用户名: 密码: 验证码:
白云鄂博矿床成因再研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白云鄂博REE-Nb-Fe矿床是世界上独一无二的超大型多金属矿床,受到国内外地学界的广泛关注,但对于矿床形成机制的认识仍存在很大分歧。争论的焦点在于铁的物质来源和赋矿层“H8”白云质大理岩成因(水成或火成)。Fe和Mg是“H8”白云质大理岩的主量金属元素,同时Fe还是矿床的成矿元素。Fe、Mg稳定同位素示踪技术的发展为该矿床的成因研究提供了新的思路和手段。本论文在详细的野外调查和室内岩相学工作基础上,开展了系统的Fe、Mg同位素地球化学研究,并利用Sm-Nd同位素体系对成矿年代学进行了进一步的研究,对白云鄂博矿床的成因进行了制约。取得了以下创新性成果和认识:
     1)分别改进、完善了Fe和Mg的化学分离流程,建立了富含REE、Mn、Nb等元素的样品的Fe、Mg化学分离方法,满足高REE-Nb-Mn样品的Fe、Mg同位素的多接收器等离子体质谱(MC-ICP-MS)高精度测定的要求。
     2)厘定了前寒武沉积成因铁矿和火成岩的Fe同位素组成特征。测定了中元古代白云鄂博群典型沉积成因铁矿和矿区典型的基性火成岩的Fe同位素组成,并系统总结了前人相关研究。结果表明,前寒武沉积铁建造的铁氧化物δ56Fe-IRMM总体上>0,并且Fe同位素组成变化范围较大:岩浆岩和岩浆成因铁矿的δ56Fe-IRMM集中在0附近,Fe同位素组成变化范围很小。
     3)厘定了沉积碳酸盐岩和幔源火成岩的Mg同位素组成特征。测定了中元古代沉积碳酸盐岩和白云鄂博矿区火成碳酸岩的Mg同位素组成,并系统总结了前人相关研究。结果表明,沉积碳酸盐岩明显富集Mg的轻同位素,δ26Mg-DSM3值<-1‰;幔源火成岩相对富集Mg的重同位素,δ26Mg-DSM3值集中在-0.5~0‰。
     4)利用Fe同位素地球化学为白云鄂博矿床的成因进行了制约。在详细的岩相、矿相学研究基础上,系统调查了白云鄂博矿床铁矿石样品和赋矿层“H8”白云岩全岩,主要含铁矿物磁铁矿、赤铁矿、白云石的Fe同位素组成。结果表明,白云鄂博矿床细粒铁矿石和“H8”白云岩的Fe同位素平均值δ56Fe-IRMM分别为-0.03±0.16‰(2SD, n=14),-0.07±0.24‰(2SD, n=19),两者的Fe同位素组成均集中在0附近,并且变化范围很窄,与火成岩的Fe同位素组成一致;磁铁矿和白云石矿物之间的Fe同位素分馏很小(Δ56Fe磁铁矿-白云石约为0.22‰),指示高温形成环境。Fe同位素研究结果排除了白云鄂博铁矿是沉积铁建造的成因模式,为白云鄂博矿床岩浆成因观点提供了有力的证据。
     5)利用Mg同位素地球化学为白云鄂博矿床的成因进行了制约。系统调查了赋矿“H8”白云岩的Mg同位素组成。结果表明,白云鄂博矿床赋矿“H8”白云岩的δ26Mg变化范围为-1.18‰~0.56‰,平均值-0.42‰,其中绝大部分数据落在幔源火成岩Mg同位素组成范围,少量数据落在幔源火成岩和中元古代沉积白云岩之间,而没有一个数据落在中元古代沉积白云岩范围。Mg同位素研究结果排除了白云鄂博矿床的微晶丘成因模式和沉积白云岩-热液交代成因模式,表明白云鄂博矿床赋矿“H8”白云岩是火成碳酸岩主导的。
     6)在系统总结前人年代学研究成果的基础上,利用Sm-Nd同位素随时间演化的规律对白云鄂博矿床的稀土成矿时代和成矿期次进行了研究。结果表明,白云鄂博矿床不是一个多期次、多来源的矿床。稀土的成矿时代为ca.1.3Ga,与碳酸岩墙的形成时间一致,成矿物质来源于地幔。后期地质事件只在一定程度上造成了稀土的再分配,并没有导致新的成矿作用。
     7)在Fe、Mg同位素,成矿年代学的研究基础上,综合C、O、Sr、Nd等传统同位素研究,完善了白云鄂博矿床的成矿模式。白云鄂博矿床可能是中元古代时期的火成碳酸岩岩浆在海底侵入或喷出而形成的矿床,岩浆侵入或喷发期间可能有海水或少量沉积碳酸盐岩加入,同时也很有可能伴随热液活动。矿床形成后区域上发生了多次地质事件,矿床发生了一定的热扰动,但成矿物质只在内部发生了再循环,外源成矿物质的加入很有限。
The Bayan Obo REE-Nb-Fe ore deposit is the largest REE deposit in the world,which has attracted much attention for several decades. But its origin remainscontroversial. As Fe and Mg are the major elements of the H8ore-hosting dolomitemarble and Fe is also the ore-forming element, recent advances in Fe and Mg isotopesprovide new insights into the origin of the deposit. Here to constrain the origin of thegiant ore deposit, both the Fe and Mg isotope geochemistry are systematicallyinvestigated for the Bayan Obo ore deposit and related geological units, which isbased on the detailed field works and petrography and mineralography works. Inaddition, the metallogenic chronology of the deposit is restudied using Sm-Ndisotopes. Some significant advances are as follows:
     1) For REE-Nb-Mn enriched samples, methods of chromatographic separation ofFe and Mg are improved respectively for high-precision measurements of Fe and Mgisotope ratios using MC-ICP-MS.
