用户名: 密码: 验证码:
基于稳定氧化锆和氧化物电极的混成电位型车载气体传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来世界各国不断强化了汽车尾气排放标准,因此,急需开发基于钇稳定氧化锆(yttria-stabilized zirconia,YSZ)和氧化物电极的高性能车载氮氧化物和氨气传感器。对于该类传感器,氧化物敏感电极材料的组成和微观结构是决定传感器性能的重要因素,同时器件结构和工作条件等也有重要影响。本论文从氧化物电极材料设计入手,制备了一些复合氧化物,同时利用烧结温度来调控氧化物电极微结构,进而研究氧化物电极材料的组成、结构与NO_x和NH_3敏感特性的关系。
     首先,论文第一章主要介绍了固体电解质及其在传感器领域的应用,并着重介绍钇稳定氧化锆传感器的研究现状。
     其次,在论文第二章着重研究W/Cr二元氧化物作为敏感材料对NO_2的敏感特性。我们采用聚合物前驱体法合成一系列W基复合氧化物,以它们为敏感电极材料制作了YSZ基混成电位传感器。并着重研究了不同配比的W/Cr氧化物,通过改变器件制作过程中的烧结温度来改进敏感电极的微结构以优化器件的性能。在不同W/Cr投料配比的实验中,当两者比例为3:2时,最终合成的材料Cr_2WO_6/WO3对NO_2的响应值和灵敏度最大。我们选取该比例的材料研究了器件不同烧结温度对电极的微结构的影响,其中1000oC烧结的条件下,器件的灵敏度最高,对100ppm NO_2的响应值能达到51.6mV,响应恢复时间在20s内。通过分析认为电极的微结构起主要作用,由于WO3的部分升华使电极形成了多孔结构有利于气体的穿透,进而促进三相界面处的电化学反应,导致对NO_2高的灵敏特性。随后我们对器件的耐湿性进行了测试,在10%-90%的相对湿度范围内,器件的响应基本上不受影响。
     论文第三章,采用聚合物前驱体的方法,制备了具有尖晶石结构的MnCr_2O_4,使用TG-DSC,XRD,BET以及SEM等测试方法来分析不同烧结温度对材料的形成与结晶的影响。通过电化学极化曲线和阻抗测试,从混成电位理论的角度分析敏感电极的电化学催化活性与三相界面处化学反应对器件敏感性能的影响。实验中我们分别使用800oC,900oC,1000oC,1100oC和1250oC烧结的MnCr_2O_4材料为敏感电极制作了YSZ基平板型器件并对它们进行了NO_2敏感特性测试,结果表明使用1000oC烧结的材料为电极表现出了最好的敏感特性。器件对100ppm的NO_2响应值为73mV,灵敏度为44.5mV/decade,同时对其它干扰气体的响应值非常小,不及其对NO_2的10%。通过对传感器电极的结晶与形貌分析,结合器件电化学极化曲线,复阻抗等实验数据,从混成电位理论的角度解释了其优异的敏感特性。我们认为在800-1000oC,随烧结温度的升高生成纯的MnCr_2O_4,此时材料自身的电化学催化活性起主要作用;当温度超过1000oC后,纯的MnCr_2O_4已经得到,此时电极的微结构起主要作用,升高温度造成电极材料聚集,减少了三相界面上的电化学反应位点,对敏感特性造成不利影响。综上,1000oC的烧结条件下制得的MnCr_2O_4表现出最优的性能。另外,我们又对该器件的重复性等方面进行了测试,结果表明其是一种有潜力实用化的车载NO_2传感器。
     论文第四章主要研究车载NH_3传感器。使用聚合物前驱体的方法,我们制备了一系列钨酸盐,发现了CoWO_4作为氨气传感器的潜在价值:高的灵敏度对100ppm的NH_3响应值为-51mV,快速的响应恢复速度(两者都不超过5s),测试浓度范围可以达到50-1000ppm。通过对其电极表面形貌的表征和分析,电极的微观形貌为包覆微小颗粒的棒状结晶,其对器件的敏感特性起重要作用。其选择性虽然有些改进,但是仍旧不够优异。车载氨气传感器领域的挑战依然很大,尚需继续努力探索。
     最后,论文的第五章是总结与展望。
Recently, with the strengthening of the emissions standards, development ofyttria-stabilized zirconia (YSZ) nitrogen oxides and ammonia sensor research hasbecome very urgent. Researchers find that the sensing electrode (SE) material in thesesensors is an important factor in determining the performance of the sensor.Meanwhile, the electrode structure, the device structure, the fabrication and testconditions, also play important roles. In this thesis, focusing on the electrode material,and taking account of the sintering temperature of the material and device fabricationprocess, we adjust the electrode microstructure and research the sensitive properties ofthe nitrogen oxides and ammonia sensor.
     First of all, the first chapter introduces the solid electrolyte and its application inthe field of sensors, as well as the research progress of yttria-stabilized zirconiasensor.
     Secondly, in chapter two we focus on the NO_xsensing characteristic of W-basedoxides. A series of mixed W/Cr oxides with different ratio of W and Cr (1:6,1:2and3:2) have been prepared by using polymeric precursor method. By comparing their sensitivities to20-300ppm NO_2, it was found that the sensor using oxide with3:2W/Cr gave the largest response value. For3:2W/Cr oxide, the effect of the sinteringtemperature on the electrode microstructure was also investigated. As a result, thedevice sintered at1000C showed the best performance. The response value to100ppm NO_2is51.6mV, the response time is within20s and the sensing device alsoshows an excellent selectivity against other coexisting gases. The characteristics ofSEM and TEM revealed that the special microstructure of oxide electrode formed bysintering plays a significant role in better sensing performance. Additionally, values ofthe ΔEMF to100ppm NO_2obtained with different relative humidity (10%,20%,50%,70%and90%) are less than5%difference, which shows that the water has little effecton the NO_2response for the sensor.
     In chapter three, we have prepared MnCr_2O_4with spinel structure by usingpolymeric precursor method. The thermal stability, grain size and surface morphologyof MnCr_2O_4calcined at different temperatures were studied using thermogravimetricanalysis and differential scanning calorimeter analysis (TG-DSC), X-ray diffraction(XRD), scanning electron microscopy (SEM). From these measurements, weinvestigated the influences of electrochemical activity of sensing electrode (SE) andTPB on devices’ sensitivity. Then the YSZ-based sensors using MnCr_2O_4sintered atdifferent temperatures (800,900,1000,1100and1250C) as electrode were fabricatedand their NO_2sensing properties were investigated. Results demonstrate thatMnCr_2O_4sample calcined at1000C exhibits higher response to100ppm NO_2, whichis about73mV. It is believed that the calcined temperature affect the material’ssensing properties. It was suggested that when temperature increased, a rather pureMnCr_2O_4phase was obtained after1000C; however, taking account of the triple phase boundary, a high surface area is necessary, so too high temperature is not good.These two factors determined1000C as the optimal temperature. Additionally, thesensing characteristics such as selectivity, repeatability were investigated.
