用户名: 密码: 验证码:
梨(Pyrus)果实石细胞的结构成分分析及相关酶基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石细胞是影响梨果实品质的重要因素之一。前人研究已明确遗传背景是石细胞发育的内在因素,而生态条件及栽培管理措施同样可以影响梨果实石细胞的发育。但目前的研究主要在石细胞含量、大小、分布等对梨果实品质影响的认识上。此外,在生理学角度也对石细胞发育过程进行了研究,但是在研究过程中对石细胞由大量木质素构成这一重要的化学本质研究较少。本研究以石细胞较多、肉质粗糙的‘砀山酥梨’(Pyrus bretschneideri cv.Dangshansuli)为试验材料,同时用石细胞较少、肉质细腻的‘幸水’(Pyrus pyrifolia cv.Kousui)作为品种对照,系统地开展了对梨果实石细胞结构和成分的研究,并对梨果实中PAL(苯丙氨酸解氨酶)、CAD(肉桂醇脱氢酶)、POD(过氧化物酶)基因进行了克隆和序列分析,主要结果如下:
     一、以肉质较粗糙的‘砀山酥梨’为试验材料,并用肉质较细腻的‘幸水’为对照,利用Wiesner试剂,高锰酸钾染色及木质素自发荧光的特性,结合溴乙酰化学分析法、普通光学显微镜、荧光显微镜、激光共聚焦显微镜、透射电子显微镜、扫描电子显微镜、电感耦合等离子体发射光谱仪、X射线能谱仪及图形分析软件研究了梨果实中石细胞的超微结构和木质素的分布特性。‘砀山酥梨’和‘幸水’果实石细胞中木质素含量分别达到了29.83%和24.55%。果肉中的蓝色自发荧光主要来自于石细胞,并且‘砀山酥梨’的荧光能量值稍高于‘幸水’。石细胞中木质素由细胞外层发生,逐步向质膜发展,分层沉积,直至形成充满细胞腔的次生壁,并伴生有典型的单纹孔结构。在木质化过程中,石细胞的整个细胞壁明显分为木质化程度不同的四层结构,即复中层(CML)、次生壁1(S1)、次生壁2(S2)及高度木质化的、具有典型应压木特征的外层次生壁2(S2L)。
     二、以‘砀山酥梨’为试验材料,并以‘幸水’为对照,提取纯化了梨果实石细胞中的木质素,并通过谱学方法对其特性进行了研究。上述两种来源的木质素结构类型基本一致,但提取的‘幸水’木质素重均分子量(WMW),分子量分散系数(MWD)都要大于‘砀山酥梨’。相应地,其玻璃化温度(GTT)也要高于‘砀山酥梨’,为160℃。石细胞木质素的紫外光谱吸收表现出其典型的苯环结构,并在红外光谱上得到验证。综合Maule试剂染色、红外光谱和硝基苯氧化产物HPLC分析的结果:发现石细胞木质素含有大量的愈创木基单元和一部分紫丁香基结构单元,而对羟基苯丙烷结构单元很少。进一步结合对1H-NMR和13C-NMR波谱的分析,初步明确梨果实石细胞木质素为典型的双子叶植物木质素,但其愈创木基结构单元含量高于其他树种,愈创木基与紫丁香基结构单元比例(G/S)高达4,接近于裸子植物,表现出软木木质素的结构特性。
     三、梨果实石细胞在幼果中分布密度最高,此后因果实生长和膨大的“稀释”作用,其分布密度逐渐降低。石细胞团的大小随果实的生长一直增大。苯丙氨酸解氨酶(PAL)、过氧化物酶(POD)和多酚氧化酶(PPO)的活性变化规律基本一致,其活性高峰都出现在幼果发育期,后随着果实发育逐渐下降。套袋处理能够抑制‘砀山酥梨’果实石细胞的发育,而且套袋越早效果越显著,相应PAL、POD、PPO的活性也较低。通过对比不同时期套袋处理的不同发育阶段果实内酶活性的平均值与其相应的石细胞最终含量,发现梨果实石细胞最终含量与POD、PAL、PPO活性之间呈正相关关系,相关系数分别为:RPOD=0.8035; RPAL=0.8134; RPPO=0.9186。进一步对‘砀山酥梨’进行喷CaCl2和多效唑处理,并以‘幸水’为品种对照,发现在两个品种上钙处理均能降低果实中木质素、石细胞含量和PAL、POD、PPO的总活性,而多效唑则起着相反的作用。酶活性和木质素、石细胞含量之间成正相关关系,并且细胞壁结合过氧化物酶(PODⅡ)在石细胞发育过程中起更大的作用。
     四、以‘砀山酥梨’为试验材料,研究了梨果实中过氧化物酶(POD)、过氧化氢(H2O2)与石细胞及木质素之间的关系。成熟‘砀山酥梨’果肉干重的36.03%为石细胞,15.23%为木质素,其中有70.6%的木质素存在于石细胞中,石细胞重量的29.83%为木质素。通过徒手切片对果实中石细胞及过氧化物酶进行组织染色定位,发现无论是在横切面还是纵切面上,两者的分布区域都保持一致。木质素在果实发育初期大量合成,而细胞质过氧化物酶(PODⅠ)和细胞壁结合过氧化物酶(PODⅡ)都随果实的发育而逐渐降低,但PODⅡ对木质素单体类似物丁香醛连氮(Syringaldazine)的催化能力要远远高于POD I. POD和H2O2在梨果实细胞中的分布主要集中在细胞壁和细胞间隙之中。进一步通过DEAE离子交换层析柱分离PODⅡ中的碱性和酸性PODⅡ,并进行底物特异性分析,发现PODⅡ对Syringaldazine的催化主要由碱性PODⅡ完成。在梨果实中极有可能是碱性的细胞壁结合过氧化物酶(PODⅡ)在过氧化氢的存在下参与了木质素合成的最后一步反应,促进了石细胞的形成。
     五、提取了‘砀山酥梨’及‘幸水’果肉总RNA,并通过RT-PCR、克隆和测序,获得了苯丙氨酸解氨酶(PAL),过氧化物酶(POD)和肉桂醇脱氢酶(CAD)的cDNA片段。在核苷酸水平上,2个品种PAL基因片段大小为653bp,只有3个碱基的差异,编码1个完全相同的氨基酸序列,该序列由217个残基组成。所推导的氨基酸序列与西洋梨Pyrus communis (ABB70117)、甜樱桃Prunus avium (AAC78457)、树莓Rubus idaeus (AAF40224)和野生橘Citrus clementina×Citrus reticulata(CAB42793)氨基酸序列的相似性分别达到98.6%、98.6%97.7%和97.2%。此外,它们含有4个与其他PAL蛋白质相似的蛋白质保守活性位点。
     两个品种CAD基因的cDNA片段大小为689bp,核苷酸序列同源性为99.4%,有4个碱基的差异,而氨基酸序列相似性为99.6%,只有1个氨基酸残基的差异。所推导的氨基酸序列与苹果Malus domestica (AAC06319)、梅Prunus mume (BAE48658)、枇杷Eriobotrya japonica (ABV44810)和葡萄Vitis vinifera(CA021890)氨基酸序列的相似性分别达到97.8%、95%、92.6%和83.4%。
     两个品种POD基因的cDNA片段大小约为574bp,编码191个氨基酸残基,它们之间的核苷酸序列和氨基酸序列没有任何差异。推导的氨基酸序列与烟草Nicotiana tabacum (AAD33072)、文心兰Oncidium Gower Ramsey (ABC02343)、盐芥Thellungiella halophila (ABU54828)和拟南芥Arabidopsis thaliana (CAA6686)氨基酸序列的相似性分别为84.3%、86.4%、86.9%和86.4%。此外,它们含有与其他POD蛋白相似的3个保守活性位点和2个底物结合位点。
     结果表明,本研究克隆到的PB-PAL(登录号:FJ478149). PP-PAL(登录号:FJ478150). PB-CAD(登录号:FJ478151). PP-CAD(登录号:FJ478152). PB-POD(登录号:FJ478153)和PP-POD(登录号:FJ478154)就是梨果实中的PAL、CAD和POD基因片段。
Sclereid or stone cell is one of the crucial factors impacting grit texture in pear fruit. It is reported that genetic background is the intrinsic factor for sclereids development; however the culture practices can also influence their development consumingly. Unfortunately, no great progress is achieved on pear sclereids research till now; researchers always omit lignin-the chemical nature of sclereids, and few papers are found focusing on pear sclereid lignin directly. In this study,'Dangshansuli'pear which contains high sclereid content was used as the major material, and'Kousui'which has low content of sclereid as accessorial material to characterize sclereid structure and composition; also, PAL (Phenylalanine Ammonia Lyase), CAD (Cinnamyl Alcohol Dehydrogenase) and POD (Peroxidase) genes were cloned and analysed. The results are as follows:
