用户名: 密码: 验证码:
海冰对圆桩和斜坡结构作用及其防护设施的物理模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海冰对人类日益增多的海上生产活动构成了严重威胁,因此海冰对结构物作用的问题一直以来广受关注。针对海冰对海上直立圆柱型单桩和群桩结构物的作用开展试验研究,同时对海冰在斜坡结构物上的堆积、爬坡过程进行了试验研究,并对浅水区海上直立和斜坡结构物的防护设施进行了研究。
     首先讨论了海冰在全球气候系统中占有举足轻重的地位,介绍了近年来国际上的海冰灾害事件,并对我国渤海最近40年以来冬季遭遇的海冰灾害进行了统计,然后重点对海冰对结构物作用的研究方法和现状进行了陈述,并介绍了全文的主要工作。
     随后讨论了海冰对结构物作用的试验条件,包括试验的相似原则。同时介绍了国内外冰池及模型冰的发展概况,并重点阐述了DUT-1模型冰的基本物理、力学指标,并对本文涉及的模型试验设备和测试仪器进行了介绍。
     对计算大面积浮冰对单直立结构物的静冰力公式进行了讨论并分类,利用模型冰开展海冰与不同直径的单直立圆桩挤压冰力的模型试验,将经典的Afanasev公式适用范围由宽厚比D/H≤6扩大到D/H≤50,同时对其进行了简化和改进。而对于桩间距复杂的直立群桩结构(其中包含倾角较大的斜桩)挤压冰力,通过将群桩结构分解成数个单元分别测量冰力,并与相同直径单直桩受力进行比较,从而解决了群桩总冰力在各个单元的分配和单元间作用力的遮蔽关系。
     通常直立结构物均基于挤压力作为设计冰荷载,对于动能较小浮冰对直立结构物的撞击作用如果按照挤压力进行设计,将偏于保守,不经济。为此以高桩码头的群桩结构为例,开展浮冰与群桩的撞击试验,以确定不同动能下浮冰对圆桩的撞击力。采用上包络线确定了单桩撞击力上限与浮冰抗压强度、动能的关系。采用相同的方法获得了群桩的撞击力上限。由于位于水流上游的角桩通常最先遭遇浮冰撞击,专门进行了角桩的撞击试验。结果表明角桩受力较大,因此在设计时应增强角桩的抗冰能力。
     针对大面积浮冰对直立结构物产生挤压力的危害,开展了一种新型破冰结构保护直立结构物的试验研究。以圆桩结构为例,通过对比冰排对圆桩挤压力以及安放破冰结构后的破碎冰块对圆桩的撞击力,检验破冰结构对圆桩的冰力降低作用。引用冰力降低率量化破冰结构对圆桩的冰力降低作用,分析了相对水深、相对距离对冰力降低率的影响,发现水位较高时,相对水深对冰力降低率的影响较为显著。同时,为检验破冰结构的稳定性,测试了冰排对破冰结构的水平作用力,并进行了破冰结构的滑移和倾覆试验。结果表明在水位低于破冰结构顶部时,破冰结构稳定性良好。
     大面积浮冰在合适的潮流或风速风向等作用下易发生堆积、爬坡行为,对斜坡结构物的安全构成严重威胁。为此通过在海冰前进方向放置破冰结构的模型,模拟海冰在破冰结构上的爬坡和堆积过程,以检验对后方斜坡式结构物的保护作用。试验分析了模型冰爬坡和下滑角度、最大堆积高度等关键参数以及模型冰断裂长度的统计特性及其与弹性模量的关系,还讨论了破冰结构在浅海区的应用前景。试验结果表明,当水位低于破冰结构顶部时,五种不同厚度冰排均可发生弯曲破坏成小冰块。破冰结构诱导浮冰在后方被保护的斜坡式结构物前发生堆积、爬坡行为,对其保护作用较为明显。试验还发现破碎冰堆积高度一定时,堆积高度不再增加,而是在来冰方向形成二次堆积,这种现象有利于斜坡结构物的安全运行。
Sea ice generates great threaten to the growing human productivities in ice covered seas. The actions of sea ice on offshore structures have received extensive attention throughout the world. This thesis focused on the ice forces on vertical individual cylinder pile and pile groups. Ice pile-up and ride-up against inclined structures were also studied in laboratory. The effect of the ice protection structure on vertical and inclined structures in shallow waters was studied.
     The key factor of sea ice in the global climate-change was firstly illustrated. Ice damages in the world for the recent years were shown. The ice damage incidents from the last forty winters in Bohai Sea were listed. The methods and progresses of the research on the actions of sea ice against offshore structures were illustrated, and the main work for this thesis was also illustrated.