     In chapter four we focus on the on-board NH_3sensors. A series of tungstateMWO_4(M=Co, Zn and Ni) has been prepared by polymeric precursor method.Meanwhile, yttria-stabilize zirconia based sensors using these oxides as sensingelectrodes were investigated, and among the oxides tested, CoWO_4was found to bethe most suitable for the SE of the ammonia sensor. The sensor attached with CoWO_4shows the fast response and recovery characteristics (not more than5s respectively)and large sensitivity (-51mV/decade) at elevated temperature. The electric potentialdifference (ΔV) of the sensor varies almost linearly with the NH_3concentrations inthe examined range of50-1000ppm. The SEM observation reveals that the specialmicrostructure of CoWO_4-SE, bulky rod-like crystals coated by tiny particles, plays asignificant role in sensing performance. Although the selectivity has been improved,but it is still not perfect. The challenge of the NH_3sensor on board is great, andshould be investigated further.
     Finally, chapter five is summary and outlook.
引文
[1]王瑛璞.汽车排放污染生成机理及控制技术研究[M].哈尔滨工程大学,2007.
    [2]中华人民共和国环境保护部,中华人民共和国国家统计局,中华人民共和国农业部,第一次全国污染源普查公报,2010.
    [3]中华人民共和国国家统计局,中华人民共和国2004年国民经济和社会发展统计公报,2005.
    [4]中华人民共和国国家统计局,中华人民共和国2006年国民经济和社会发展统计公报,2007.
    [5]中华人民共和国国家统计局,中华人民共和国2008年国民经济和社会发展统计公报,2009.
    [6]许楠.直喷汽油机直接起停技术的研究[M].吉林大学,2009.
    [7]杨世琦.用于汽车尾气监控的稳定氧化锆基混成电位型NOx传感器的研究[M].长春:吉林大学,2012.
    [8]王兆,全国汽车标准化技术委员会.中国汽车燃料经济性标准体系及标准化工作动态[R],2009
    [9]马清芝,车新胜,产品合格证的编制摭谈[J].机械工业标准化与质量,2006,20:14-16.
    [10]李志军,孙小明,马小强, et al.,稀燃汽油机运转工况对吸附还原法降低NOx排放的影响[J].燃料科学与技术,2005,11(3):224-229.
    [11] Hyodo, T., H. Inoue, H. Motomura, et al., NO2sensing properties ofmacroporous In2O3-based powders fabricated by utilizing ultrasonic spraypyrolysis employing polymethylmethacrylate microspheres as a template [J].Sensors and Actuators B: Chemical,2010,151(1):265-273.
    [12] Xu, P., Z. Cheng, Q. Pan, et al., High aspect ratio In2O3nanowires: Synthesis,mechanism and NO2gas-sensing properties [J]. Sensors and ActuatorsB-Chemical,2008,130(2):802-808.
    [13] Yan, X.B., Z.J. Han, Y. Yang, et al., NO2gas sensing with polyanilinenanofibers synthesized by a facile aqueous/organic interfacial polymerization [J].Sensors and Actuators B-Chemical,2007,123(1):107-113.
    [14] Sadek, A.Z., S. Choopun, W. Wlodarski, et al., Characterization of ZnOnanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing [J]. IEEESensors Journal,2007,7(5-6):919-924.
    [15] Rossinyol, E., A. Prim, E. Pellicer, et al., Synthesis and characterization ofchromium-doped mesoporous tungsten oxide for gas-sensing applications [J].Advanced Functional Materials,2007,17(11):1801-1806.
    [16] Zhang, J., A. Boyd, A. Tselev, et al., Mechanism of NO2detection in carbonnanotube field effect transistor chemical sensors [J]. Applied Physics Letters,2006,88(12).
    [17] Suehiro, J., H. Imakiire, S. Hidaka, et al., Schottky-type response of carbonnanotube NO2gas sensor fabricated onto aluminum electrodes bydielectrophoresis [J]. Sensors and Actuators B-Chemical,2006,114(2):943-949.
    [18] Shishiyanu, S.T., T.S. Shishiyanu, O.I. Lupan, Novel NO2gas sensor based oncuprous oxide thin films [J]. Sensors and Actuators B-Chemical,2006,113(1):468-476.
    [19] Francioso, L., A. Forleo, S. Capone, et al., Nanostructured In2O3-SnO2sol-gelthin film as material for NO2detection [J]. Sensors and Actuators B-Chemical,2006,114(2):646-655.
    [20] Shishiyanu, S.T., T.S. Shishiyanu, O.I. Lupan, Sensing characteristics oftin-doped ZnO thin films as NO2gas sensor [J]. Sensors and ActuatorsB-Chemical,2005,107(1):379-386.
    [21] Ram, M.K., O. Yavuz, M. Aldissi, NO2gas sensing based on ordered ultrathinfilms of conducting polymer and its nanocomposite [J]. Synthetic Metals,2005,151(1):77-84.
    [22] Hyodo, T., K. Sasahara, Y. Shimizu, et al., Preparation of macroporous SnO2films using PMMA microspheres and their sensing properties to NOxand H2[J].Sensors and Actuators B-Chemical,2005,106(2):580-590.
    [23] Zhang, D.H., Z.Q. Liu, C. Li, et al., Detection of NO2down to ppb levels usingindividual and multiple In2O3nanowire devices [J]. Nano Letters,2004,4(10):1919-1924.
    [24] Peng, S., K.J. Cho, P.F. Qi, et al., Ab initio study of CNT NO2gas sensor [J].Chemical Physics Letters,2004,387(4-6):271-276.
    [25] Cabot, A., A. Marsal, J. Arbiol, et al., Bi2O3as a selective sensing material forNO detection [J]. Sensors and Actuators B-Chemical,2004,99(1):74-89.
    [26] Baratto, C., G. Sberveglieri, A. Onischuk, et al., Low temperature selective NO2sensors by nanostructured fibres of ZnO [J]. Sensors and Actuators B-Chemical,2004,100(1-2):261-265.
    [27] Zyryanov, G.V., Y. Kang, D.M. Rudkevich, Sensing and fixation of NO2/N2O4by calix4arenes [J]. Journal of the American Chemical Society,2003,125(10):2997-3007.
    [28] Wang, S.H., T.C. Chou, C.C. Liu, Nano-crystalline tungsten oxide NO2sensor[J]. Sensors and Actuators B-Chemical,2003,94(3):343-351.
    [29] Valentini, L., I. Armentano, J.M. Kenny, et al., Sensors for sub-ppm NO2gasdetection based on carbon nanotube thin films [J]. Applied Physics Letters,2003,82(6):961-963.
    [30] Teoh, L.G., Y.M. Hon, J. Shieh, et al., Sensitivity properties of a novel NO2gassensor based on mesoporous WO3thin film [J]. Sensors and ActuatorsB-Chemical,2003,96(1-2):219-225.
