maes, W., Desalination, 1998, 117, 139
    [100] Wittmann, E., Cote, P., Medici, C., Desalination, 1998, 119, 347
    [101] Kiso, Y., NiShimura, Y., Kitao, T., J. Membr. Sci., 2000, 171, 229
    [102] Krauth, Kh., Wat. Sci. Tech., 1996, 34, 389
    [103] 宋玉军,石油化工设计,1996,13,35
    [104] Rautenbach, R., Mellis, R., Desalination, 1994, 95, 171
    [105] Zaidi, A., Water Sci. Tech., 1992, 25, 263
    [106] 谭绍早,陈震华,陈中豪,中国造纸学报,2002,17,63
    [107] 李志健,金奇庭,李新平,中国造纸,2003,22,46
    [108] Ohya, H., Okazaki, I., Aihara, M., J. Membr. Sci., 1997, 123, 143
    [109] Bartels, C. R., The treatment of produced water by nanofiltration membrane, Chicago: International Conference on Membrane, 1990
    [110] Eriksson, P., Environmental Prof, 1998, 7, 58
    [111] 陈益棠,王寿根,楼永通,2001年膜技术应用国际会议论文集。上海&杭州:中国膜工业协会,2001,429
    [112] 吴麟华,膜科学与技术,1997,17,11
    [113] 毕可英,刘玉荣,水处理技术,1995,21,271
    [114] 高以焕,姚仕仲,刘淑秀,膜科学与技术,1998,18,27
    [115] 蔡邦肖,膜科学与技术,1999,19,55
    [116] 严希康,生化分离技术,上海:华东理工大学出版社,1996,115
    [117] Gu, Y. K., J. Agric Food Chem., 1996, 44, 2384
    [118] Ferrarini, R., Versari, A., Galassi, S., J. Food Eng., 2001, 50, 113
    [119] Vandanjon, L., Jaouen, P., Rossignol, N., J. Biotech., 1999, 70, 319
    [120] 高从堦等,水处理技术,1996,22,147
    [121] Jeantet R., Enzymo. Microb. Tech. 2002, 19, 614
    [122] Pieracci, J., Crivello, J. V., Belfort, G., J. Membr. Sci., 1999, 156, 223
    [123] Yamagishi, H., Crivello, J. V., Belfort, G., J. Membr. Sci., 1995, 105, 237
    [124] Yanagishita, H., Kitamoto, D., Ikegami, T., Negishi, H., Endo, A., Haraya, K., etc., J. Membr. Sci., 2002, 203, 191
    [125] Taniguchi, M., G. Belfort, G., Journal of Membrane Science 2004, 231, 147
    [126] Ulbricht, M., Matuschewski, H., Oechel, A., Hicke, H. G., J. Membr. Sci., 1996, 115, 31
    [127] Ulbricht. M., Oechel, A., Eoropean Polymer J, 1996, 32, 1045

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700