     Then the basis of the model tests on sea ice and structures interactions, including modeling laws, were illustrated. The development of ice tanks and model ice at home and abroad were introduced. The physical and mechanical properties and their testing methods of DUT-1model ice were emphatically expounded. The equipments and testing machines for the model tests in this thesis were also illustrated.
     The formulas for calculating crushing ice forces on an individual vertical structure were discussed and classified. Taking use of DUT-1model ice, the crushing forces of sea ice against cylinder piles with different diameters were conducted. The scope of application of the aspect ratio for Afanasev Formula was, therefore, enlarged from D/H<6to D/H<50. Meanwhile, the Afanasev Formula was improved and simplified. For the crushing ice loads on the complicated vertical pile-group structures (including large obliquity inclined piles), decomposing method was used to separate the whole structures into several elements. The load on each element was measured and compared with that on an individual vertical pile with the same size. Therefore, the distribution of the total force on the pile-group structures and the sheltering effect among the elements were determined.
     The design of vertical structures in icy waters is usually based on ice crushing forces. So it is of conservative and uneconomical if the same crushing-force criterion is used for the design ice load on the vertical structures under the conditions. Taking the case of high-pile wharf, we conducted a series of tests of ice loads on cylindrical piles subjected to the impacts of drifting ice to determine the impact ice load for them. Upper border of envelope was applied to determine the relationship between the upper limit of the ice load for an individual pile and the compressive strength of the ice floe and its kinetic energy. With the same method, the upper bound limit load for the pile groups was determined. Considering the corner pile from upstream, always firstly resisted the floating ice, special tests of impact against the corner pile were carried out. The result shows the load on the corner pile was larger than that on an individual pile so that its strength should be strengthened.
     In order to reduce large crushing ice force on vertical offshore structures from large-size of ice floes, the test of a new kind of icebreaking structure to protect these structures was conducted in laboratory. A vertical cylinder pile was taken as an example; the ice-load reduction effect of the ice breaking structure to it was determined by comparing the crushing ice force on the pile and the ice pieces broken by the ice breaking structure against it. A ratio of ice-load reduction was applied to quantify the ice-load reduction effect. The influence of relative water level and relative distance on the ratio for load reduction was analyzed. The ice-load reduction was obvious while the water level was lower than the summit of it. The level ice load on the structure was measured, and the test of sliding and overturning itself was carried out to determine the stability of the icebreaking structure. The results showed that the stability of the structure was good.
     Large-area ice floes pile up and ride up under the driving force from tidal currents and winds occur easily, and thus threatening the safety of inclined structures. By laying the ice-breaking structure in the ice movement direction, laboratory model tests were conducted to simulate sea ice pile-up and ride up on it to study its ice protection effect for inclined structures. The climbing angle, the sliding angle, the break length of ice sheet s and the maximum height of climbing slope, and the correlation between the breaking length and the elastic modulus were discussed. The future application of the icebreaking structure in shallow waters was also discussed. The results indicate that as the water level lower than the top of the ice-breaking structure, five different thickness of ice sheets were broken in flexural failure mode. The protection effect of the ice breaking structure to the inclined structure behind it was obvious by initiating the ice ride up and pile up in front of the inclined structure. When the pile height approached to an appropriate value, the height cannot rise any more with the moving ice. Instead, a new ice pile on the sloping slope of the previous one appeared which will be helpful for the safety of inclined structures.
引文
[1]冯士榨,李凤歧,李少菁.海洋科学导论[M].北京:高等教育出版社,2003.
    [2]Easterling D R, Wehner M F. Is the climate warming or cooling[J]. Geophysical Research Letters,2009,36:L08706.
    [3]中国新闻网.美国科学家语出惊人:南北两极海冰将完全消失[EB/OL].[2009-5-21]http://www.chinanews.com/gj/gj-sjkj/news/2009/05-21/1701176.shtml.
    [4]科学网.研究显示海平面上升变缓:2100年末日论打破[EB/OL].[2010-12-07]http://environment.kexue.com/2010/1207/12170.html,2007.
    [5]Timco G W. Seaice[J]. Cold Regions Science and Technology,2010,60(2):105-106.
    [6]李志军.渤海海冰灾害和人类活动之间的关系[J].海洋预报,2010,27(1):8-12.
    [7]张潇.以海冰灾害为例探讨山东海洋渔业保险现状及对策[J].齐鲁渔业,2011,27(6):49-50.
    [8]陈洪滨,范学花.2009年极端天气和气候事件及其他相关事件的概要回顾[J].气候与环境研究,2010,14(3):322-336.
    [9]Dutzik T, Willcox N. Global warming and extreme weather:the science, the forecast, and the impacts on America[M]. Boston, USA:United Nations Environment Programme, 2010.