    [31] Ruiz, A.M., G. Sakai, A. Cornet, et al., Cr-doped TiO2gas sensor for exhaustNO2monitoring [J]. Sensors and Actuators B-Chemical,2003,93(1-3):509-518.
    [32] Steffes, H., C. Imawan, F. Solzbacher, et al., Fabrication parameters and NO2sensitivity of reactively RF-sputtered In2O3thin films [J]. Sensors and ActuatorsB-Chemical,2000,68(1-3):249-253.
    [33] Newton, M.I., T.K.H. Starke, M.R. Willis, et al., NO2detection at roomtemperature with copper phthalocyanine thin film devices [J]. Sensors andActuators B-Chemical,2000,67(3):307-311.
    [34] Lu, G. Development of new-type electrochemical gas sensors using stabilizedzirconia electrolyte and oxide electrodes [D]. Kyushu: Kyushu University,1998.
    [35] Shin, T.H., S. Ida, T. Ishihara, Doped CeO2-LaFeO3Composite Oxide as anActive Anode for Direct Hydrocarbon-Type Solid Oxide Fuel Cells [J]. J AmChem Soc,2011,133(48):19399-407.
    [36] Wachsman, E.D., K.T. Lee, Lowering the temperature of solid oxide fuel cells[J]. Science,2011,334(6058):935-9.
    [37] Othman, M.H.D., N. Droushiotis, Z.T. Wu, et al., High-Performance,Anode-Supported, Microtubular SOFC Prepared from Single-Step-Fabricated,Dual-Layer Hollow Fibers [J]. Advanced Materials,2011,23(21):2480-2483.
    [38] An, Y.-T., B.-H. Choi, M.-J. Ji, et al., New fabrication technique for a Ni–YSZcomposite anode from a core–shell structured particle [J]. Solid State Ionics,2012,207:64-68.
    [39] Tao, S., J.T. Irvine, A redox-stable efficient anode for solid-oxide fuel cells [J].Nat Mater,2003,2(5):320-3.
    [40]简家文.钇稳定ZrO2固体电解质氧传感器的研究[D].成都:电子科技大学,2004.
    [41] Minh, N.Q., Ceramic Fuel Cells [J]. Journal of the American Ceramic Society,1993,76(3):563-588.
    [42] Kiukkola, K., C. Wagner, Measurements on Galvanic Cells Involving SolidElectrolytes [J]. Journal of The Electrochemical Society,1957,104(6):379.
    [43] Miura, N., Sodium Ion Conductor Based Sensor Attached with NaNO2forAmperometric Detection of NO2[J]. Journal of The Electrochemical Society,1996,143(10): L241.
    [44] Weissbart, J., R. Ruka, A Solid Electrolyte Fuel Cell [J]. Journal of TheElectrochemical Society,1962,109(8):723.
    [45] Okamoto, H., H. Obayashi, T. Kudo, Carbon monoxide gas sensor made ofstabilized zirconia [J]. Solid State Ionics,1980,1(3-4):319-326.
    [46] Saito, Y., T. Maruyama, S. Sasaki, Tokyo Institute of Technology. Report of theResearch Laboratory of Engineering Materials [R],1984
    [47] Ogata, T., S. Fujitsu, M. Miyayama, et al., CO2gas sensor using β-Al2O3andmetal carbonate [J]. Journal of Materials Science Letters,1986,5(3):285-286.
    [48] Miura, N., Y. Yan, M. Sato, et al., Solid-state potentiometric CO2sensors usinganion conductor and metal carbonate [J]. Sensors and Actuators B: Chemical,1995,24(1-3):260-265.
    [49] Sadaoka, Y., S. Nakayama, Y. Sakai, et al., Preparation of K2O Sm2O3nSiO2-based solid-state electrolyte and its application to electrochemical CO2gas sensor [J]. Sensors and Actuators B: Chemical,1995,24(1-3):282-286.
    [50] Narducci, D., L. Facheris, C.M. Mari, CO2monitoring by solid-statelimiting-current sensors [J]. Sensors and Actuators B: Chemical,1995,25(1-3):636-638.
    [51] Plashnitsa, V.V., S.A. Anggraini, N. Miura, CO sensing characteristics ofYSZ-based planar sensor using Rh-sensing electrode composed of tetrahedralsub-micron particles [J]. Electrochemistry Communications,2011,13(5):444-446.
    [52] Róg, G., A. Koz owska-Róg, K. Zaku a, et al., Calcium β″-alumina andNasicon electrolytes in galvanic cells with solid reference electrodes fordetection of sulphur oxides in gases [J]. Journal of Applied Electrochemistry,1991,21(4):308-312.
    [53] Zhong, T., B. Quan, X. Liang, et al., SO2-sensing characteristics of NASICONsensors with ZnSnO3sensing electrode [J]. Materials Science and Engineering:B,2008,151(2):127-132.
    [54] West, D.L., F.C. Montgomery, T.R. Armstrong, A technique for monitoring SO2in combustion exhausts: Use of a non-Nernstian sensing element in combinationwith an upstream catalytic filter [J]. Sensors and Actuators B: Chemical,2009,140(2):482-489.
    [55] Gauthier, M., A. Chamberland, Solid-State Detectors for the PotentiometricDetermination of Gaseous Oxides [J]. Journal of The Electrochemical Society,1977,124(10):1579.
    [56] Wang, J., P. Elumalai, D. Terada, et al., Mixed-potential-type zirconia-basedNOxsensor using Rh-loaded NiO sensing electrode operating at hightemperatures [J]. Solid State Ionics,2006,177(26-32):2305-2311.
    [57] Xiong, W., G.M. Kale, High-selectivity mixed-potential NO2sensorincorporating Au and CuO+CuCr2O4electrode couple [J]. Sensors andActuators B: Chemical,2006,119(2):409-414.
    [58] Ueda, T., M. Umeda, H. Okawa, et al., Effect of Sr addition to La-basedperovskite-type oxide as an electrode material for zirconia-basedamperometric-type NOxsensor [J]. Ionics,2011,18(4):337-342.
    [59] Jin, H., M. Breedon, N. Miura, Sensing behavior of YSZ-based amperometricNO2sensors consisting of Mn-based reference-electrode and In2O3sensing-electrode [J]. Talanta,2012,88:318-23.
    [60] Ménil, F., V. Coillard, C. Lucat, Critical review of nitrogen monoxide sensorsfor exhaust gases of lean burn engines [J]. Sensors and Actuators B: Chemical,2000,67(1-2):1-23.
    [61] Miura, N., G. Lu, N. Yamazoe, Progress in mixed-potential type devices basedon solid electrolyte for sensing redox gases [J]. Solid State Ionics,2000,136-137(1-2):533-542.
    [62] McNaught, A.D., A. Wilkinson. Compendium of Chemical Terminology
    [M/OL]. Gold Book,1997. http://goldbook.iupac.org/E01934.html.