     2) The comparision of Fe isotopes between Precambrian sedimentary ironformations and igneous rocks (including magmatic iron ores) is made. With thedeterminations of Fe isotopes of Mesoproterozoic sedimentary iron formations ofBayan Obo Group and mafic rocks in Bayan Obo mining area, combined with theprevious studies, it shows that the Precambiran sedimentary iron formations havevariable δ56Fe-IRMMvalues, with the majority>0, but the igneous rocks includingmagmatic iron ores have limited variation in δ56Fe-IRMMvalues which are clusteraround0.
     3) The comparision of Mg isotopes between sedimentary carbonates andmantle-derived igneous rocks is made. With the determinations of Mg isotopes ofMesoproterozoic sedimentary carbonates and carbonatites in Bayan Obo mining area,combined with the previous studies, it shows that sedimentary carbonates are enrichedin light Mg isotope with δ26Mg-DSM3values <-1‰, but the igneous rocks are enrichedin heavy Mg isotope with δ26Mg-DSM3values between-0.5and0‰.
     4) Fe isotopes are systematically investigated for Bayan Obo ore deposit basedon the detailed petrography and mineralography works. It shows that the whole rocksof Bayan Obo iron ores and “H8” ore-hosting dolomite marble have limited variationsof δ56Fe-IRMMvalues that cluster around0, with the former-0.03±0.16‰(2SD, n=14)and the later-0.07±0.24‰(2SD, n=19). The Fe isotope fractionation between magnetite and dolomite is limited, with Δ56Femagnetite-dolomite=0.22‰, indicating thatthey are formed in a high-temperature condition. These demonstrate that the BayanObo ore deposit is not sedimentary iron formations, but is of magmatic origin.
     5) Mg isotopes are detailedly investigated for the Bayan Obo H8ore-hostingdolomite marble. It has δ26Mg-DSM3values varying from-1.18‰to0.56‰, with anaverage of-0.42‰. Among these data, the majority fall into the field of igneous rocksand the minority fall into the field between igneous rocks and Mesoproterozoicsedimentary dolostones, but none fall into the field of Mesoproterozoic sedimentarydolostones. This demonstrates that the Bayan Obo ore deposit is neither a micritemound nor originally sedimentary dolostones. The H8ore-hosting dolomite marble isa dominantly carbonatite, although it cannot rule out some mixing of seawater orcrustal materials.
     6) A thorough review on geochronological data and re-assessments of Sm-Ndisotopic results in literatures has been performed to study the timing and episodes ofREE mineralization. It is clarified that the REE in the Bayan Obo ore deposit isenriched by a single episode of mineralization occurred in Mesoproterozoic andsourced from the mantle only. Some later thermal events occurred between ca.1.3Gaand ca.0.44Ga resulting in the REE remobilization within the ore body itself, but thecontribution from external source is minimal.