     1. Anatomy, ultrastructure and lignin distribution in stone cells from the fruit of two Pyrus species (Pyrus bretschneideri cv. Dangshansuli and Pyrus pyrifolia cv. Kousui) were examined by using light microscopy (LM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy spectrometer and inductive coupled plasma emission spectrometer (ICP) as well as autofluorescence analysis. Sections stained with phloroglucinol-HCl revealed the presence of lignin in stone cells, and showed that stone cells were distributed in a mosaic pattern in the flesh, with larger stone cells concentrated around the core and smaller ones in the pericarp. There were no obvious differences in stone cell structure between the two varieties, but stone cell size and content was much greater in'Dangshansuli'than in'Kousui.'Further, lignin accounted for 29.8% of stone cell composition in'Dangshansuli', a significantly higher proportion than that in 'Kousui'(24.6%), basing on acetyl bromide method; this result was confirmed by autofluorescence analysis. More detailed information on lignin distribution across the cell wall was obtained by TEM combined with the KMnO4 staining technique. In TEM images, cell walls of both pear varieties were typically divided into four layers:compound middle lamella (CML), secondary wall 1 (S1), outer secondary wall 2 (S2L) and secondary wall 2 (S2), with different staining intensities for different lignin concentrations in those regions.
     2. Lignin isolated from sclereids of'Dangshansuli'and'Kousui'pear were studied with several spectroscopies, such as ultra violet spectroscopy (UV), fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC),1H nuclear magnetic resonance (1H-NMR) and 13C nuclear magnetic resonance (13C-NMR). The lignin were the same in structural information, however the weight-average molecular weight (WMW) and molecular weight distribution (MWD) of'Kousui'lignin both were higher than 'Dangshansuli'lignin, consequently, it had higher glass transition temperature (GTT). Typical benzene structure showed in UV spectra was also confirmed by IR spectra. Great vanillin and some syringaldehyde found in lignin nitrobenzene oxidation products and Maule reagent staining result indicated the presence of guaiacyl unit in the lignin. Further, with the aids of 1H and 13C-NMR spectra, lignin in pear sclereids was characterized as typical guaiacyl-syringyl lignin (G-S lingnin), however it has higher content guaiacyl unit than other angiosperm, the ratio for guaiacyl and syringyl unit was as high as 4, more closely to gymnosperm.
     3. Distribution density of sclereids was highest in pear fruitlet and then descended with fruit development; however the size of sclereid cluster increased gradually till fruit mature. With regards to phenylalanine ammonia lyase (PAL), peroxidase (POD) and polyphenol oxidase (PPO), their activity peaks always appeard in fruitlets, and then declined gradually in the course of fruit development. Fruit bagging had good effects on'Dangshansuli'fruit quality; it can reduce the content and size of sclereid in mature fruit; furthermore, bagging stage had influence on the effects, the earlier the better. Also, CaCl2 showed the same effects as fruit bagging on both'Dangshansuli'and'Kousui', while PP333 had the opposite result. All the data from this section showed a positive relationship between the enzymes' activities and lignin, sclereid content and size. Especially the cell wall bounded peroxidase (PODⅡ) played more important role in cell lignification.
     4. The relationship among peroxidase, hydrogen peroxide, lignin and sclereid was studied by using'Dangshansuli'as material. Sclereids accounted for a big amount in dry fruit weight as 36.03%, and they contained 29.83%lignin which accounted for 70.6%of the total in fruit. Peroxidase activity was found almost around sclereids in free hand sections, and in the cell wall at cellular level. Besides, hydrogen peroxide was also localized at the similar regions, such as cell wall, cell corner and intercellular layer. Lignin was synthesized in big scale along with a burst of hydrogen peroxide in young fruit; also the soluble peroxidase (PODⅠ) and cell wall bounded peroxidase (PODⅡ) showed the same changing tendency, however the PODⅡalways possessed higher affinity to syringaldazine-an analog of lignin monomer. Further study basing on substrate affinity analysis demonstrated that it was the basic PODⅡshowing high catalytic efficiency. Lignin biosynthesis and sclereid development were related to basic PODⅡ.
     5. Two PAL genes, two POD genes, and two CAD genes were cloned and sequenced using RT-PCR from'Dangshansuli'and'Kousui'pear respectively. In nucleotide sequence, the two PAL genes had 3 bp differences, and coded an identical amino acid sequence which comprised of 217 residues. Meanwhile, the amino acid sequence of the two PAL was 98.6%identical to PAL from Pyrus communis (ABB70117),98.6% identical to PAL from Prunus avium (AAC78457),97.7%identical to PAL from Rubus idaeus (AAF40224), and 97.2%indentical to PAL from Citrus clementina×Citrus reticulata (CAB42793) respectivity. Further, they were found to have 4 similar active sites with PAL from other plant species.