    [10]Eamer J, Prestrud P. Global outlook for ice and snow[M]. Birkeland, Norway:United Nations Environment Programme,2007.
    [11]柳春图,段梦兰.海冰工程中的结构力学问题[J].机械强度,1995,17(3):7-20,35.
    [12]Yang G. Bohai Sea ice conditions [J]. Journal of Cold Regions Engineering,2000,14(2): 54-67.
    [13]张方俭.我国的海冰[J].中国航海,北京:海洋出版社,1986(2):63-72.
    [14]刘容子,吴姗姗.环渤海地区海洋资源对经济发展的承载力研究[M].北京:科学出版社,2009.
    [15]Li D. Basic characteristics of oil and gas basins in China[J]. Journal of Southeast Asian Earth Sciences,1996,13(3-5):299-304.
    [16]京华时报.中海油渤海发现大油田[N/OL].[2012-04-18]http://news.jinghua.cn/348/c/201204/18/n3685961.shtml.
    [17]Lepparanta M. The drift of sea ice [M]. Second Edition. Heidelberg, Germany. Springer Verlag,2011.
    [18]杨国金.渤海海冰工程图集[M].北京:海洋出版社,1991.
    [19]张方俭,费立淑.我国的海冰灾害及其防御[J].海洋通报,1994,13(5):75-83.
    [20]史庆增,宋安.海冰静力作用的特点及几种典型结构的冰力模型试验[J].海洋学报,1994,16(6):133-141.
    [21]孟凡生,徐爱民,李军.滩海海底管线悬空问题治理对策[J].中国海洋平台,2006,21(1):52-54.
    [22]Timco G. Editorial:seabed gouging by ice features[J]. Cold Regions Science and Technology,2011,69(1):1-2.
    [23]杨国金.海洋工程灾害与环境荷载[J].中国海洋平台,1995,10(5):202-203.
    [24]张方俭.海冰作用力在渤海海洋工程设计中的意义[J].海洋工程,1987,5(2):58-65.
    [25]马毓倩,刘泽菁,鲁红革.浅谈渤海自然灾害对海洋石油安全生产的影响及对策[J].海洋预报,2005,22(4):66-72.
    [26]Bjerkas M. Review of measured full scale ice loads to fixed structures[C]//Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering. San Diego, USA:2007,1:1-10.
    [27]Fransson L, Bergdahl L. Recommendations for design of offshore foundations exposed to ice loads-Elforsk rapport 09:55[R].2009:p.53.
    [28]Jefferies M G, Wright W H. Dynamic response of Molikpaq to ice-structure interaction[C]//Proceedings of the 7th International Conference on Offshore Mechanics and Arctic Engineering (OMAE). Houston, U.S. A:1988:201-220.
    [29]Cornett A, Timco G W. Ice loads on an elastic model of the Molikpaq [J]. Applied Ocean Research,1998,20(1-2):105-118.
    [30]隋吉学,孔祥鹏.工程海冰环境原位监测与研究[J].冰川冻土,1995,17(增刊):119-123.
    [31]U.S. Army Corps of Engineering. Engineering and design:ice engineering (reprinted from the 1982 edition)[M]. Honolulu, USA:University Press of the Pacific,2002.
    [32]张方俭.我国的海冰[M].北京:海洋出版社,1986.
    [33]丁德文.工程海冰学概论[M].北京:海洋出版社,1999.
    [34]杨国金.海冰工程学[M].北京:石油工业出版社,2000.
    [35]季顺迎,岳前进.工程海冰数值模型及应用[M].第1版.北京:科学出版社,2011.
    [36]Brown T G, Maattanen M. Comparison of Kemi-I and Confederation Bridge cone ice load measurement results[J]. Cold Regions Science and Technology,2009,55(1):3-13.
    [37]Eicken H, Gradinger R, Salganek M, et al. Field techniques for sea ice research[M]. Fairbanks, USA:University of Alaska Press,2009:p566.
    [38]Gurtner A. Experimental and numerical investigations of ice-structure interaction[D]. Trondheim, Norway:Norwegian University of Science and Technology,2009.
    [39]Schwarz J. Validation of low level ice forces on coastal structures[C]//Proceedings of the Eleventh (2001) hlternational Offshore and Polar Engineering Conference. Stavanger, Norway:2001,1:749-753.
    [40]Brown T G. Four years of ice force observations on the Confederation Bridge[C]//Proceedings of the 16th International Conference on Port and Ocean Engineering under Arctic Conditions. Ottawa, Canada:2001:285-298.
    [41]Frederking R, Kubat I, Prinsenberg S. Response of two piers on Confederation Bridge to Ice Loading Event of April 4,2003[C]//Proceedings of the 18th International Symposium on Ice, IAHR'06. Sapporo, Japan:2006,1:231-238.