    [63] Weppner, W., Solid-state electrochemical gas sensor [J]. Sensors and ActuatorsB: Chemical,1987,12:107-119.
    [64] Akiyama, M., Z. Zhang, J. Tamaki, et al., Tungsten oxide-based semiconductorsensor for detection of nitrogen oxides in combustion exhaust [J]. Sensors andActuators B: Chemical,1993,14(1-3):619-620.
    [65] Lu, G. Development of new-type electrochemical gas sensors using stabilizedzirconia electrolyte and oxide electrodes [D]. Kyushu University,1998.
    [66] Miura, N., K. Akisada, J. Wang, et al., Mixed-potential-type NOxsensor basedon YSZ and zinc oxide sensing electrode [J]. Ionics,2004,10(1-2):1-9.
    [67] Zhuiykov, S., M. Muta, T. Ono, et al., Stabilized Zirconia-Based NOxSensorUsing ZnFe2O4Sensing Electrode [J]. Electrochemical and Solid-State Letters,2001,4(9): H19.
    [68] Engh, G.T., S. Wallman, Development of the Volvo Lambda-sond system [J].SAE Tech. Pap.,1977,770295.
    [69] Ono, T., M. Hasei, A. Kunimoto, et al., Sensing Performances ofMixed-potential Type NOxSensor Attached with Oxidation-catalyst Electrode[J]. Electrochemistry2003,71:405-407.
    [70] Opitz, A.K., J. Fleig, Investigation of O2reduction on Pt/YSZ by means of thinfilm microelectrodes: The geometry dependence of the electrode impedance [J].Solid State Ionics,2010,181(15-16):684-693.
    [71] Mutoro, E., B. Luer en, S. Günther, et al., The electrode model systemPt(O2)|YSZ: Influence of impurities and electrode morphology on cyclicvoltammograms [J]. Solid State Ionics,2009,180(17-19):1019-1033.
    [72] Schulz, M., J. Brillo, C. Stenzel, et al., Oxygen partial pressure control formicrogravity experiments [J]. Solid State Ionics,2012,225:332-336.
    [73] Lund, A., T. Jacobsen, K.V. Hansen, et al., Limitations of potentiometric oxygensensors operating at low oxygen levels [J]. Sensors and Actuators B: Chemical,2011,160(1):1159-1167.
    [74] Miura, N., H. Jin, R. Wama, et al., Novel solid-state manganese oxide-basedreference electrode for YSZ-based oxygen sensors [J]. Sensors and Actuators B:Chemical,2011,152(2):261-266.
    [75] Tsvetkov, D.S., N.S. Saricheva, V.V. Sereda, et al., Oxygen Nonstoichiometryand Electrochemical Properties of GdBaCo2xFexO6Double PerovskiteCathodes [J]. Journal of Fuel Cell Science and Technology,2011,8(4):041006.
    [76] Lari, A., A. Khodadadi, Y. Mortazavi, Semiconducting metal oxides as electrodematerial for YSZ-based oxygen sensors [J]. Sensors and Actuators B: Chemical,2009,139(2):361-368.
    [77] Takeda, N., Y. Itagaki, H. Aono, et al., Preparation and characterization ofLn9.33+x/3Si6xAlxO26(Ln=La, Nd and Sm) with apatite-type structure and itsapplication to a potentiometric O2gas sensor [J]. Sensors and Actuators B:Chemical,2006,115(1):455-459.
    [78] Katayama, I., S. Tanigawa, D. Zivkovic, et al., Newly developed EMF cell withzirconia solid electrolyte for measurement of low oxygen potentials in liquidCu-Cr and Cu-Zr alloys [J]. Journal of Mining and Metallurgy, Section B:Metallurgy,2012,48(3):331-337.
    [79] Miura, N., G. Lu, N. Yamazoe, et al., Mixed Potential Type NOxSensor Basedon Stabilized Zirconia and Oxide Electrode [J]. Journal of The ElectrochemicalSociety,1996,143(2): L33.
    [80] Lu, G., N. Miura, N. Yamazoe, High-temperature sensors for NO and NO2basedonstabilized zirconiaand spinel-type oxide electrodes [J]. Journal of MaterialsChemistry,1997,7(8):1445-1449.
    [81] Miura, N., G. Lu, N. Yamazoe, High-temperature potentiometric/amperometricNOxsensors combining stabilized zirconia with mixed-metal oxide electrode [J].Sensors and Actuators B: Chemical,1998,52(1-2):169-178.
    [82] Lu, G., N. Miura, N. Yamazoe, Stabilized zirconia-based sensors using WO3electrode for detection of NO or NO2[J]. Sensors and Actuators B: Chemical,2000,65(1-3):125-127.
    [83] Miura, N., M. Iio, G. Lu, et al., Solid-state amperometric NO2sensor using asodium ion conductor [J]. Sensors and Actuators B: Chemical,1996,35(1-3):124-129.
    [84] Miura, N., G. Lu, M. Ono, et al., Selective detection of NO by using anamperometric sensor based on stabilized zirconia and oxide electrode [J]. SolidState Ionics,1999,117(3-4):283-290.
    [85] Miura, N., Y. Yan, G. Lu, et al., Sensing characteristics and mechanisms ofhydrogen sulfide sensor using stabilized zirconia and oxide sensing electrode [J].Sensors and Actuators B: Chemical,1996,34(1-3):367-372.
    [86] Miura, N., T. Raisen, G. Lu, et al., Highly selective CO sensor using stabilizedzirconia and a couple of oxide electrodes [J]. Sensors and Actuators B:Chemical,1998,47(1-3):84-91.
    [87] Mochizuki, K., R. Sorita, H. Takashima, et al., Sensing characteristics of azirconia-based CO sensor made by thick-film lamination [J]. Sensors andActuators B: Chemical,2001,77(1-2):190-195.
    [88] Lu, G., N. Miura, N. Yamazoe, Mixed Potential Hydrogen Sensor CombiningOxide Ion Conductor with Oxide Electrode [J]. Journal of The ElectrochemicalSociety,1996,143(7): L154.
    [89] Lu, G., N. Miura, N. Yamazoe, High-temperature hydrogen sensor based onstabilized zirconia and a metal oxide electrode [J]. Sensors and Actuators B:Chemical,1996,35(1-3):130-135.
    [90] Grilli, M.L., E. Di Bartolomeo, A. Lunardi, et al., Planar non-nernstianelectrochemical sensors: field test in the exhaust of a spark ignition engine [J].Sensors and Actuators B: Chemical,2005,108(1-2):319-325.
    [91] Yoon, J.W., M.L. Grilli, E.D. Bartolomeo, et al., The NO2response of solidelectrolyte sensors made using nano-sized LaFeO3electrodes [J]. Sensors andActuators B: Chemical,2001,76(1-3):483-488.