     The two CAD genes had 4 bp differences resuting in one residue differences. The deduced amino acid sequence of the two CAD was 97.8%identical to CAD from Malus domestica (AAC06319),95%identical to CAD from Prunus mume (BAE48658), 92.6%identical to CAD from Eriobotrya japonica (ABV44810) and 83.4%identical to CAD from Vitis vinifera (CAO21890) respectively.
     The two POD genes were identical in both nucleotide sequences and deduced amino acid sequences. Deduced amino acid sequence of the POD from pear was 84.3% identical to POD from Nicotiana tabacum (AAD33072),86.4%identical to POD from Oncidium Gower Ramsey (ABC02343),86.9%identical to POD from Thellungiella halophila (ABU54828) and 86.4%identical to POD from Arabidopsis thaliana (CAA6686) respectively. Moreover, POD from these two pears was found to have 3 similar active sites and 2 substrate bounding sites with POD from other plant species.
     All the results from above showed PB-PAL (Accession No. FJ478149), PP-PAL (Accession No. FJ478150), PB-CAD (Accession No. FJ478151), PP-CAD (Accession No. FJ478152), PB-POD (Accession No. FJ478153) and PP-POD (Accession No. FJ478154) were the PAL, CAD and POD genes in pear fruit.
引文
阿拉木萨,李宝江.梨果实石细胞团的发育、分布及其对果实品质的影响[J].北方果树,1999,4:4-6
    宾金华,潘瑞枳.茉莉酸加酯诱导烟草幼苗抗病与过氧化物酶活性和木质素含量的关系[J].应用与环境生物学报,1999,5(2):160-164
    布坎南B B,格鲁依森姆W,琼斯R L.植物生物化学与分子生物学.[M].北京:科学出版社,2004:83-84
    蔡文琴.现代实用细胞与分子生物学实验技术[M].北京:人民军医出版社,2003:89-90
    陈在新,杨玉华,田应兵,陈鹏举,钟先玲,杨祥军,李金秋.大果水晶梨果实套袋试验[J].长江大学学报(自科版)农学卷,2007,4(3):22-25
    崔建东,李艳,牟德华.苯丙氨酸解氨酶(PAL)的研究进展[J].食品工业科技,2008,7:306-308
    樊永明,徐艾青,沈艳尼,李明飞,谢益民,张志毅.毛白杨木材乙二醇醇解过程中木质素结构的FTIR、1HNMR分析[J].林产化学与工业,2008,28(2):105-109
    冯建豪,Glasser W G.甘蔗渣木素的化学结构[J].中国造纸,1986,2:9-10
    冯金城.有机化合物结构分析与鉴定[M].北京:国防工业出版社,2003:23-54
    高侠莉,袁宗飞,刘晓峰.砀山梨原产地与引种区果实品质的比较研究[J].落叶果树,1998,1:22-23
    葛培锦,曲音波,赵建.1H-13C2D NMR光谱技术在麦草木素结构研究中的应用[J].黑龙江造纸,2006,1:1-3
    耿飒,徐存栓,李玉昌.木质素的生物合成及其调控研究进展[J].西北植物学报,2003,23(1):171-181
    顾模,林凤起,张冰冰.梨果肉结构的解剖研究[J].中国果树,1989,(4):32-34
    郭京波,陶宗娅,罗学刚.不同提纯方法对竹木质素结构特性的影响分析[J].分析测试学报,2005,24(3):77-81
    郭京波.基于谱学方法的竹木质素化学结构分析[D].雅安:四川师范大学,2005
    郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,1999:165-170
    何天明,张琦,邹以强.香梨果实早期发育的解剖研究[J].新疆农业科学,2001,38(5):247-248
    何忠效,张树政.电泳(生物化学实验技术丛书)[M].北京:科学出版社,1999:300-302
    贺立红,张进标,宾金华.苯丙氨酸解氨酶的研究进展[J].食品科技,2006,7:31-34
    贺新强,崔克明,李正理.杜仲次生木质部分化过程中木质素与半纤维素组分在细胞壁中分布 的动态变化[J].植物学报,2001,43(9):899-904
    黄春辉,柴明良,潘芝梅,俞波,蒋张明,胡金龙,滕元文.套袋对翠冠梨果皮特征及品质的影响[J].果树学报,2007,24(6):747-751
    黄海燕,王玉富,薛召东,邱财生,郝冬梅.亚麻CAD基因克隆及序列分析[J].湖北农业科学,2008,47(5):497-499
    黄卫东,沈隽.PP333对杜梨和鸭梨生长结果的影响[J].园艺学报,1987,4:9-17
    霍夫里特M,斯泰因比歇尔A.生物高分子,第1卷,木质素、腐殖质和煤[M].北京:化学工业出版社,2004:6-22
    霍月青.沙梨品种资源糖酸及石细胞含量特点的研究[D].武汉:华中农业大学,2007
    江昌俊,余有本.苯丙氨酸解氨酶的研究进展[J].安徽农业大学学报,2001,28(4):425-430
    姜春艳,黄峰.木质素的研究进展[J].山东林业科技,2006,4:78-81
    鞠志国,刘成连,原永兵,戴洪义,阎升平,徐军.莱阳茌梨酚类物质合成的调节及其对果实品质的影响[J].中国农业科学,1993a,26(4):44-48
    鞠志国,原永兵,刘成连,戴洪义,李志军.PP333对梨果实生长和酚类物质合成的影响[J].园艺学报,1993b,20(3):216-220
    李红侠,刘小阳.砀山酥梨果实中的石细胞与果实品质之关系[J].安庆师范学院学报(自然科学版),2003,9(3):48-50
    李疆,高疆生,张崎.砀山酥梨石果病的发病规律及其防治效果初探[J].新疆农垦科技,1991(1):16-18
    李玲,蔡永萍,刘小阳.梨果实的石细胞[J].植物生理学通讯,2004,40(5):629-632
    李玲.光强对砀山酥梨石细胞发育过程生理代谢的影响[D].合肥:安徽农业大学,2004
    李梅,何明敏.红外光谱法测定甲醚化氨基树脂中甲氧基含量[J].涂料工业,1993,3:45-48
    李伟,熊谨,陈晓阳.木质素代谢的生理意义及其遗传控制研究进展[J].西北植物学报,2003,23(4):675~681
    李晓刚,盛宝龙,蔺经,颜志梅,杨青松,常有宏.梨不同品种果肉石细胞含量研究[J].江苏农业科学,2004,4:65-67
    李兴军,李三玉,吕均良,汪国云.GA3对杨梅叶片木质素水平及其相关酶活性和成花的影响[J].园艺学报,2001,28(2):156-158
    李玉荣,徐以贞,梁立爱,傅建清,傅建菊.剪掐果顶对梨果实品质的影响[J].落叶果树,1999,4: 41
    林鹿,胡健,詹怀宇.植物木素生物合成的控制[J].中国造纸学报,1998,13:79-85
    蔺占兵,马庆虎,徐洋.木质素的生物合成及其分子调控[J].自然科学进展,13(5):455-461
    刘成连,鞠志国,原永兵,张玉娜,蒋家慧.掐花萼对莱阳茌梨品质的影响[J].莱阳农学院学报, 1993,10(2):47-49
    刘玲,李疆,覃伟铭.水杨酸对库尔勒香梨POD、PPO、PAL活性及其对果实品质的影响[J].新疆农业科学,2005,42(2):98-101
    刘玲.库尔勒香梨等梨果实石细胞发育规律及减少石细胞的措施研究[D].乌鲁木齐:新疆农业大学,2005
    刘庆华,王奎玲,周启河,韩殿.梨果肉石细胞的形态结构与果实品质的关系[J].莱阳农学院学报,1992,9(4):252-255.