    [42]Yue Q, Qu Y, Bi X, et al. Ice force spectrum on narrow conical structures[J]. Cold Regions Science and Technology,2007,49(2):161-169.
    [43]季顺迎,岳前进,毕祥军.辽东湾JZ20-2海域海冰参数的概率分布[J].海洋工程,2002,20(3):39-43.
    [44]Karna T, Jochmann P. Field observations on ice failure modes[C]//Proceedings of the 17th International Conference on Port and Ocean Engineering under Arctic Conditions. Trondheim, Norway:2003,3:839-848.
    [45]Blenkarn K A. Measurement and analysis of ice forces on Cook Inlet structures[C]//Proceedings of the 2nd Annual Offshore Technology Conference. Houston, USA:1970.
    [46]宋卫东,宁建国.冰对海洋结构的临界力[J].冰川冻土,200325(3):351-354.
    [47]屈衍.基于现场实验的海洋结构物随机冰荷载分析[D].大连:大连理工大学,2006.
    [48]Michel B, Toussaint N. Mechanisms and theory of indentation of ice plates [J]. Journal of glaciology,1977,19(81):285-300.
    [49]Sodhi D S, Takeuchi T, Nakazawa N, et al. Medium-scale indentation tests on sea ice at various speeds[J]. Cold regions science and technology,1998,28(3):161-182.
    [50]Sodhi D S. An ice-structure interaction model [J]. Studies in Applied Mechanics,1995, 42:57-75.
    [51]Croasdale K R, Morgenstern N R, Nuttall J B, et al. Indentation tests to investigate ice pressures on vertical piers[J]. Jornoural of Glaciology,1977,19(81):301-312.
    [52]Barker A, Sayed M, Timco G. Numerical simulation of ice interaction with a wide cylindrical pier[C]//Proceedings of the 11th International Conference.2002: 617-628.
    [53]Masterson D M, Frederking R. Experience with the Canadian Standards Association Offshore Structures Code[C]//Proceedings of the Sixteenth (2006) International Offshore and Polar Engineering Conference. San Francisco, USA:2006,4:14-19.
    [54]Timco G W, Johnston M. Ice loads on the caisson structures in the Canadian Beaufort Sea[J]. Cold regions science and technology,2004,38(2-3):185-209.
    [55]Timco G, Johnston M, Frederking R. The NRC ice load catalogue[C]//Proceedings of the 15th International Conference on Port and Ocean Engineering under Arctic Conditions, POAC 99. Helsinki, Finland:1999,1:444-453.
    [56]Sanderson T J 0. Ice mechanics and risks to offshore structures[M]. Norwell, USA: Kluwer Academic Publishers,1988.
    [57]史庆增,黄焱,宋安,等.海上多腿结构前冰的非同时破坏系数及其概率分布[J].海洋工程,2003,21(003):34-39.
    [58]Masterson D M, Spencer P A. Ice force versus aspect ratio[J]. IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics:Proceedings of the IUTAM Symposium, Fairbanks, USA:2000,9:31.
    [59]Masterson D M, Frederking R M W. Local contact pressures in ship/ice and structure/ice interactions[J]. Cold regions science and technology,1993,21(2):169-185.
    [60]史庆增.墩(桩)柱上流冰撞击力的研究与试验[J].海洋工程,1994,12(4):8-13.
    [61]Timco G W, Frederking R M W. Probabilistic analysis of seasonal ice loads on the Molikpaq[C]//Proceedings of the 17th International Symposium on Ice.2010:68-76.
    [62]Bekker A T, Sabodash 0 A, Shubin 0 A. Probabilistic aspects of modelling of extreme ice loads on engineering structures for Sakhalin offshore projects[C]//Proceedings of the 19th International Conference on Port and Ocean Engineering under Arctic Conditions. Dalian, China:2007,1:75-89.
    [63]Enns E G, Smith B R. Optimal platform strength in the presence of moving ice [J]. Ocean engineering,1984,11(3):239-244.
    [64]Morland L W. Dynamic impact between a viscoelastic ice floe and a rigid structure [J]. Cold regions science and technology,1996,24(1):7-28.
    [65]Yamaguchi H, Toyoda M, Nakayama H, et al. Influence of floe shape on behavior of ice floes around a structure[C]//Proceedings of the 16th International Conference on Offshore Mechanics and Arctic Engineering.1997:461-468.
    [66]Matskevitch D G. Eccentric impact of an ice feature:linearized model [J]. Cold regions science and technology,1997,25(3):159-171.
    [67]Frederking R, Timco G. Sea ice floe impacts-large scale basin experiments[C]//Proceedings of the 10th (2000) International Offshore and Polar Engineering Conference.2000,1:640-645.