    [92] Xiong, W., G.M. Kale, Novel high-selectivity NO2sensor incorporatingmixed-oxide electrode [J]. Sensors and Actuators B: Chemical,2006,114(1):101-108.
    [93] Li, X., W. Xiong, G.M. Kale, Novel Nanosized ITO Electrode for MixedPotential Gas Sensor [J]. Electrochemical and Solid-State Letters,2005,8(3):H27.
    [94] Can, Z., Detection of carbon monoxide by using zirconia oxygen sensor [J].Solid State Ionics,1995,79:344-348.
    [95] Baier, G., A. Vogel, V. Schuele, Zirconia mixed potential sensors for control ofcombustion processes [J]. VDI-Ber,1992,939.
    [96] Garzon, F., Solid-state mixed potential gas sensors: theory, experiments andchallenges [J]. Solid State Ionics,2000,136-137(1-2):633-638.
    [97] West, D.L., F.C. Montgomery, T.R. Armstrong, Use of LaSrCrO inhigh-temperature NO sensing elements [J]. Sensors and Actuators B: Chemical,2005,106(2):758-765.
    [98] West, D.L., F.C. Montgomery, T.R. Armstrong,“NO-selective” NOxsensingelements for combustion exhausts [J]. Sensors and Actuators B: Chemical,2005,111-112:84-90.
    [99] Shimizu, F., N. Yamazoe, T. Seiyama, Detection of combustible gases withstabi-lized zirconia sensor [J]. Chem. Lett.,1978:299-300.
    [100] Li, N., T.C. Tan, H.C. Zeng, High-Temperature Carbon MonoxidePotentiometric Sensor [J]. Journal of The Electrochemical Society,1993,140(4):1068.
    [101] Zhang, Z., R.J. Beamish, B.E. Riddell, Differences in otolith microstructurebetween hatchery-reared and wild Chinook salmon (Oncorhynchus tshawytscha)[J]. Canadian Journal of Fisheries and Aquatic Sciences,1995,52(2):344-352.
    [102] Sorita, R., T. Kawano, A highly selective CO sensor using LaMnO3electrode-attached zirconia galvanic cell [J]. Sensors and Actuators B: Chemical,1997,40(1):29-32.
    [103] Miura, N., Zirconia-Based Potentiometric Sensor Using a Pair of OxideElectrodes for Selective Detection of Carbon Monoxide [J]. Journal of TheElectrochemical Society,1997,144(7): L198.
    [104] Brosha, E.L., R. Mukundan, D.R. Brown, et al., Mixed potential sensors usinglanthanum manganate and terbium yttrium zirconium oxide electrodes [J].Sensors and Actuators B: Chemical,2002,87(1):47-57.
    [105] Anggraini, S.A., V.V. Plashnitsa, P. Elumalai, et al., Stabilized zirconia-basedplanar sensor using coupled oxide (+Au) electrodes for highly selective COdetection [J]. Sensors and Actuators B: Chemical,2011,160(1):1273-1281.
    [106] Fujio, Y., V.V. Plashnitsa, M. Breedon, et al., Construction of sensitive andselective zirconia-based CO sensors using ZnCr2O4-based sensing electrodes [J].Langmuir,2012,28(2):1638-45.
    [107] Zhi, M., A. Koneru, F. Yang, et al., Electrospun La0.8Sr0.2MnO3nanofibers for ahigh-temperature electrochemical carbon monoxide sensor [J]. Nanotechnology,2012,23(30):305501.
    [108] Vogel, A., G. Baier, V. Schüle, Non-Nernstian potentiometric zirconia sensors:screening of potential working electrode materials [J]. Sensors and Actuators B:Chemical,1993,15(1-3):147-150.
    [109] Tan, Y., T.C. Tan, Characteristics and Modeling of A Solid State HydrogenSensor [J]. Journal of The Electrochemical Society,1994,141(2):461.
    [110] Sekhar, P.K., E.L. Brosha, R. Mukundan, et al., Development and testing of aminiaturized hydrogen safety sensor prototype [J]. Sensors and Actuators B:Chemical,2010,148(2):469-477.
    [111] Yamaguchi, M., S.A. Anggraini, Y. Fujio, et al., Stabilized zirconia-based sensorutilizing SnO2-based sensing electrode with an integrated Cr2O3catalyst layerfor sensitive and selective detection of hydrogen [J]. International Journal ofHydrogen Energy,2013,38(1):305-312.
    [112] Zosel, J., Au–oxide composites as HC-sensitive electrode material for mixedpotential gas sensors [J]. Solid State Ionics,2002,152-153:525-529.
    [113] Mori, M., H. Nishimura, Y. Itagaki, et al., Potentiometric VOC detection in airusing8YSZ-based oxygen sensor modified with SmFeO3catalytic layer [J].Sensors and Actuators B: Chemical,2009,142(1):141-146.
    [114] Mori, M., H. Nishimura, Y. Itagaki, et al., Detection of sub-ppm level of VOCsbased on a Pt/YSZ/Pt potentiometric oxygen sensor with reference air [J].Sensors and Actuators B: Chemical,2009,143(1):56-61.
    [115] Elumalai, P., V.V. Plashnitsa, Y. Fujio, et al., Highly sensitive and selectivestabilized zirconia-based mixed-potential-type propene sensor using NiO/Aucomposite sensing-electrode [J]. Sensors and Actuators B: Chemical,2010,144(1):215-219.
    [116] Wama, R., V.V. Plashnitsa, P. Elumalai, et al., Impedancemetric zirconia-basedsensor attached with laminated-oxide sensing-electrode aiming at highlysensitive and selective detection of propene in atmospheric air [J]. Solid StateIonics,2010,181(5-7):359-363.
    [117] Sato, T., V.V. Plashnitsa, M. Utiyama, et al., Potentiometric YSZ-based sensorusing NiO sensing electrode aiming at detection of volatile organic compounds(VOCs) in air environment [J]. Electrochemistry Communications,2010,12(4):524-526.
    [118] Mori, M., Y. Sadaoka, Potentiometric VOC detection at sub-ppm levels basedon YSZ electrolyte and platinum electrode covered with gold [J]. Sensors andActuators B: Chemical,2010,146(1):46-52.
    [119] Fujio, Y., V.V. Plashnitsa, P. Elumalai, et al., Stabilization of sensingperformance for mixed-potential-type zirconia-based hydrocarbon sensor [J].Talanta,2011,85(1):575-81.
    [120] Vonau, C., J. Zosel, M. Paramasivam, et al., Polymer based materials for solidelectrolyte sensors [J]. Solid State Ionics,2012,225:337-341.
    [121] Jin, H., V.V. Plashnitsa, M. Breedon, et al., Compact YSZ-Rod-BasedHydrocarbon Sensor Utilizing Metal-Oxide Sensing-Electrode and Mn-BasedReference-Electrode Combination [J]. Electrochemical and Solid-State Letters,2011,14(6): J23.