    刘卫平,韩玉珍,赵德刚.杜仲肉桂醇脱氢酶基因的克隆及序列分析[J].中国农业大学学报,2003,8(1):27-30
    刘小阳,高贵珍,李红侠,雷中秋.砀山酥梨果实发育与石细胞形成的动态研究[J].淮北煤炭师范学院学报.2006b,27:49-53
    刘小阳,李玲,蔡永萍.光强对砀山酥梨石细胞形成的影响及其与内源IAA、ZR和ABA含量的关系[J].激光生物学报,2006a,15(2):161-166
    刘小阳,李玲,宗梅,蔡永萍.梨果实石细胞含量分布及其对梨品质的影响[J].安徽农业大学学报,2004,31(1):104-106
    刘小阳,史宏伟,李玲.光强对砀山酥梨果实发育期Ca2+、Zn2+含量变化的影响[J].安庆师范学院学报(自然科学版),2005,1(4):50-52
    刘学群,杜爱玲.暗期红光、远红光间断处理对小麦叶片细胞壁成分的影响[J].华中农业大学学报,15(3):221-224
    刘尊英.绿芦笋(Asparagus officinalis L.)木质化的生理生化基础及其调控技术研究[D].北京:中国农业大学,2003
    卢善发,宋艳茹.维管组织分化的分子生物学研究[J].植物学通报,1999,16(3):219-227
    罗正德,杨谷良.中国梨栽培和选育的历史现状[J].北方园艺,2006,(5):58-60
    罗自生.采后竹笋木质化与内源激素的关系[J].中国农业科学,2006,39(4):792-797
    马文秀,吴伟志.木素碱性硝基苯氧化产物的高效液相色谱分析[J].色谱,1996,14(1):62-62
    牟其芸,李文香,张华云,王善广,孙萍.梨果实中石细胞含量测定及与果实品质相关性的研究[J].落叶果树.1996,1:7-9.
    牟其芸,张华云,李文香,王善广,仇宏伟.酶解法测定梨果肉中石细胞的含量[J].中国果品研究,1997:24-25
    南京农业大学基础科学院生化组.生物化学研究技术(实验部分)[M].南京:南京农业大学,1995:9-11
    聂继云,李静,杨振锋,张红军,李明强.冷冻法测定梨的石细胞含量[J].果树学报.2006,23(1):133-135.
    彭抒昂,岩堀修一.梨果实发育中Ca2+在果肉细胞的定位及变化研究[J].园艺学报,2001,28(6):497-503
    彭永宏,成文,施和平.热水结合酸浸处理对荔枝果皮色素含量与酶活性的影响[J].果树科学,1999,16(2):92-97
    蒲俊文,宋君龙,谢益民,顾瑞军.三倍体毛白杨木质素结构特性研究[J].北京林业大学学报,2002,24(5/6):211-215
    钱银才,顾志康,姚建祥,蒋小凡,王白坡.4种类型果袋套袋对梨不同品种果实品质的影响[J].浙江林学院学报,2000,17(3):276-279
    乔勇进,张绍铃,陶书田,张振铭,刘招龙.梨果实石细胞发育机理的研究进展[J].果树学报.2005,22(4):367-371
    秦特夫.杉木和“三北”一号杨磨木木质素化学官能个团特征的研究[J].林业科学,1999,35(3):69-75
    石雪晖,王淑英,吴艳纯,杨国顺,刘昆玉,吕长平.葡萄叶片中单宁、木质素、PPO活性与抗黑痘病的关系[J].葡萄栽培与酿酒,1997,4:8-11
    孙敏,戴洪义,李培环,王然.茌梨掐花技术的再探讨[J].烟台果树,1983,1:44
    孙文全.联苯胺比色法测定果树过氧化物酶活性的研究[J].果树科学,1988,5(3):105-108
    邰瓞生,潘小琪,纪文兰,周卫星,于俊,李忠正.禾草木素的化学特性[J].中国造纸,1989,1:10-15
    唐恢同.有机化合物的光谱鉴定[M].北京:北京大学出版社,1992:124-157
    陶世蓉,辛华,初庆刚,曹玉芳.窝梨果实结构及发育的研究[J].西北植物学报,1999,19(1):123-126
    陶世蓉.不同耐贮性梨果实的比较解剖[J].莱阳农学院学报,1992,9(3):183
    陶世蓉.梨果实结构与耐贮性及品质关系的研究[J].西北植物学报,2000,20(4):544-548
    陶书田,张绍铃,乔勇进,盛宝龙.梨果实发育过程中石细胞团及几种相关酶活性变化的研究[J].果树学报,2004,21(6):516-520
    陶霞娟,赵艳玲,陈雪梅,王天华,蒋湘宁.烟草木质素合成途径几个中间代谢物HPLC分析[J].北京林业大学学报,2005,27(5):111-114
    田国忠,李怀方,裘维蕃.植物过氧化物酶研究进展[J].武汉植物学研究,2001,19(4):332-344
    王白坡.梨果肉石细胞的遗传研究[J].浙江林学院学报,1985,2:29-32
    王燕,许峰,杜何为,蔡荣,陈柳吉,程水源.夹竹桃苯丙氨酸解氨酶的基因克隆与序列分析[J].华北农学报,2007,22(4):19-24
    王燕,张凤霞,朱俊,李琳玲,许锋,程水源.核桃苯丙氨酸解氨酶的基因克隆与序列分析[J].湖北农业科学,2008,47(6):622-626
    韦军,何凤仁.酥梨,鸭梨果实石细胞群研究[J].江苏农学院学报.1988,9(1):35-36
    魏建华,宋艳茹.木质素生物合成途径及调控的研究进展[J].植物学报,2001,43(8):771-779
    吴锦程,陈群,唐朝晖,夏海琳.外源水杨酸对冷藏枇杷果实木质化及相关酶活性的影响[J].农业工程学报,2006,22(7):175-179
    吴少华.梨果肉石细胞的研究[J].福建农业大学学报,1996,25(1):29-32
    席屿芳,罗自生,程度,冯国斌,章雪忠.竹笋采后活性氧代谢对木质化的影响[J].中国农业科学,2001,34(2):197-199
    席屿芳,罗自生,程度,冯国斌,章雪忠.竹笋采后木质化与多酚氧化酶、过氧化物酶和苯丙氨酸解氨酶活性的关系(简报)[J].植物生理学通讯,2001,37(4):294-295
    辛广.南果梨和苹果梨的石细胞聚合体的扫描电镜观察[J].鞍山师范学院学报,1998,19(4):42-43
    辛华,陶世蓉,张秀芬.黄县长把梨果实发育的解剖研究[J].莱阳农学院学报,1997,14(2):138-141
    熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木质素的测定[J].粮食与饲料工业,2005,8:40-41
    杨冬冬,黄丹枫.西瓜嫁接体发育中木质素合成及代谢相关酶活性的变化[J].西北植物学报,2006,26(2):290-294
    殷亚方,姜笑梅.细胞壁中过氧化物酶的分布对杨树木质化过程的影响[J].电子显微学报,2007,26(1):49-54
    原永兵,刘成连,鞠志国.水杨酸对苹果叶片中过氧化氢酶的调节及其机制[J].园艺学报,1997,27(3):220-224
    张冰冰,林凤起,刘慧涛,顾模.梨果及石细胞团发育的研究[J].落叶果树,1988,20(2):1-3
    张华,张绍铃,陶书田,姜雪婷,伍涛,肖家欣.不同果袋对丰水梨果实发育微环境及采后冷藏品质的影响[J].果树学报.2008,25(1):12-16.