    [68]Frederking R, Timco G, Reid S. Sea ice floe impact experiments[R]. Ottawa, Canada: 2010.
    [69]Timco G W. Isolated ice floe impacts[J]. Cold Regions Science and Technology,2011, 68(1-2):35-48.
    [70]Kovacs A, Sodhi D S. Shore ice pile-up and ride-up:field observations, models, theoretical analyses[J]. Cold Regions Science and Technology,1980,2:210-288.
    [71]Kovacs A, Sodhi D S. Ice pile-up and ride-up on arctic and subarctic beaches[J]. Coastal Engineering,1982,5:247-273.
    [72]Barker A, Croasdale K. Numerical modelling of ice interaction with rubble mound berms in the Caspian Sea[C]//Proceedings of the 17th International Symposium on Ice, Proceedings IAHR Symposium on Ice, IAHR'04. Saint Petersburg, Russia:2004:257-264.
    [73]Croasdale K R. Final report ice research & field measurement programme North Caspian Sea. Confidential report prepared for Offshore Kazakhstan International Operating Company (now AGIP KCO)[R]. Calgary, Canada:2001.
    [74]Barker A, Timco G. Modelling rubble field development at Isserk I-15 and its implications for engineering ice rubble[C]//Proceedings of the 19th International Conference on Port and Ocean Engineering under Arctic Conditions. Lisbon, Portugal: 2007,2:485-496.
    [75]王可光,吴辉碇,刘良坤.锦州9-3油田双沉箱海冰爬升和堆积研究[J].中国海上油气(工程),2000,12(3):21-27.
    [76]隋吉学.作用于斜坡结构物上海冰荷载的二维计算[J].海洋环境科学,1996,15(2):70-73.
    [77]隋吉学.作物于斜坡结构物上海冰荷载的三维计算[J].海洋环境科学,1997,16(2):15-19.
    [78]李志军,高树刚.斜面结构上二维冰力计算模型的物理模拟实验研究[J].海洋环境科学,2001,20(1):22-26.
    [79]李志军,瑞斯卡.斜面结构物上冰作用力三维理论实验检验[J].大连理工大学学报,2001,41(1):100-103.
    [80]王永学,李春花,孙鹤泉,等.斜坡式防波堤前海冰堆积数值模拟[J].水利学报,2003(6):105-110.
    [81]Paavilainen J, Tuhkuri J, Polojarvi A. Discrete element simulation of ice pile-up against an inclined structure[C]//Proceedings of the 18th IAHR International Symposium on Ice. Sapporo, Japan:2006:177-184.
    [82]李春花,王永学,李志军,等.半圆型防波堤前海冰堆积模拟[J].海洋学报(中文版),2006,28(4):172-177.
    [83]Wakabayashi T, Imaizumi A, Takahashi S, et al. Run-up of ice floes on sloping beach due to waves[C]//Proceeding of the Sixth ISOPE Pacific/Asia Offshore Mechanics Symposium. Vladivostok, Russia:Far Eastern State Technical University,2004:61-65.
    [84]Gurtner A, Gudmestad O T, Torum A, et al. Innovative ice protection for shallow water drilling:part I-presentation of the concept[C]//Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering (OMAE2006). Hamburg, Germany:2006:709-715.
    [85]Barker A, Timco G. Overview of ice rubble generators and ice protection structures in temperate regions[C]//Proceedings of the 18th International Conference on Port and Ocean Engineering under Arctic Conditions, POAC 05.2005,2:793-803.
    [86]Evers K U, Weihrauch A. Design and model testing of ice barriers for protection of offshore structures in shallow waters during winter[C]//Proceedings of the 17th IAHR Symposium on Ice. Saint Petersburg,Russia:2004:21-25.
    [87]Croasdale K R. Ice rubbling and ice interaction with offshore facilities[J]. Cold Regions Science and Technology,2012,76-77(Max Coon Special):37-43.
    [88]Timco G W, Sayed M, Frederking R M W. Model tests of load transmission through grounded ice rubble[J]. Journal of Offshore Mechanics and Arctic Engineering,1990,112(2): 171-176.
    [89]Gurrtner A, Berger J. Results from model testing of ice protection piles in shallow water[C]//Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg, Germany:2006,2:693-698.
    [90]杨国金,刘春厚,陈祥余,等.正倒锥组合体现场破冰试验与分析[J].中国海上(油气)工程,1992,4(3):33-37.
    [91]史庆增,黄焱,宋安,等.锥体冰力的实验研究[J].海洋工程,2004,22(1):88-92.
    [92]武文华,于佰杰,岳前进.冰锥作用位置对冰弯曲破坏模式影响数值分析[J].大连理工大学学报,2009,49(3):313-316.