    [122] Sato, T., M. Breedon, N. Miura, Improvement of Toluene Selectivity via theApplication of an Ethanol Oxidizing Catalytic Cell Upstream of a YSZ-BasedSensor for Air Monitoring Applications [J]. Sensors,2012,12(4):4706-4714.
    [123] Park, C.O., N. Miura, Absolute potential analysis of the mixed potentialoccurring at the oxide/YSZ electrode at high temperature in NOxcontaining air[J]. Sensors and Actuators B: Chemical,2006,113(1):316-319.
    [124] Zhuiykov, S., Mathematical modelling of YSZ-based potentiometric gas sensorswith oxide sensing electrodes [J]. Sensors and Actuators B: Chemical,2007,120(2):645-656.
    [125] Zhuiykov, S., Mathematical modelling of YSZ-based potentiometric gas sensorswith oxide sensing electrodes [J]. Sensors and Actuators B: Chemical,2006,119(2):456-465.
    [126] Zhuiykov, S., Mathematical model of electrochemical gas sensors withdistributed temporal and spatial parameters and its transformation to models ofthe real YSZ-based sensors [J]. Ionics,2006,12(2):135-148.
    [127] Subbarao, E., H. Maiti, Solid electrolytes with oxygen ion conduction [J]. SolidState Ionics,1984,11(4):317-338.
    [128] Miura, N., T. Shiraishi, K. Shimanoe, et al., Mixed-potential-type propylenesensor based on stabilized zirconia and oxide electrode [J]. ElectrochemistryCommunications,2000,2(2):77-80.
    [129] Szabo, N., P.k. Dutta, Correlation of sensing behavior of mixed potential sensorswith chemical and electrochemical properties of electrodes [J]. Solid StateIonics,2004,171(3-4):183-190.
    [130] Miura, N., M. Nakatou, S. Zhuiykov, Impedancemetric gas sensor based onzirconia solid electrolyte and oxide sensing electrode for detecting total NOxathigh temperature [J]. Sensors and Actuators B: Chemical,2003,93(1-3):221-228.
    [131] Miura, N., M. Nakatou, S. Zhuiykov, Impedance-based total-NOxsensor usingstabilized zirconia and ZnCr2O4sensing electrode operating at high temperature[J]. Electrochemistry Communications,2002,4(4):284-287.
    [132] Miura, N., S. Zhuiykov, T. Ono, et al., Mixed potential type sensor usingstabilized zirconia and ZnFe2O4sensing electrode for NOxdetection at hightemperature [J]. Sensors and Actuators B-Chemical,2002,83(1-3):222-229.
    [133] Di Bartolomeo, E., M.L. Grilli, E. Traversa, Sensing Mechanism ofPotentiometric Gas Sensors Based on Stabilized Zirconia with Oxide Electrodes[J]. Journal of The Electrochemical Society,2004,151(5): H133.
    [134] Elumalai, P., N. Miura, Performances of planar NO2sensor using stabilizedzirconia and NiO sensing electrode at high temperature [J]. Solid State Ionics,2005,176(31):2517-2522.
    [135] Elumalai, P., J. Wang, S. Zhuiykov, et al., Sensing Characteristics of YSZ-BasedMixed-Potential-Type Planar NOxSensors Using NiO Sensing ElectrodesSintered at Different Temperatures [J]. Journal of The Electrochemical Society,2005,152(7): H95.
    [136] Van Assche, F.M., J.C. Nino, E.D. Wachsman, Infrared and X-RayPhotoemission Spectroscopy of Adsorbates on La2CuO4to DeterminePotentiometric NOxSensor Response Mechanism [J]. Journal of TheElectrochemical Society,2008,155(7): J198.
    [137] Martin, L.P., L.Y. Woo, R.S. Glass, Impedancemetric NOxSensing Using YSZElectrolyte and YSZ/Cr2O3Composite Electrodes [J]. Journal of TheElectrochemical Society,2007,154(3): J97.
    [138] Szabo, N., P.K. Dutta, Strategies for total NOxmeasurement with minimal COinterference utilizing a microporous zeolitic catalytic filter [J]. Sensors andActuators B: Chemical,2003,88(2):168-177.
    [139] Szabo, N.F., H. Du, S.A. Akbar, et al., Microporous zeolite modified yttriastabilized zirconia (YSZ) sensors for nitric oxide (NO) determination in harshenvironments [J]. Sensors and Actuators B: Chemical,2002,82(2-3):142-149.
    [140] Yang, J.-C., P.K. Dutta, Promoting selectivity and sensitivity for a hightemperature YSZ-based electrochemical total NOxsensor by using a Pt-loadedzeolite Y filter [J]. Sensors and Actuators B: Chemical,2007,125(1):30-39.
    [141] Yang, J.-C., P.K. Dutta, Solution-based synthesis of efficient WO3sensingelectrodes for high temperature potentiometric NOxsensors [J]. Sensors andActuators B: Chemical,2009,136(2):523-529.
    [142] Sekhar, P.K., E.L. Brosha, R. Mukundan, et al., Application of commercialautomotive sensor manufacturing methods for NOx/NH3mixed potential sensorsfor on-board emissions control [J]. Sensors and Actuators B: Chemical,2010,144(1):112-119.
    [143] Ono, T., M. Hasei, A. Kunimoto, et al., Improvement of sensing performancesof zirconia-based total NOxsensor by attachment of oxidation-catalyst electrode[J]. Solid State Ionics,2004,175(1):503-506.
    [144] Miura, N., Stabilized zirconia-based sensor using oxide electrode for detectionof NOxin high-temperature combustion-exhausts [J]. Solid State Ionics,1996,86-88:1069-1073.
    [145] Zhuiykov, S., T. Nakano, A. Kunimoto, et al., Potentiometric NOxsensor basedon stabilized zirconia and NiCr2O4sensing electrode operating at hightemperatures [J]. Electrochemistry Communications,2001,3(2):97-101.
    [146] Miura, N., M. Nakatou, S. Zhuiykov, Development of NOxsensing devicesbased on YSZ and oxide electrode aiming for monitoring car exhausts [J].Ceramics International,2004,30(7):1135-1139.
    [147] Zhuiykov, S., T. Ono, N. Yamazoe, et al., High-temperature NOxsensors usingzirconia solid electrolyte and zinc-family oxide sensing electrode [J]. Solid StateIonics,2002,152:801-807.
    [148] Peter Martin, L., A. Quoc Pham, R.S. Glass, Effect of Cr2O3electrodemorphology on the nitric oxide response of a stabilized zirconia sensor [J].Sensors and Actuators B: Chemical,2003,96(1-2):53-60.
    [149] Di Bartolomeo, E., M.L. Grilli, YSZ-based electrochemical sensors: Frommaterials preparation to testing in the exhausts of an engine bench test [J].Journal of the European Ceramic Society,2005,25(12):2959-2964.
    [150] Grilli, M.L., L. Chevallier, M.L.D. Vona, et al., Planar electrochemical sensorsbased on YSZ with WO3electrode prepared by different chemical routes [J].Sensors and Actuators B: Chemical,2005,111-112:91-95.