    张华云,王善广,牟其芸.套袋对莱阳茌梨果皮结构和PPO、POD活性的影响[J].园艺学报,1996,23(1):23-26
    张华云.叶面喷钙对梨果实生长及果实PPO和POD活性的影响[J].莱阳农学院学报,1995,12(4):265-267
    张绍铃,张振铭,乔勇进,吴俊,陶书田.不同时期套袋对幸水梨果实品质、石细胞发育及其相关酶活性变化的影响[J].西北植物学报,2006,26(7):1369-1377
    张喜焕,陈敬宜,辛贺明,李素芳,郭雪民.近年我国梨果实内在品质研究进展[J].邯郸农业高等专科学校学报,1999,16(2):22-26
    张秀芬,王奎玲,刘庆华.PP333对茌梨果实发育的影响[J].莱阳农学院学报,1996,13(2):124-128
    张雅凤,郭太君,焦培娟,葛玉香.秋子梨不同品系果实石细胞含量的测定[J].特产研究,1998,4:34-35
    张咏梅,安力,毕阳,柴世龙,马克奇.BTH对厚皮甜瓜过氧化物酶、几丁质酶活性和木质素积累的影响[J].甘肃农业大学学报,2005,6(3):315-318
    张玉星,田志喜,郗荣庭.水杨酸对鸭梨幼果酚类物质代谢调节作用的研究[J].河北农业大学学报,2002,25(3):33-36
    张振铭,胡化广.不同品种梨果实石细胞含量的比较研究[J].安徽农学通报,2007,13:28-29
    张振铭,施泽斌,张绍铃,乔勇进,陶书田.砀山酥梨不同发育时期套袋对石细胞发育的影响[J].园艺学报,2007,34(3):565-568
    张振铭,张绍铃,乔勇进,陶书田,苗永春,曹慧莲.不同果袋对砀山酥梨果实品质的影响[J].果树学报,2006,23(4):510-514
    张芝芬,杨文鸽,韩素珍,董明敏.不同贮藏条件下竹笋苯丙氨酸解氨酶的活性变化[J].宁波大学学报(理工版),2000,13(4):35-38
    赵彩平,张绍铃,徐国华.世界与中国的梨生产贸易及流通现状[J].柑桔与亚热带果树,2005,21(2):5-7
    赵瑶兴,孙祥玉.有机分子结构光谱鉴定[M].北京:科学出版社,1992:50-57
    中野毕三.木质素的化学-基础与应用[M].北京:轻工业出版社,1988:320-334
    朱海英,李人圭,王隆华,黄祥辉,颜季琼.丝瓜果实发育过程中木质素代谢及有关导管分化的生理生化研究[J].华东师范大学学报(自然科学版),1997,1:88-94
    庄文山,邰瓞生.黑荆树木材与树皮木质素的结构特性[J].福建林学院学报,1990,10(1):23-31
    Abeles F B, Biles C L. Characterization of peroxidases in lignifying peach fruuit endocarp [J]. Plant Physiology,1991,95:269-273
    Anterola A M, Lewis N G. Trends in lignin modification:a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity [J]. Phytochemistry,2002,61: 221-294
    Barcelo A R, Pomar F, Lopez-Serrano M, Martinez P, Pedreno M A. Developmental regulation of the H2O2-producing system and of a basic peroxidase isoenzyme in the Zinnia elegans lignifying xylem [J]. Plant Physiology and Biochemistry,2002,40:325-332
    Barcelo A R. Xylem parenchyma cells deliver the H2O2 necessary for lignification in differentiating xylem vessels [J]. Planta,2005,220:747-756
    Baucher M, Bernard-Vailhe M A, Chabbert B, Besle J M, Opsomer C, Van Montagu M, Botterman J. Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the impact on lignin composition and digestibility [J].Plant Molecular Biology,1999,39:437-447
    Baucher M, Chabbert B, Pilate G, Doorsselaere J, Tollier M, Petit-Conil M, Cornu D, Monties B, Montagu M, Inze D, Jouanin L, Boerjan W. Red xylem and higher lignin extractability by down-regulating a Cinnamyl Alcohol Dehydrogenase in Poplar [J]. Plant Physiology,1996,112(4): 1479-1490
    Baucher M, Halpin C, Petit-Conil M, Boerjan W. Lignin:genetic engineering and impact on pulping [J]. Critical Reviews in Biochemistry and Molecular Biology,2003,38:305-350
    Bender J, Fink G R. Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis [J].Cell,1995,83:725-734
    Bin J, Pan R. The relationship of the disease resistance of tobacco seedlings induced by methyl jasmonate with peroxidase activity and lignin content [J].Chinese Journal of Applied and Environmental Biology,1999,5:160-164
    Bjorkman A. Studies on finely divided wood. Part 1. Extraction of lignin with neutral solvents [J]. Svensk papperstidning,1956,59(13):477-485
    Blee K A, Choi J W, O'Connell A P, Schuch W, Lewis N G, Bolwell G. P. A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification [J]. Phytochemistry,2003, 64:163-176
    Boerjan W, Ralph J, Baucher M. Lignin biosynthesis [J]. Annual Review of Plant Biology,2003,54: 519-546
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J].Annual Review of Biochemistry,1976,72:248-254
    Bucciarelli B, Jung H G, Ostry M E, Anderson N A, Vance C P. Wound response characteristics as related to phenylpropanoid enzyme activity and lignin deposition in resistant and susceptible Populus tremuloides inoculated with Entoleuca mammata (Hypoxylon mammatum) [J].Canadian Journal of Botany,1998,76:1282-1289.