    [93]Liu X, Li G, Yue Q, et al. Acceleration-oriented design optimization of ice-resistant jacket platforms in the Bohai Gulf [J]. Ocean Engineering,2009,36(17-18):1295-1302.
    [94]徐田甜,张晓,崔航.我国海上导管架平台抗冰锥体的设计实践[J].船舶工程,2010,32(2):73-77.
    [95]段梦兰,陈文森,陈德春,等.浅海井口抗冰装置结构计算的有限单元法[J].石油学报,2000,21(1):96-101.
    [96]Jochmann P, Evers K-ulrich, Kuehnlein W L. Model testing of ice barriers used for reduction of design ice loads[C]//Proceedings of the 22nd International Conference on Offshore Mechanics and Arctic Engineering. Cancun, Mexico:2003:1-7.
    [97]Croasdale K, Comfort G, Crocker G, et al. A field research program to address ice engineering issues for the North Caspian Sea[C]//Proceedings of the 17 th International Symposium on Ice. Saint Petersburg, Russia:2004:57-67.
    [98]Huang Y, Shi Q, Song A. Model test study of the interaction between ice and a compliant vertical narrow structure[J]. Cold regions science and technology,2007,49(2): 151-160.
    [99]Timco G W, Weeks W F. A review of the engineering properties of sea ice [J]. Cold Regions Science and Technology,2010,60(2):107-129.
    [100]ISO:International Organization for Standardization. ISO/TC 67/SC 7 Petroleum and natural gas industries-Arctic offshore structures[M]. Geneva, Switzerland:ISO,2010: p474.
    [101]Timco G., Johnston M. Ice loads on the Molikpaq in the Canadian Beaufort Sea[J]. Cold Regions Science and Technology,2003,37(1):51-68.
    [102]Frederking R, Masterson D, Wright B, et al. Ice load measuring panels-the next generation[C]//Ice in the Environment:Proceedings of the 16th International Ice Symposium. Dunedin, New Zealand:2002:p8.
    [103]Croasdale K R, Frederking R M W, others. Field techniques for ice force measurements[C]//Processings of the 8th IAHR Ice Symposium. Iowa City, USA:1986: 443-482.
    [104]Schwarz J, Frederking R, Gavrillo V, et al. Standardized testing methods for measuring mechanical properties of ice[J]. Cold Regions Science and Technology,1981,4(3): 245-253.
    [105]Cho S-R, Lee C-J, Jeong S-Y. An efficient EG/AD model ice for the MOERI Ice Tank[C]//Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference. Beijing, China:2010:1183-1187.
    [106]Timco G W. Ice forces on structures:physical modelling techniques[C]//Proceedings of the 7th IAHR Symposium on Ice, Hamburg.1984:27-31.
    [107]Office of Naval Research National Research Council (U. S.). U. S. capability to support ocean engineer in the Arctic[M]. Washington, USA:National Academy Press,1984.
    [108]Schwarz J. On the flexural strength and elasticity of saline ice[C]//Proceedings of the Third International Symposium on Ice Problems (Frankenstein, G. Ed.). Hanover, USA:1975:373-385.
    [109]Timco G W. The mechanical properties of saline-doped and carbamide (urea)-doped model ice[J]. Cold Regions Science and Technology,1980,3(1):45-56.
    [110]Voelker R, Levine G. Use of Ice Model Basins to Simulate and Predict Full Scale Ice-Structure Interactions[C]//Offshore Technology Conference. Houston, USA:1972: 583-587.
    [111]Timco G W. The mechanical and morphological properties of doped ice:a search for a better structurally simulated ice for model test basins[C]//Proceedings of the 1st International Conference on Offshore Mechanics and Arctic Engineering. Trondheim, Norway:1979,79:13-18.
    [112]Timco G W. EG/AD/S:A new type of model ice for refrigerated towing tanks[J]. Cold Regions Science and Technology,1986,12(2):175-195.
    [113]Spencer D, Timco G W. CD Model Ice-a process to produce correct density (CD) model ice[C]//10th International Symposium on Ice. Espoo, Finland:1990:745-755.
    [114]李志军.DUT-1模型冰的技术基础和现状[R].大连:大连理工大学博士后研究工作报告,1999.
    [115]Cargo W A. Model ice breaking experiments and their correlation with full scale data[J]. Royal Institution of Naval Architects Transactions,1971,113 (1):83-108.
    [116]Tryde P. Ice forces acting on inclined wedges and cones [J]. Ocean Engineering,1976, 3(5):311-316.
    [117]王军.初始冰塞厚度与水流条件及冰流量关系的试验研究[J].水利水运科学研究,1999(4):385-389.