    [151] Yoo, J., S. Chatterjee, E.D. Wachsman, Sensing properties and selectivities of aWO3/YSZ/Pt potentiometric NOxsensor [J]. Sensors and Actuators B: Chemical,2007,122(2):644-652.
    [152] López-Gándara, C., J.M. Fernández-Sanjuán, F.M. Ramos, et al., Role ofnanostructured WO3in ion-conducting sensors for the detection of NOxinexhaust gases from lean combustion engines [J]. Solid State Ionics,2011,184(1):83-87.
    [153] Mondal, S.P., P.K. Dutta, G.W. Hunter, et al., Development of high sensitivitypotentiometric NOxsensor and its application to breath analysis [J]. Sensors andActuators B: Chemical,2011,158(1):292-298.
    [154] Di Bartolomeo, E., N. Kaabbuathong, M.L. Grilli, et al., Planar electrochemicalsensors based on tape-cast YSZ layers and oxide electrodes [J]. Solid StateIonics,2004,171(3):173-181.
    [155] Miura, N., J. Wang, M. Nakatou, et al., NOxSensing Characteristics ofMixed-Potential-Type Zirconia Sensor Using NiO Sensing Electrode at HighTemperatures [J]. Electrochemical and Solid-State Letters,2005,8(2): H9.
    [156] Elumalai, P., V.V. Plashnitsa, T. Ueda, et al., Dependence of NO2sensitivity onthickness of oxide-sensing electrodes for mixed-potential-type sensor usingstabilized zirconia [J]. Ionics,2006,12(6):331-337.
    [157] Miura, N., J. Wang, M. Nakatou, et al., High-temperature operatingcharacteristics of mixed-potential-type NO2sensor based on stabilized-zirconiatube and NiO sensing electrode [J]. Sensors and Actuators B: Chemical,2006,114(2):903-909.
    [158] Plashnitsa, V., T. Ueda, P. Elumalai, et al., NO2sensing performances of planarsensor using stabilized zirconia and thin-NiO sensing electrode [J]. Sensors andActuators B: Chemical,2008,130(1):231-239.
    [159] Wang, L., Z.-c. Hao, L. Dai, et al., A planar, impedancemetric NO2sensor basedon NiO nanoparticles sensing electrode [J]. Materials Letters,2012,87:24-27.
    [160] Liang, X., S. Yang, J. Li, et al., Mixed-potential-type zirconia-based NO2sensorwith high-performance three-phase boundary [J]. Sensors and Actuators B:Chemical,2011,158(1):1-8.
    [161] Park, J., B.Y. Yoon, C.O. Park, et al., Sensing behavior and mechanism of mixedpotential NOxsensors using NiO, NiO(+YSZ) and CuO oxide electrodes [J].Sensors and Actuators B: Chemical,2009,135(2):516-523.
    [162] Breedon, M., S. Zhuiykov, N. Miura, The synthesis and gas sensitivity of CuOmicro-dimensional structures featuring a stepped morphology [J]. MaterialsLetters,2012,82:51-53.
    [163] Yoo, J., E.D. Wachsman, NO2/NO response of Cr2O3-and SnO2-basedpotentiometric sensors and temperature-programmed reaction evaluation of thesensor elements [J]. Sensors and Actuators B: Chemical,2007,123(2):915-921.
    [164] Grilli, M.L., E. Di Bartolomeo, E. Traversa, Electrochemical NOxSensorsBased on Interfacing Nanosized LaFeO3Perovskite-Type Oxide and IonicConductors [J]. Journal of The Electrochemical Society,2001,148(9): H98.
    [165] Yoon, J.-W., E. Bartolomeo, E. Traversa, NO2adsorption behaviour on LaFeO3electrodes of YSZ-based non-nernstian electrochemical sensors [J]. Journal ofElectroceramics,2010,26(1-4):28-31.
    [166] Diao, Q., C. Yin, Y. Guan, et al., The effects of sintering temperature ofMnCr2O4nanocomposite on the NO2sensing property for YSZ-basedpotentiometric sensor [J]. Sensors and Actuators B: Chemical,2013,177:397-403.
    [167] Diao, Q., C. Yin, Y. Liu, et al., Mixed-potential-type NO2sensor using stabilizedzirconia and Cr2O3–WO3nanocomposites [J]. Sensors and Actuators B:Chemical,2013,180:90-95.
    [168] Fergus, J., Materials for high temperature electrochemical NOx gas sensors [J].Sensors and Actuators B: Chemical,2007,121(2):652-663.
    [169] Moos, R., A Brief Overview on Automotive Exhaust Gas Sensors Based onElectroceramics [J]. International Journal of Applied Ceramic Technology,2005,2(5):401-413.
    [170] Yang, J.-C., P.K. Dutta, High temperature potentiometric NO2sensor withasymmetric sensing and reference Pt electrodes [J]. Sensors and Actuators B:Chemical,2010,143(2):459-463.
    [171] Woo, L.Y., R.S. Glass, R.F. Novak, et al., Diesel engine dynamometer testing ofimpedancemetric NOxsensors [J]. Sensors and Actuators B: Chemical,2011,157(1):115-121.
    [172] Gao, J., J.-P. Viricelle, C. Pijolat, et al., Improvement of the NOxselectivity fora planar YSZ sensor [J]. Procedia Chemistry,2009,1(1):589-592.
    [173] Gao, J., J.-P. Viricelle, C. Pijolat, et al., Improvement of the NOxselectivity fora planar YSZ sensor [J]. Sensors and Actuators B: Chemical,2011,154(2):106-110.
    [174] Plashnitsa, V.V., T. Ueda, P. Elumalai, et al., Zirconia-based planar NO2sensorusing ultrathin NiO or laminated NiO–Au sensing electrode [J]. Ionics,2008,14(1):15-25.
    [175] Plashnitsa, V.V., P. Elumalai, Y. Fujio, et al., Zirconia-based electrochemical gassensors using nano-structured sensing materials aiming at detection ofautomotive exhausts [J]. Electrochimica Acta,2009,54(25):6099-6106.
    [176] Elumalai, P., V.V. Plashnitsa, T. Ueda, et al., Dependence of NO2sensitivity onthickness of oxide-sensing electrodes for mixed-potential-type sensor usingstabilized zirconia [J]. Ionics,2007,12(6):331-337.
    [177] Plashnitsa, V.V., V. Gupta, N. Miura, Mechanochemical approach for fabricationof a nano-structured NiO-sensing electrode used in a zirconia-based NO2sensor[J]. Electrochimica Acta,2010,55(23):6941-6945.
    [178] Miura, N., J. Wang, P. Elumalai, et al., Improving NO2Sensitivity by AddingWO3during Processing of NiO Sensing-Electrode of Mixed-Potential-TypeZirconia-Based Sensor [J]. Journal of The Electrochemical Society,2007,154(8): J246.