    Burel C, Berthe T, Mery J C, Morvan C, Balange A P. Isoelectric focusing analysis of peroxidases in flax seedling hypocotyls grown in different light conditions [J]. Plant Physiology and Biochemistry 1994,32:853-860
    Cai C, Xu C J, Li X, Ferguson I, Chen K S. Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest [J].Postharvest Biology and Technology,2006, 40(2):163-169
    Chen M, McClure J W. Altered lignin composition in phenylalanine ammonia-lyase inhibited radish seedlings:implications for seed-derived sinapoyl esters as lignin precursors [J]. Phytochemistry,2000, 53:365-370
    Chen Y A, Shin J W, Liu Z H. Effect of light on peroxidase and lignin synthesis in mungbean hypocotyls [J]. Plant Physiology and Biochemistry,2002,40:33-39
    Chrisriernin M. Lignin composition in cambial tissues of poplar [J]. Plant Physiology and Biochemistry, 2006,44:700-706.
    Christensen J H, Bauw Q Welinder K G, Montagu M V, Boerjan W. Purification and characterization of peroxidases correlated with lignification in Poplar xylem [J].Plant Physiology,1998,118:125-135
    Christensen J H, Overney S, Rohde A, Diaz W, Bauw G, Simon P, Montagu M, Boerjan W. The syringaldazine-oxidizing peroxidase PXP 3-4 from poplar xylem:cDNA isolation, characterization and expression [J].Plant Molecular Biology,2001,47:581-593
    Christiernin M, Ohlsson A, Berglund T, Henriksson G. Lignin isolated from primary walls of hybrid aspen cell cultures indicates significant differences in lignin structure between primary and secondary cell wall [J]. Plant Physiology and Biochemistry,2005,43:777-785
    Chum H L, Johanson D K, Tucker M P, Himmel M E. Some aspects of lignin characterization by high performance size exclusion chromatography using styrene divinylbenzene copolymer gels [J]. Holzforschung,,1987,41:97-108
    Czaninski Y, Sachot R M, Catesson A M. Cytochemical localization of hydrogen peroxide in lignifying cell walls [J].Annals of Botany,1993,72:547-550
    Dangcham S, Bowen J, Ferguson J B, Ketsa S. Effect of temperature and low oxygen on pericarp hardening of mangosteen fruit stored at low temperature [J].Postharvest Biology and Technology, 2008,50:37-44
    Dibuz E. Sclereid formation in the flowers and fruits of pears [J].Acta Horticulturae,1998,475: 317-325.
    Donaldson L A, Hague J, Snell R. Lignin distribution in coppice poplar, linseed and wheat straw [J].Holzforschung,2001,55:379-385
    Donaldson L A, Singh A P, Yoshinaga A, Takabe K. Lignin distribution in mild compression wood of Pinus radiata D. Don [J].Canadian Journal of Botany,1999,77:41-50.
    Donaldson L A. Lignification and lignin topochemistry—an ultrastructural view [J].Phytochemistry, 2001,57:859-873
    Donaldson L A. Mechanical constraints on lignin deposition during lignification [J].Wood Science and Technology,1994,28:111-118
    Duroux L, Welinder K G. The peroxidase gene family in plants:A phylogenetic overview [J]. Journal of Molecular Evolution,2003,57(4):397-407
    Eckart Mathias, Joseph Campanale. Method of isolating stone cells:US,7175863 B1 [P].2007-02-13
    Elkind Y, Edwards R, Mavandad M, Hedrick S, Ribak O, Dixon R, Lamb C. Abnormal plant development and down—regulmion ofphenylpropanoid biosynthesis in trans genie tobaco containing a hetemloguous phenylalanine ammonia lyase gene [J]. Proceedings of the National Academy of Sciences,1990,87:9057-9061
    Ferrer M A, Pedreno M A, Munoz R, Barcelo A R. Oxidation of coniferyl alcohol by cell wall peroxidases at the expense of indole-3-acetic acid and O2 [J]. FEBS,1990,276:127-130
    Franceschi V R, Krekling T, Berryman A A, Christiansen E. Specialized phloem parenchyma cells in Norway spruce (Pinaceae) bark are an important site of defense reactions [J].American Journal of Botany,1998,85:601-615.
    Freudenberg K. Lignin:its constitution and formation from p-hydroxycinnamyl alcohols [J]. Science, 1965,148:595-600
    Fromm J, Rockel B, Lautner S, Windeisen E. Wanner G. Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques [J].Journal of Structural Biology,2003, 143:77-84
    Gabaldon C, Lopez-Serrano M, Pedreno M A, Barcelo A. Cloning and molecular characterization of the basic peroxidase isoenzyme from Zinnia elegans, an enzyme involved in lignin biosynthesis [J].Plant Physiology,2005,139:1138-1154
    Gabaldon C, Lopez-Serrano M, Pomar F, Merino F, Cuello J, Pedreno M A, Barcelo A. Characterization of the last step of lignin biosynthesis in Zinnia elegans suspension cell cultures [J].FEBS Letters,2006, 580:4311-4316
    Goujon T, Sibout R, Eudes A, MacKay J, Jouanin Lise. Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana [J]. Plant Physiology and Biochemistry,2003,41:677-687
    Graham M Y, Graham T L. Rapid accumulation of anionic peroxidases and phenolic polymers in soybean cotyledon tissues following treatment with Phytophthora megaspermaf. sp. glycines wall glucan [J]. Plant Physiology,1991,97:1445-1455.