     7) Through combination of Fe, Mg isotope geochemistry, geochronology, and C,O, Sr, Nd, etc. isotope geochemistry, the model of Bayan Obo ore deposit is improved.The Bayan Obo ore deposit is a Mesoproterozoic carbonatite probably intruding orerupting in the seafloor, mixed with minor sedimentary carbonates or some seawater,and probably accompanying the hydrothermal activities. The later thermal eventsresult in the REE remobilization within the ore body itself, but the contribution fromexternal source is minimal.
引文
Acworth R I and Timms W A. Hydrogeological investigation of mud-moundsprings developed over a weathered basalt aquifer on the Liverpool Plains, New SouthWales, Australia. Hydrogeology Journal,2003,11(6):659-672.
    Anbar A D, Roe J E, Barling J, Nealson K H, Nonbiological fractionation of ironisotopes[J]. Science,2000,288(5463):126-128.
    Anbar A D. Iron stable isotopes: beyond biosignatures. Earth and PlanetaryScience Letters,2004,217(3-4):223-236.
    Anbar A D, Jarzecki A A and Spiro T G. Theoretical investigation of iron isotopefractionation between Fe (H2O)3+and Fe (H2O)2+: Implications for iron stable isotopegeochemistry. Geochimica et Cosmochimica Acta,2005,69(4):825-837.
    Anbar A D, Rouxel O, Metal stable isotopes in paleoceanography[J]. Annu. Rev.Earth Planet. Sci.,2007,35:717-746.
    Baker J, Bizzarro M, Wittig N, et al. Early planetesimal melting from an age of4.5662Gyr for differentiated meteorites. Nature,2005,436(7054):1127-1131.
    Balci N, Bullen T D, Witte-Lien K, et al. Iron isotope fractionation duringmicrobially stimulated Fe (II) oxidation and Fe (III) precipitation. Geochimica etCosmochimica Acta,2006,70(3):622-639.
    Bullen T D, White A F, Childs C W, et al. Demonstration of significant abioticiron isotope fractionation in nature. Geology,2001,29(8):699.
    Butler I B, Archer C, Vance D, et al. Fe isotope fractionation on FeS formation inambient aqueous solution. Earth and Planetary Science Letters,2005,236(1-2):430-442.
    Beard B L and Johnson C M. High precision iron isotope measurements ofterrestrial and lunar materials. Geochimica et Cosmochimica Acta,1999,63(11-12):1653-1660.
    Beard B L, Johnson C M, Skulan J L, et al. Application of Fe isotopes to tracingthe geochemical and biological cycling of Fe. Chemical Geology,2003a,195(1-4):87-117.
    Beard B L, Johnson C M, Von Damm K L, et al. Iron isotope constraints on Fecycling and mass balance in oxygenated Earth oceans. Geology,2003b,31(7):629-632.
    Beard B L and Johnson C M. Fe isotope variations in the modern and ancientearth and other planetary bodies. Reviews in Mineralogy and Geochemistry,2004,55(1):319-357.
    Bekker A, Slack J F, Planavsky N, et al. Iron formation: The sedimentary productof a complex interplay among mantle, tectonic, oceanic, and biospheric processes.Economic Geology,2010,105(3):467-508.
    Belka Z. Early Devonian Kess-Kess carbonate mud mounds of the easternAnti-Atlas (Morocco), and their relation to submarine hydrothermal venting. Journalof Sedimentary Research,1998,68(3).
    Bennett S A, Rouxel O, Schmidt K, et al. Iron isotope fractionation in a buoyanthydrothermal plume,5degrees S Mid-Atlantic Ridge. Geochimica Et CosmochimicaActa,2009,73(19):5619-5634.
    Bergquist B A, Boyle E A, Iron isotopes in the Amazon River system:Weathering and transport signatures[J]. Earth and Planetary Science Letters,2006,248(1-2):54-68.
    Bourdon B, Tipper E T, Fitoussi C, et al. Chondritic Mg isotope composition ofthe Earth. Geochimica et Cosmochimica Acta,2010,74(17):5069-5083.