    [179] Elumalai, P., J. Zosel, U. Guth, et al., NO2sensing properties of YSZ-basedsensor using NiO and Cr-doped NiO sensing electrodes at high temperature [J].Ionics,2009,15(4):405-411.
    [180] Koebel, M., M. Elsener, M. Kleemann, Urea-SCR: a promising technique toreduce NOxemissions from automotive diesel engines [J]. Catalysis Today,2000,59(3-4):335-345.
    [181] Burch, R., Knowledge and Know‐How in Emission Control for MobileApplications [J]. Catalysis Reviews,2004,46(3-4):271-334.
    [182] Matsumoto, S.i., Recent advances in automobile exhaust catalysts [J]. CatalysisToday,2004,90(3-4):183-190.
    [183] Klingstedt, F., K. Arve, K. Eranen, et al., Toward improved catalyticlow-temperature NOxremoval in diesel-powered vehicles [J]. Acc Chem Res,2006,39(4):273-82.
    [184] Wang, D.Y., W.T. Symons, R.J. Farhat, et al., Ammonia gas sensors: U. S.Patent7,074,319B2[P].2006.
    [185] Kida, T., K. Kawasaki, K. Iemura, et al., Gas sensing properties of a stabilizedzirconia-based sensor with a porous MoO3electrode prepared from amolybdenum polyoxometallate–alkylamine hybrid film [J]. Sensors andActuators B: Chemical,2006,119(2):562-569.
    [186] Satsuma, A., M. Katagiri, S. Kakimoto, et al., Effects of CalcinationTemperature and Acid-Base Properties on Mixed Potential Ammonia SensorsModified by Metal Oxides [J]. Sensors,2011,11(2):2155-2165.
    [187] Satsuma, A., M. Katagiri, S. Kakimoto, et al., Effects of calcination temperatureand acid-base properties on mixed potential ammonia sensors modified by metaloxides [J]. Sensors (Basel),2011,11(2):2155-65.
    [188] Sch nauer, D., K. Wiesner, M. Fleischer, et al., Selective mixed potentialammonia exhaust gas sensor [J]. Sensors and Actuators B: Chemical,2009,140(2):585-590.
    [189] Elumalai, P., V.V. Plashnitsa, Y. Fujio, et al., Stabilized Zirconia-Based SensorAttached with NiO∕Au Sensing Electrode Aiming for Highly SelectiveDetection of Ammonia in Automobile Exhausts [J]. Electrochemical andSolid-State Letters,2008,11(11): J79.
    [190] Teranishi, S., K. Kondo, M. Nishida, et al., Proton-Conducting Thin FilmGrown on Yttria-Stabilized Zirconia Surface for Ammonia Gas SensingTechnologies [J]. Electrochemical and Solid-State Letters,2009,12(9): J73.
    [191] Lee, I., B. Jung, J. Park, et al., Mixed potential NH3sensor with LaCoO3reference electrode [J]. Sensors and Actuators B: Chemical,2013,176:966-970.
    [192] Liang, X., T. Zhong, H. Guan, et al., Ammonia sensor based on NASICON andCr2O3electrode [J]. Sensors and Actuators B: Chemical,2009,136(2):479-483.
    [193] Miura, N., H. Kurosawa, M. Hasei, et al., Stabilized zirconia-based sensor usingoxide electrode for detection of NOxin high-temperature combustion-exhausts[J]. Solid State Ionics,1996,86-88:1069-1073.
    [194]向勇,谢道华,尖晶石结构功能材料的新进展[J].磁性材料及器件,2001,32:21-25.
    [195]刘俊,雷跃荣,陈希明, et al.,尖晶石结构材料的最新研究进展[J].材料导报,2008,22(11):26-29.
    [196]戎丽,童华,徐仲均,尖晶石型MnCo2O4催化剂的制备及SCR性能研究[J].环境科学与技术,2009,32:68-71.
    [197] Wang, W., G. McCool, N. Kapur, et al., Mixed-Phase Oxide Catalyst Based onMn-Mullite (Sm, Gd)Mn2O5for NO Oxidation in Diesel Exhaust [J]. Science,2012,337(6096):832-5.
    [198] Chen, Z., Q. Yang, H. Li, et al., Cr–MnOxmixed-oxide catalysts for selectivecatalytic reduction of NOxwith NH3at low temperature [J]. Journal of Catalysis,2010,276(1):56-65.
    [199] Qi, G., R.T. Yang, A superior catalyst for low-temperature NO reduction withNH3[J]. Chemical Communications,2003(7):848-849.
    [200] Wu, Z., N. Tang, L. Xiao, et al., MnOx/TiO2composite nanoxides synthesizedby deposition-precipitation method as a superior catalyst for NO oxidation [J]. JColloid Interface Sci,2010,352(1):143-8.
    [201] Kang, M., E.D. Park, J.M. Kim, et al., Manganese oxide catalysts for NOxreduction with NH3at low temperatures [J]. Applied Catalysis A: General,2007,327(2):261-269.
    [202] Nosaka, Y., M. Kishimoto, J. Nishino, Factors Governing the Initial Process ofTiO2Photocatalysis Studied by Means of in-Situ Electron Spin ResonanceMeasurements [J]. The Journal of Physical Chemistry B,1998,102(50):10279-10283.
    [203]章东兴.氧化锆基NO2传感器的研究[M].宁波:宁波大学,2010.
    [204] Stranzenbach, M., B. Saruhan, Equivalent circuit analysis on NOximpedance-metric gas sensors [J]. Sensors and Actuators B: Chemical,2009,137(1):154-163.
    [205] Schmidt-Zhang, P., W. Zhang, F. Gerlach, et al., Electrochemical investigationson multi-metallic electrodes for amperometric NO gas sensors [J]. Sensors andActuators B: Chemical,2005,108(1-2):797-802.
    [206] Duecker, H., K.H. Friese, W.D. Haecker, Ceramic aspects of the BoschLambda-sensor [J]. SAE Tech. Pap.,1975,750223:18.
    [207] Friese, K.H., H. Geier, R. Pollner, et al., Electrochemical sensor fordetermination of oxygen in exhaust gases: Gernmany,[P].1973.
    [208] Imanaka, N., M. Yoshikawa, T. Yamamoto, et al., Ammonia SensingCharacteristics of Solid Electrolytes Based on Ammonium Hydrogermanate [J].Electrochemical and Solid-State Letters,1999,2(7):352.
    [209] Imanaka, N., S. Tamura, G. Adachi, Ammonia Sensor Based on IonicallyExchanged NH4+-Gallate Solid Electrolytes [J]. Electrochemical and Solid-StateLetters,1999,1(6):282.
    [210] Nagai, T., S. Tamura, N. Imanaka, Solid electrolyte type ammonia gas sensorbased on trivalent aluminum ion conducting solids [J]. Sensors and Actuators B:Chemical,2010,147(2):735-740.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700