    Harkin J M. Lignification in trees:Indication of exclusive peroxidase participation [J]. Science,1973, 180(4083):296-298
    Hellgren J M, Olofsson K, Sundberg B. Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine [J]. Plant Physiology,2004,135:212-220
    Hu W J, Harding S A, Lung J, Popko J, Ralph J, Stokke D, Tsai C, Chiang V. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees [J].Nature Biotechnology,1999,17:808-812
    Ibrahim M N M, Azian H, Yusop M R M. The effects of lignin purification on the performance of iron complex drilling mud thinner [J]. Jurnal Teknologi,2006,44:83-94
    Imberty A, Goldberg R, Catesson A M. Isolation and characterization of Populus isoperoxidases involved in the last step of lignin formation [J]. Planta,1985,164:221-226
    Jacqueline G P, Deborah G. Ligningenetic engineering revisited [J].Plant Science,1999,145:51-65
    Kajita S, Katayama Y, Omori S. Alterations in the biosynthesis of lignin in transgenic plants with chimeric genes for 4-Coumarate:Coenzyme A Ligase [J]. Plant and Cell Physiology,1996,37(7): 957-965
    Kawamata S, Shimobarai K, Imura Y, Ozaki M, Ichinose Y, Shiraishi T, Kunoh H, Yamada T. Temporal and spatial pattern of expression of the pea phenylalanine ammonia-lyase gene promoter in transgenic tobacco [J]. Plant Cell Physiology,1997,38 (7):792-803
    Khanizadeh S, Tao S, Zhang S, Tsao R, Rekika D, Yang R, Charles M T. Antioxidant activities of newly developed day-neutral and June-bearing strawberry lines [J]. Journal of Food, Agriculture & Environment,2008,6(2):306-311
    Korth K L, Blount J W, Chen F Rasmussen S, Lamb C, Dixon R A. Changes in phenylpropanoid metabolites associated with homology-dependent silencing of phenylalanine ammonia-lyase and its somatic reversion in tobacco [J]. Plant Physiology,2001,11:137-143
    Lagrimini L M. Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase [J]. Plant Physiology,1991,96:577-583
    Landucci L L. Application of modern liquid-state NMR to lignin characterization [J]. Holzforschung, 1991,45:425-432
    Lange P W. The distribution of lignin in the cell wall of normal and reaction wood from spruce and a few hardwoods [J]. Svensk Papperstidn,1954,57:525-532
    Lee D, Meyer K, Chapple C, Douglas C. Antisense suppression of 4-Coumarate:Coenzyme A Ligase activity in Arabidopsis leads to altered lignin subunit composition [J]. Plant Cell,1995,9: 1985-1998
    Lee M Y, Choi Y, Kim S S. Purification and immunological relationships of six radish isoperoxidases [J].Plant Physiology and Biochemistry,1994,32:259-265
    Lee S H, Choi J H, Kim W S, Han T H, Park Y S, Gemma H. Effect of soil water stress on the development of stone cells in pear(Pyrus pyrifolia cv.'Niitaka') flesh [J]. Scientia Horticulturae, 2006,110:247-253.
    Lee S H. Choi J H. Kim W S, Park Y S, Gemma H. Effects of calcium chloride spray on peroxidase activity and stone cell development in pear fruit (Pyrus pyrifolia'Niitaka') [J]. Journal of the Japanese Society for Horticultural Science,2007,76:191-196
    Lee T M, Lin Y H. Changes in soluble and cell wall-bound peroxidase with growth in anoxia-treated rice (Oryza sativa L.) and roots [J]. Plant Science,1995,106:1-7
    Lee T M, Lin Y H. Peroxidase activity in ethylene-, ABA-, or MeJA-treated rice(Oryza sativa L.) roots [J]. Bot. Bull. Acad. Sin,1996,37:201-207
    Lewis N, Yamamoto E. Lignin:occurrence, biogenesis and biodegradation [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1990,41:455-496.
    Li Y, Kajita S, Kawai S, Katayama Y, Morohoshi N. Down-regulation of an anionic peroxidase in transgenic aspen and its effect on lignin characteristics [J] Journal of Plant Research,2003,116: 175-182.
    Lin C C, Kao C H. Cell wall peroxidase against ferulic acid, lignin, and NaCl-reduced root growth of rice seedlings [J]. Journal of Plant Physiology,2001,158:667-671
    Lipetz J, Garro A J. Ionic effects on lignification and peroxidase in tissue culture [J]. Journal of Cell Biology,1965,25:109-113
    Lopez-Delgado H, Zaveleta-Mancera H A, Mora-Herrera M E. Hydrogen peroxide increase potato tuber and stem starch content, stem diameter, and stem lignin cotent [J]. American Journal of Potato Research,2005,82:279-285
    Lopez-Serrano M, Fernandez M, Pomar F, Pedreno M, Barcelo A. Zinnia elegans uses the same peroxidase isoenzyme complement for cell wall lignification in both single-cell tracheary elements and xylem vessels [J]. Journal of Experimental Botany,2004,55(396):423-431
    Mark L L. Wound-induced deposition of polyphenols in transgenic plants over experessing peroxidase [J]. Plant Physiology,1991,96:577-583
    Mauch B, Slusarenko A J. Production of salicylic scid precursors is a major function of phenylalanine ammonia-lyase in the resistance of arabidopsis to Peronospora parasitica [J]. Plant Cell,1996,8: 203-212
    Mechin V, Baumberger S, Pollet B, Lapierre C. Peroxidase activity can dictate the in vitro lignin dehydrogenative polymer structure [J]. Phytochemistry,2007,68:571-579
    Nagai N, Kitauchi F, Shimosaka M, Okazaki M. Cloning and sequencing of a full-length cDNA coding for phenylalanine ammonia-lyase from tobacco cell culture [J]. Plant Physiology,1994,104: 1091-1092
    Nakashima J, Awano T, Takabe K, Fujita M, Saiki H. Immunocytochemical localization of phenylalanine ammonia-lyase and cinnamyl alcohol dehydrogenase in differentiating tracheary elements derived from Zinnia Mesophyll Cells [J]. Plant Cell Physiology,1997,38(2):113-123
    Nose M, Bernards M A, Furlan M, Zajicek J, Eberhardt T L, Lewis N G. Towards the specification of consecutive steps in macro-molecular lignin assembly [J]. Phytochemistry,1995,39:71-79
    Ohashi-Ito K, Kubo M, Demura T, Fukuda H. Class Ⅲ Homeodomain leucine-zipper proteins regulate xylem cell differentiation [J]. Plant Cell Physiol,2005,46(10):1646-1656
    Passardi F, Longet D, Penel C, Dunand C. The class Ⅲ peroxidase multigenic family in rice and its evolution in land plants [J]. Phytochemistry,2004,65:1879-1893
    Quesada M A,Tigier H A, Bukovac M J, Valpuesta V. Purification of an anionic isoperoxidase from peach seeds and its immunological comparison with other anionic isoperoxidases [J]. Physiologia Plantarum,2006,79:623-628
    Quiroga M, Guerrero C, Botella M A, Barcelo A, Amaya I, Medina M I, Alonso F J, Forchetti S M, Tigier H, Valpuesta V. A Tomato Peroxidase involved in the synthesis of lignin and suberin [J]. Plant Physiology,2000,122:1119-1123
    Ralph J, Hatfield R D, Piquemal J, Yahiaou N, Pean M, Lapierre C, Boudet A M. NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamylalcohol dehydrogenase and cinnamoyl-CoA reductase [J]. Biochemistry,1998,95: 12803-12808
    Ralph J, MacK J J, Hatfied R D, O'Malley D M, Whetten R W, Sederoff R R. Abnormal lingnin in a lobiolly pine mutant [J].Science,1997,277:235-239
    Ranadive A S, Haard N F. Chemical nature of stone cells from pear fruit [J]. Journal of Food Science, 1973,38:331-333.
    Ranadive A S, Haard N F. Peroxidase localization and lignin formation in developing pear fruit [J]. Journal of Food Science,1972,37:381-383.