    Buhl D, Immenhauser A, Smeulders G, et al. Time series delta Mg-26analysis inspeleothem calcite: Kinetic versus equilibrium fractionation, comparison with otherproxies and implications for palaeoclimate research. Chemical Geology,2007,244(3-4):715-729.
    Butler Ian B, Archer C, Vance D, Oldroyd A, Rickard D, Fe isotope fractionationon FeS formation in ambient aqueous solution[J]. Earth and Planetary Science Letters,2005,236:1-2.
    Chang V T-C, Williams R, Makishima A, et al. Mg and Ca isotope fractionationduring CaCO3biomineralisation. Biochemical and biophysical researchcommunications,2004,323(1):79-85.
    Chang V T C, Makishima A, Belshaw N S, et al. Purification of Mg fromlow-Mg biogenic carbonates for isotope ratio determination using multiple collectorICP-MS. Journal of Analytical Atomic Spectrometry,2003,18(4):296-301.
    Chao E C T, Back J M, Minkin J A, et al. Host-rock controlled epigenetic,hydrothermal metasomatic origin of the Bayan Obo REE-Fe-Nb ore deposit, InnerMongolia, PRC. Applied Geochemistry,1992,7(5):443-458.
    Chao E C T, Back J M, Minkin J A, et al. The Sedimentary Carbonate-HostedGiant Bayan Obo Ree-Fe-Nb Ore Deposit of Inner Mongolia, China: A CornerstoneExample for Giant Polymetallic Ore Deposits of Hydrothermal Origin. US GeologicalSurvey Bulletin,1997,(2143):1-65.
    Chu N C, Johnson C M, Beard B L, et al. Secular Fe isotope variations in theNW and Central Pacific Ocean. Geochimica et Cosmochimica Acta,2003,67(18):A66.
    Chu N C, Johnson C M, Beard B L, et al. Evidence for hydrothermal venting inFe isotope compositions of the deep Pacific Ocean through time. Earth and PlanetaryScience Letters,2006,245:1-2.
    Conrad J E and McKee E H. The use of K-Ar and40Ar/39Ar techniques todate multiple thermal events; an example from the Bayan Obo Fe-Nb-REE ore deposit,China. Economic Geology,1992,87:185-188.
    Craddock P R and Dauphas N. Iron isotopic compositions of geological referencematerials and chondrites. Geostandards and Geoanalytical Research,2011,35(1):101-123.
    Croal L R, Johnson C M, Beard B L, Newman D K, Iron isotope fractionation byFe (II)-oxidizing photoautotrophic bacteria[J]. Geochimica Et Cosmochimica Acta,2004,68(6):1227-1242.
    Crosby H A, Johnson C M, Roden E E, et al. Coupled Fe (II)-Fe (III) Electronand Atom Exchange as a Mechanism for Fe Isotope Fractionation duringDissimilatory Iron Oxide Reduction. Environ. Sci. Technol,2005,39(17):6698-6704.
    Crosby H A, Roden E E, Johnson C M, et al. The mechanisms of iron isotopefractionation produced during dissimilatory Fe (III) reduction by Shewanellaputrefaciens and Geobacter sulfurreducens. Geobiology,2007,5(2):169-189.
    Dauphas N, van Zuilen M, Wadhwa M, et al. Clues from Fe isotope variations onthe origin of early Archean BIFs from Greenland, American Association for theAdvancement of Science,2004,306:2077-2080.
    Dauphas N and Rouxel O. Mass spectrometry and natural variations of ironisotopes. Mass Spectrometry Reviews,2006,25(4):515–550.
    Dauphas N, Cates Nicole L, Mojzsis Stephen J, et al. Identification of chemicalsedimentary protoliths using iron isotopes in the>3750Ma Nuvvuagittuqsupracrustal belt, Canada. Earth and Planetary Science Letters,2007a,254:3-4.
    Dauphas N, van Zuilen M, Busigny V, et al. Iron isotope, major and traceelement characterization of early Archean supracrustal rocks from SW Greenland:Protolith identification and metamorphic overprint. Geochimica et CosmochimicaActa,2007b,71(19):4745-4770.