    [118]Li Z, Wang Y, Li G. On the flexural strength of DUT-1 synthetic model ice[J]. Cold Regions Science and Technology,2002,35(2):67-72.
    [119]Li Z, Li G, Shen Z, et al. Physical properties and elastic modulus of DUT-1 model ice[J]. Journal of Hydrodynamics, Ser. B,2003,5:98-102.
    [120]Zufelt J E, Ettema R. Model ice properties[R]. Hanover, USA:U.S. Army Cold Regions Research and Engineering Laboratory (CRREL),1996:p.25.
    [121]李志军,王永学,李广伟,等.一种非冻结合成模型冰的制备:中国, ZL00104621.7[P].2001-09-26.
    [122]李志军,王永学,王喜文,等.水泥含量和养生时间对合成模型冰物理力学性质的影响[J].水利学报,2004(6):41-45.
    [123]李志军,曲月霞,沈照伟,等.DUT-1非冻结合成模型冰的弯曲强度[J].冰川冻土,2001,23(2):170-175.
    [124]Li Z, Wang Y, Wang X, et al. Effect of cement content and curing period on properties of DUT-1 synthetic model ice[J]. Journal of Offshore Mechanics and Arctic Engineering, 2003,125(4):288-292.
    [125]王永学,李志军,李广伟.DUT-1非冻结合成模型冰物模技术及应用[J].大连理工大学学报,2001,41(1):94-99.
    [126]李志军,王永学,曲月霞,等.半圆型结构冰压力的物理模拟试验研究[J].冰川冻土,2003,25(4):445-452.
    [127]Li Z, Riska K. Index for estimating physical and mechanical parameters of model ice [J]. Journal of cold regions engineering,2002,16(2):72-82.
    [128]孙肇初.试论浮冰水力模型的相似律[J].人民黄河,1985(1):3-7.
    [129]黄焱,史庆增,宋安.冰力模型实验中的模型律[J].冰川冻土,2003,25(z2):352-355.
    [130]吴持恭.水力学[M].第二版.北京:高等教育出版社,2001.
    [131]Kato K, Sodhi D S. Ice action on two cylindrical structures[J]. Journal of energy resources technology,1984,106(1):107-112.
    [132]Timco G W. The force of a moving ice cover on a fair of vertical piles[C]//Proceedings Canidian Coastal Conference. St. John's, Cannada:1985:349-362.
    [133]史庆增.孤立桩柱上冰压力的经验公式计算法及试验验证[J].海洋工程,1993,11(1):1-11.
    [134]卢鹏,李志军.现行规范中计算桩柱冰荷载的比较[J].冰川冻土,2003,25(z2):356-359.
    [135]史庆增,李明,宋安,等.单桩冰力计算方法的试验研究[J].中国海上油气(工程),2004,16(6):422-425.
    [136]沈照伟,王永学.渤海海冰的物理模拟及其对直桩的作用[J].中国海上油气(工程),2003,15(3):36-38.
    [137]中国海洋石油总公司.Q/HSn 3000-2002中国海海冰条件及应用规定[S].天津:天津市塘沽渤海石油印刷厂,2002.
    [138]Afanasyev V P. Ice pressure on vertical structures (Technical Translation 1708)[J]. Transportrtoe Stroitel'stvo, Hanover, USA:1972(3):47-48.
    [139]李家柽,杨国金.围堰式人工岛设计与建造问题的探讨[J].石油工程建设,1990,16(1):1-6.
    [140]Germanischer Lloyd in cooperation Committee with the Wind Energy Committee. Rules and guidelines, IV:industrial services-Guideline for the Certification of Wind Turbines[S]. Hamburg, Germany:Heydorn Druckerei und Verlag,2010.
    [141]刘春厚,陈祥余,杨国金.渤海冰力计算方法的探讨[J].中国海上油气(工程),1994,6(4):36-41.
    [142]Schwarz J. Achievements and future research needs in ice engineering[C]//Proceedings oh the 18th IAHR International Symposium on Ice (2006). Sapporo, Japan:2006:9.
    [143]Timco G W, Croasdale K R. How well can we predict ice loads?[C]//Proceedings of the 18th International Symposium on Ice, IAHR.2006,6:167-174.
    [144]Blanchet D, Croasdale K R, Spring W, et al. ISO TC 67 SC 7 WG 8-an international standard for arctic offshore structures[C]//Recent Development of Offshore Engineering in Cold Regions:Proceedings of the 19th International Conference on Port and Ocean Engineering under Arctic Conditions. Dalian, China:2007,1:3-20.
    [145]刘锐.预应力混凝土大直径管桩在北方港口工程中的应用实践[J].中国港湾建设,2007(2):58-61.
    [146]史培军,范一大,哈斯,等.利用AVHRR和MODIS数据测算海冰资源量[J].JOURNAL OF NATURAL RESOURCES,2002,17(2):138-143.