    Rogers L A, Dubos C, Surman C, Willment J, Cullis IF, Mansfield S D, Campbell M M. Comparison of lignin deposition in three ectopic lignification mutants [J]. New phytologist,2005,1-21
    Sarkanen K V. Species variation in lignins [J].Tappi,1967,50(12):583-590
    Sasaki S, Baba K, Nishida T, Tsutsumi Y, Kondo R. The cationic cell-wall-peroxidase having oxidation ability for polymeric substrate participates in the late stage of lignification of Populus alba L [J]. Plant Molecular Biology,2006,62:797-807
    Sasaki S, Nishida T, Tsutsumi Y, Kondo R. Lignin dehydrogenative polymerization mechanism:apoplar cell wall peroxidase directly oxidizes polymer lignin and produces in vitro dehydrogenative polymer rich in β-O-4 linkage [J].FEBS Letters,2004,562:197-201
    Sato Y, Sugiyama M, Takashi T, Fukuda H. Purification of cationic peroxidases bound ionically to the cell walls from the roots of Zinia elegans [J]. Journal of Plant Research,1995,108:463-468
    Schroeder C A. Progress report on study of sclereid formation in avocado fruit pericarp [J]. California Avocado Society Yearbook,1982,66:161-165.
    Sewalt V, Ni W, Blount J, Jung H, Masoud S, Howles P, Lamb C, Dixon R. Reduced lignin Content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cirmamate 4-hydroxylase [J]. Plant Physiology,1997,115: 41-50
    Shan L L, Li X, Wang P, Cai C, Zhang B, Sun C D. Zhang W S, Xu C J, Ferguson I, Chen K S. Characterization of cDNAs associated with lignification and their expression profiles in loquat fruit with different lignin accumulation [J]. Planta,2008,227:1243-1254
    Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Seguin A. Cinnamyl alcohol dehydrogenase-C and-D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis [J].The Plant Cell,2005,17:2059-2076
    Singh A P, Donaldson L A. Ultrastructure of tracheid cell walls in radiata pine (Pinus radiata) mild compression wood [J]. Canadian Journal of Botany,1999,77:32-40.
    Singh A. Daniel G. Niisson T. Ultrastructure of the S2 layer in relation to lignin distribution in Pinus radiata tracheids [J]. Journal of Wood Science,2002,48:95-98.
    Sterling C. Sclereid development and the texture of Bartlett pears [J]. Food Research,1954,19: 433-443
    Su G, An, Z, Zhang W, Liu Y. Light promotes the synthesis of lignin through the production of H2O2 mediated by diamine oxidases in soybean hypocotyls [J]. Journal of Plant Physiology,2005,162 (12): 1207-1303
    Subrarnaniam R, Reinold S, Molitor E, Douglas C. Structure, inheritance, and expression of hybrid poplar (Populus trichocarpa×Populus deltoids) phenylalanine ammonia-lyase genes [J]. Plant Physiology,1993,102:71-83
    Sun R, Mark L, Banks W B. The effect of alkaline nitrobenzene oxidation conditions on the yield and components of phenolic monomers in wheat straw lignin and compared to cupric (Ⅱ) oxidation [J]. Industrial Crops and Products,1995,4:241-254
    Syros T, Yupsanis T, Zafiriadis H, Economou A. Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings of Ebenus cretica L. [J] Journal of Plant Physiology,2004,161:69-77
    Takebe K, Takeuch M, Sato T, Ito M, Fujita M. Immtmocytochemical localization of enzymes involed in lignification of the cell wall [J].Journal of Plant Research,2001,114:509-515
    Takeda H, Kotake T, Nakagawa N, Sakurai N, Nevins D J. Expression and function of cell wall-bound cationic peroxidase in asparagus somatic embryogenesis [J].Plant Physiology,2003,131:1765-1774
    Takeuchi M, Takabe K, M. Immunolocalization of an anionic peroxidase in differentiating poplar xylem [J]. Journal of Wood Science,2005,51:317-322
    Tanaka Y, Matsuoka M, Yamanoto N, Ohashi Y, Kano-Murakami Y, Ozeki Y. Structure and characterization of a cDNA clone for phenylalanine ammonia-lyase from cut-injured roots of sweet potato [J]. Plant Physiology,1989,90:1403-1407
    Tao S, Khanizadeh S, Zhang H, Zhang S. Anatomy, ultrastructure and lignin distribution of stone cells in two Pyrus species [J]. Plant Science,2009,176:413-419.
    Tsutsumi Y, Nishida T, Sakai K. Lignin biosynthesis in woody angiosperm tissues. III. Isolation of substrate-specific peroxidases related to the dehydrogenative polymerization of sinapyl and coniferyl alcohols from Populus callus cultures [J]. Mokuzai Gakkaishi,1994,40:1348-1354
    Van R B. Some molecular aspects of plant peroxidase:biosynthetic studies [J]. Annual Review of Plant Physiology,1987,38:205-219.
    Vance C P, Kirk T K, Sherwood R T. Lignification as a mechanism of disease resistance [J].Annual Review of Phytopathology,1980,18:259-288
    Vincent B, Mi K, Laurence B D, Norman G L. Dirigent proteins and dirigent sites in lignifying tissues [J]. Phytochemistry,2001,57:883-897
    Wang Y, Yang H, Cheng Z. Relationship between SA-induced resistance to grey mold in Arabidopsis and the lignin contents [J]. Plant Protection,2007,4:50-54
    Westermark U, Lidbrandt O, Eriksson I. Lignin distribution in spruce (Picea abies) determined by mercurization with SEM-EDXA technique [J].Wood Science and Technology,1988,22:243-250
    Westermark U. Bromination of different morphological parts of spruce wood (Picea abies) [J].Wood Science and Technology,1985,19:323-328
    Whetten R, Sedero R. Lignin biosynthesis [J]. Plant Cell,1995,7:1001-1013
    Whetten R, Sederoff R. Phenylalanine ammonia-lyase from loblolly pine:Purification of the enzyme and isolation of complementary DNA clones [J]. Plant Physiology,1992,98:380-386
    Xu F, Zhang X C, Sun R C, Lu Q. Anatomy, ultrastructure and lignin distribution in cell wall of Caragana Korshinskii [J].Industrial Crops and Products,2006,24:186-193
    Yahiaoui N, Marque C, Myton K E, Negrel J, Boudet A M. Impact of different levels of cinnamyl alcohol dehydrogenase down-regulation on lignins of transgenic tobacco plants [J]. Planta,1998,204: 8-15
    Ye Z, Varner J. Differential expression of two O-methyltransferase in lignin biosynthesis in Zinnia elegans [J]. Plant Physiology,1995,108(2):459-467
    Zhong R Q, Morrison W H, Himmelabach D S. Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants [J].Plant Physiology,2000,124: 563-578
    Zhong R, Ripperger A, Ye Z H. Ectopic deposition of lignin in the pith of stems of two Arabidopsis mutants [J].Plant Physiology,2000,123:59-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700