    D az-del-R o V, Somoza L, Mart nez-Frias J, et al. Vast fields ofhydrocarbon-derived carbonate chimneys related to the accretionarywedge/olistostrome of the Gulf of Cadiz. Marine Geology,2003,195(1):177-200.
    Dideriksen K, Baker J A and Stipp S L S. Iron isotopes in natural carbonateminerals determined by MC-ICP-MS with a58Fe–54Fe double spike. Geochimica etCosmochimica Acta,2006,70(1):118-132.
    Drew L J, Meng Q and Sun W. The Bayan Obo iron-rare-earth-niobium deposits,Inner Mongolia, China. Lithos,1990,26:1-2.
    Fan H, Xie Y, Wang K, et al. REE daughter minerals trapped in fluid inclusionsin the giant Bayan Obo REE-Nb-Fe deposit, Inner Mongolia, China. InternationalGeology Review,2004,46(7):638-645.
    Fantle M S and DePaolo D J. Iron isotopic fractionation during continentalweathering. Earth and Planetary Science Letters,2004,228(3-4):547-562.
    Fehr M A, Andersson P S, Halenius U, et al. Iron isotope variations in Holocenesediments of the Gotland Deep, Baltic Sea. Geochimica et Cosmochimica Acta,2008,72(3):807-826.
    Frost C D, von Blanckenburg F, Schoenberg R, et al. Preservation of Fe isotopeheterogeneities during diagenesis and metamorphism of banded iron formation.Contributions to Mineralogy and Petrology,2007,153(2):211-235.
    Galy A, Young E D, Ash R D, et al. The formation of chondrules at high gaspressures in the solar nebula. Science,2000,290(5497):1751-1753.
    Galy A, Bar-Matthews M, Halicz L, et al. Mg isotopic composition of carbonate:insight from speleothem formation. Earth and Planetary Science Letters,2002,201(1):105-115.
    Galy A, Yoffe O, Janney P E, et al. Magnesium isotope heterogeneity of theisotopic standard SRM980and new reference materials for magnesium-isotope-ratiomeasurements. J. Anal. At. Spectrom.,2003,18(11):1352-1356.
    Guelke M, von Blanckenburg F, Fractionation of stable iron isotopes in higherplants[J]. Environmental science&technology,2007,41(6):1896-1901
    Graham S, Pearson N, Jackson S, et al. Tracing Cu and Fe from source toporphyry: in situ determination of Cu and Fe isotope ratios in sulfides from theGrasberg Cu–Au deposit. Chemical Geology,2004,207(3-4):147-169.
    Handler M R, Baker J A, Schiller M, et al. Magnesium stable isotopecomposition of Earth's upper mantle. Earth and Planetary Science Letters,2009,282(1-4):306-313.
    Heimann A, Beard B L and Johnson C M. The role of volatile exsolution andsub-solidus fluid/rock interactions in producing high56Fe/54Fe ratios in siliceousigneous rocks. Geochimica et Cosmochimica Acta,2008,72(17):4379-4396.
    Higgins J A and Schrag D P. Constraining magnesium cycling in marinesediments using magnesium isotopes. Geochimica et Cosmochimica Acta,2010,74(17):5039-5053.
    Horn I, von Blanckenburg F, Schoenberg R, et al. In situ iron isotope ratiodetermination using UV-femtosecond laser ablation with application to hydrothermalore formation processes. Geochimica et Cosmochimica Acta,2006,70(14):3677-3688.
    Hu F F, Fan H R, Liu S, et al. Samarium–Neodymium and Rubidium–StrontiumIsotopic Dating of Veined REE Mineralization for the Bayan Obo REE‐Nb‐FeDeposit, Northern China. Resource Geology,2009,59(4):407-414.
    Huang F, Glessner J, Ianno A, et al. Magnesium isotopic composition of igneousrock standards measured by MC-ICP-MS. Chemical Geology,2009,268(1-2):15-23.
    Huang F, Zhang Z, Lundstrom C C, et al. Iron and magnesium isotopiccompositions of peridotite xenoliths from Eastern China. Geochimica etCosmochimica Acta,2011,75(12):3318-3334.
    Hyslop E V, Valley J W, Johnson C M, et al. The effects of metamorphism on Oand Fe isotope compositions in the Biwabik Iron Formation, northern Minnesota.Contributions to Mineralogy and Petrology,2008,155(3):313-328.