    [147]Sodhi D S, Haehnel R B. Crushing ice forces on structures [J]. Journal of cold regions engineering,2003,17(4):153-170.
    [148]Jordaan I J. Mechanics of ice-structure interact ion[J]. Engineering Fracture Mechanics,2001,68(17-18):1923-1960.
    [149]Timco G M. Ice forces on multi-legged structures[C]//Proceedings of the 8th IAHR Symposium on Ice. Iowa City, USA:1986,2:321-337.
    [150]Shi Q, Huang Y, Song A. The shielding effect of multi-pile structures on ice force [J]. China Ocean Engineering,2004,18(2):197-206.
    [151]API R P 2N. Recommended practice for planning, designing, and constructuing structures and pipelines for arctic conditions[S]. Second Edition. Washington, U.S. A: American Petroleum Institute,1995.
    [152]尹延鸿.对河北唐山曹妃甸浅滩大面积填海的思考[J].海洋地质动态,2007,23(3):1-10.
    [153]倪晋仁,秦华鹏.填海工程对潮间带湿地生境损失的影响评估[J].环境科学学报,2003,23(3):345-349.
    [154]苗丰民,李淑媛.辽东湾北部潮滩及浅海区泥沙运移趋势[J].海洋地质与第四纪地质,1992,12(3):21-35.
    [155]魏庆菲.岸线变化对近岸水环境影响的研究[D].大连:大连理工大学,2011.
    [156]宋安,范晓雷,史庆增,等.闸墩冰荷载及过冰能力的模型试验研究[J].水利学报,2005,36(9):1121-1126,1132.
    [157]Sodhi D S. Nonsimultaneous crushing during edge indentation of freshwater ice sheets[J]. Cold regions science and technology,1998,27(3):179-195.
    [158]Fransson L, Lundqvist J-eric. A statistical approach to extreme ice loads on lighthouse Norstromsgrund[C]//Proceedings of OMAE2006, the 25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg, Germany:2006: 759-764.
    [159]Takeuchi T, Saeki H, Yamashita T. Total ice forces on multi-legged offshore structures[C]//Proceedings of the Third (1993) International Offshore and Polar Engineering Conference. Singapore, Singapore:1993:532-536.
    [160]卢鹏.基于图像分析的海冰几何参数和拖曳系参数化研究[D].大连:大连理工大学,2007.
    [161]Lu P, Li Z J, Zhang Z H, et al. Aerial observations of floe size distribution in the marginal ice zone of summer Prydz Bay[J]. Journal of Geophysical Research,2008, 113(C2):C02011.
    [162]李志军,张丽敏,卢鹏,等.渤海海冰孔隙率对单轴压缩强度影响的实验研究[J].中国科学:技术科学,2011,41(10):1329-1335.
    [163]谢世楞,蔡艳君.半圆型潜堤后的波高分析[J].港工技术,1999(4):1-3.
    [164]中华人民共和国国家经济贸易委员会.DL 5180-2003水电枢纽工程等级划分及设计安全标准[S].北京:中国电力出版社,2003.
    [165]Paavilainen J, Tuhkuri J, Polojarv A.2D numerical simulations of ice rubble formation process against an inclined structure [J]. Cold Regions Science and Technology,2011, 68(1-2):20-34.
    [166]Ralston T D. Ice force design considerations for conical offshore structures[C]//Proceedings of the Fourth International Conference on Port and Ocean Engineering under Arctic Conditions. St. John's, Canada.:1977:741-752.
    [167]Croasdale K R, Cammaert A B. An improved method for the calculation of ice loads on sloping structures in first-year ice[J]. Power Technology and Engineering (formerly Hydrotechnical Construction), Springer,1994,28(3):174-179.
    [168]Timco G, Barker A. What is the maximum pile-up height for ice[C]//Ice in the Environment:Proceedings of the 16th IAHR Symposium on Ice. Dunedin, New Zealand: 2002,2:69-77.
    [169]Giirtner A. Ice tank testing of a shoulder ice barrier[R]. Hamburg, Germany:2008.
    [170]Sodhi D S, Hirayama K, Haynes F D, et al. Experiments on ice ride-up and pile-up[J]. Annals Glaciology,1983,4:266-270.
    [171]陈纳新.模糊聚类和模糊推理在评价海冰灾害中的应用[D].大连:大连海事大学,2008.
    [172]孔祥鹏,张波,张勇.浅水区斜坡人工岛海冰危害及减灾措施[J].大连海事大学学报,2007,33(4):101-104.
    [173]李锋,于晓,胡玉境,等.冰排在锥面上的断裂长度[J].海洋工程,2002,20(4):63-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700