    Icopini G A, Anbar A D, Ruebush S S, Tien M, Brantley S L, Iron isotopefractionation during microbial reduction of iron; the importance of adsorption[J].Geology Boulder,2004,32(3):205-208.
    Immenhauser A, Buhl D, Richter D, et al. Magnesium-isotope fractionationduring low-Mg calcite precipitation in a limestone cave-Field study and experiments.Geochimica et Cosmochimica Acta,2010,74(15):4346-4364.
    Ingri J, Malinovsky D, Rodushkin I, et al. Iron isotope fractionation in rivercolloidal matter. Earth and Planetary Science Letters,2006,245(3-4):792-798.
    Jacobsen B, Yin Q-z, Moynier F, et al. Al-26-Mg-26and Pb-207-Pb-206systematics of Allende CAIs: Canonical solar initial Al-26/Al-27ratio reinstated.Earth and Planetary Science Letters,2008,272(1-2):353-364.
    Jacobson A D, Zhang Z, Lundstrom C, et al. Behavior of Mg isotopes duringdedolomitization in the Madison Aquifer, South Dakota. Earth and Planetary ScienceLetters,2010,297(3-4):446-452.
    Johnson C M, Skulan J L, Beard B L, Sun H, Nealson K H, Braterman P S,Isotopic fractionation between Fe(III) and Fe(II) in aqueous solutions[J]. Earth andPlanetary Science Letters,2002,195(1-2):141-153.
    Johnson C M, Beard B L, Beukes N J, et al. Ancient geochemical cycling in theEarth as inferred from Fe isotope studies of banded iron formations from theTransvaal Craton. Contributions to Mineralogy and Petrology,2003a,144(5):523-547.
    Johnson C M, Beard B L, Braterman P S, et al. Reply to Comment on [`]Isotopicfractionation between Fe(III) and Fe(II) in aqueous solutions' by Thomas D. Bullen,Arthur F. White and Cyril W. Childs. Earth and Planetary Science Letters,2003b,206(1-2):233-236.
    Johnson C M, Beard B L, Klein C, et al. Iron isotopes constrain biologic andabiologic processes in banded iron formation genesis. Geochimica et CosmochimicaActa,2008a,72(1):151-169.
    Johnson C M, Beard B L and Roden E E. The iron isotope fingerprints of redoxand biogeochemical cycling in modern and ancient Earth. Annual Review of Earthand Planetary Sciences,2008b,36:457-493.
    Johnson C M, Bell K, Beard B L, et al. Iron isotope compositions of carbonatitesrecord melt generation, crystallization, and late-stage volatile-transport processes.Mineralogy and Petrology,2010,98(1-4):91-110.
    Kavner A, Bonet F, Shahar A, Simon J, Young E, The isotopic effects of electrontransfer; an explanation for Fe isotope fractionation in nature[J]. Geochimica etCosmochimica Acta,2005,69(12):2971-2979.
    Lai X, Yang X and Sun W. Geochemical constraints on genesis of dolomitemarble in the Bayan Obo REE-Nb-Fe deposit, Inner Mongolia: Implications for REEmineralization. Journal of Asian Earth Sciences,2012,(57):90-102.
    Le Bas M J, Kellere J, Kejie T, et al. Carbonatite dykes at bayan Obo, innerMongolia, China. Mineralogy and Petrology,1992,46(3):195-228.
    Le Bas M J, Spiro B and Yang X. Oxygen, carbon and strontium isotope study ofthe carbonatitic dolomite host of the Bayan Obo Fe-Nb-REE deposit, Inner Mongolia,N China. Mineralogical Magazine,1997,61(4):531-541.
    Le Bas M J, Yang X, Taylor Rex N, et al. New evidence from a calcite-dolomitecarbonatite dyke for the magmatic origin of the massive Bayan Obo ore-bearingdolomite marble, Inner Mongolia, China. Mineralogy and Petrology,2007,90:3-4.
    Li W Y, Teng F Z, Ke S, et al. Heterogeneous magnesium isotopic compositionof the upper continental crust. Geochimica et Cosmochimica Acta,2010,74(23):6867-6884.
    Li W, Chakraborty S, Beard B L, et al. Magnesium isotope fractionation duringprecipitation of inorganic calcite under laboratory conditions. Earth and PlanetaryScience Letters,2012,333:304-316.
    Ling M X, Sedaghatpour F, Teng F Z, et al. Homogeneous magnesium isotopiccomposition of seawater: an excellent geostandard for Mg isotope analysis. RapidCommunications in Mass Spectrometry,2011,25(19):2828-2836.
    Liu S A, Teng F Z, He Y, et al. Investigation of magnesium isotope fractionationduring granite differentiation: Implication for Mg isotopic composition of thecontinental crust. Earth and Planetary Science Letters,2010,297(3-4):646-654.
    Liu S A, Teng F Z, Yang W, et al. High-temperature inter-mineral magnesiumisotope fractionation in mantle xenoliths from the North China craton. Earth andPlanetary Science Letters,2011,308(1-2):131-140.
    Liu Y, Williams Ian S, Chen J, et al. The significance of Paleoproterozoic zirconin carbonatite dikes associated with the Bayan Obo REE-Nb-Fe deposit. AmericanJournal of Science,2008,308(3):379-397.
    Lowenstam H A. Niagaran reefs of the Great Lakes area. the Journal of Geology,1950:430-487.
    Markl G, von Blanckenburg F and Wagner T. Iron isotope fractionation duringhydrothermal ore deposition and alteration. Geochimica et Cosmochimica Acta,2006,70(12):3011-3030.
    Matthews A, Morgans-Bell H S, Emmanuel S, et al. Controls on iron-isotopefractionation in organic-rich sediments (Kimmeridge Clay, Upper Jurassic, southernEngland). Geochimica et Cosmochimica Acta,2004,68(14):3107-3123.
    McDonough W F and Sun S S. The composition of the Earth. Chemical Geology,1995,120(3-4):223-253.
    Monty C L, Bosence D, Bridges P, et al., Eds. Carbonate Mud-Mounds: TheirOrigin and Evolution (Special Publication23of the IAS). Oxford, Wiley-Blackwell,1995.
    Norman M D, Yaxley G M, Bennett V C, et al. Magnesium isotopic compositionof olivine from the Earth, Mars, Moon, and pallasite parent body. GeophysicalResearch Letters,2006,33(15).
    Pearce C R, Saldi G D, Schott J, et al. Isotopic fractionation during congruentdissolution, precipitation and at equilibrium: Evidence from Mg isotopes. Geochimicaet Cosmochimica Acta,2012,92:170-183.
    Pearson N J, Griffin W L, Alard O, et al. The isotopic composition of magnesiumin mantle olivine: Records of depletion and metasomatism. Chemical Geology,2006,226(3-4):115-133.
    Philpotts J A, Tatsumoto M, Li X H, et al. Some Nd and Sr isotopic systematicsfor the REE-enriched deposits at Bayan Obo, China. Chemical Geology,1991,90:3-4.
    Planavsky N, Rouxel O J, Bekker A, et al. Iron isotope composition of someArchean and Proterozoic iron formations. Geochimica Et Cosmochimica Acta,2012,80(0):158-169.
    Pogge von Strandmann P A E. Precise magnesium isotope measurements in coretop planktic and benthic foraminifera. Geochemistry Geophysics Geosystems,2008,9.
    Pogge von Strandmann P A E, Burton K W, James R H, et al. The influence ofweathering processes on riverine magnesium isotopes in a basaltic terrain. Earth andPlanetary Science Letters,2008a,276(1-2):187-197.
    Pogge von Strandmann P A E, James R H, van Calsteren P, et al. Lithium,magnesium and uranium isotope behaviour in the estuarine environment of basalticislands. Earth and Planetary Science Letters,2008b,274(3-4):462-471.
    Poitrasson F, Halliday A N, Lee D C, et al. Iron isotope differences betweenEarth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms.Earth and Planetary Science Letters,2004,223(3-4):253-266.
    Poitrasson F and Freydier R. Heavy iron isotope composition of granitesdetermined by high resolution MC-ICP-MS. Chemical Geology,2005,222(1-2):132-147.
    Poitrasson F. Iron isotope fractionation during planetary differentiation;discussion. Earth and Planetary Science Letters,2007,256:3-4.
    Polyakov V B. Equilibrium fractionation of the iron isotopes: Estimation from Mssbauer spectroscopy data. Geochimica et Cosmochimica Acta,1997,61(19):4213-4217.
    Polyakov V B and Mineev S D. The use of M ssbauer spectroscopy in stableisotope geochemistry. Geochimica et Cosmochimica Acta,2000,64(5):849-865.
    Polyakov V B, Clayton R N, Horita J, et al. Equilibrium iron isotopefractionation factors of minerals; reevaluation from the data of nuclear inelasticresonant X-ray scattering and Mossbauer spectroscopy. Geochimica et CosmochimicaActa,2007,71(15):3833-3846.
    Riding R. Structure and composition of organic reefs and carbonate mud mounds:concepts and categories. Earth-Science Reviews,2002,58(1):163-231.
    Rouxel O, Dobbek N, Ludden J, et al. Iron isotope fractionation during oceaniccrust alteration. Chemical Geology,2003,202(1-2):155-182.
    Rouxel O, Fouquet Y and Ludden J N. Subsurface processes at the Lucky Strikehydrothermal field, Mid-Atlantic Ridge: Evidence from sulfur, selenium, and ironisotopes. Geochimica et Cosmochimica Acta,2004,68(10):2295-2311.
    Rouxel O, Shanks Wayne C, Bach W, et al. Integrated Fe and S isotope study ofsea-floor hydrothermal vents at East Pacific Rise9-10degrees N. Chemical Geology,2008,252:3-4.
    Rouxel O J, Bekker A and Edwards K J. Iron isotope constraints on the Archeanand Paleoproterozoic ocean redox state. Science2005,307(5712):1088-1091.
    Schauble E A, Rossman G R and Taylor H P. Theoretical estimates ofequilibrium Fe-isotope fractionations from vibrational spectroscopy. Geochimica etCosmochimica Acta,2001,65(15):2487-2497.
    Schoenberg R and von Blanckenburg F. Modes of planetary-scale Fe isotopefractionation. Earth and Planetary Science Letters,2006,252:342-359.
    Schuessler J A, Schoenberg R and Sigmarsson O. Iron and lithium isotopesystematics of the Hekla volcano, Iceland--Evidence for Fe isotope fractionationduring magma differentiation. Chemical Geology,2009,258(1-2):78-91.
    Severmann S, Johnson C M, Beard B L, et al. The effect of plume processes onthe Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferredfrom the Rainbow vent site, Mid-Atlantic Ridge,36?4'N. Earth and Planetary ScienceLetters,2004,225(1-2):63-76.
    Severmann S, Johnson C M, Beard B L, et al. The effect of early diagenesis onthe Fe isotope compositions of porewaters and authigenic minerals in continentalmargin sediments. Geochimica et Cosmochimica Acta,2006,70(8):2006-2022.
    Sharma M, Polizzotto M and Anbar A D. Iron isotopes in hot springs along theJuan de Fuca Ridge. Earth and Planetary Science Letters,2001,194(1-2):39-51.
    Shen B, Jacobsen B, Lee C-T A, et al. The Mg isotopic systematics of granitoidsin continental arcs and implications for the role of chemical weathering in crustformation. Proceedings of the National Academy of Sciences,2009,106(49):20652-20657.
    Smith M P and Henderson P. Preliminary fluid inclusion constraints on fluidevolution in the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. EconomicGeology,2000,95(7):1371-1388.
    Smith M P. Metasomatic silicate chemistry at the Bayan Obo Fe-REE-Nb deposit,Inner Mongolia, China; contrasting chemistry and evolution of fenitising andmineralising fluids. Lithos,2007,93:1-2.
    Song L T, Liu C Q, Wang Z L, Zhu X K, Teng Y G, Liang L, Li, Tang S H, Li J,Iron isotope fractionation during biogenochemical cycle: Information from suspendedparticulate matter (SPM) in Aha Lake and its tributaries, Guizhou, China[J]. Chemicalgeology,2011,280:170-179.
    Sossi P A, Foden J D, Halverson G P, Redox-controlled iron isotope fractionationduring magmatic differentiation: an example from the Red Hill intrusion, S.Tasmania[J]. Contributions to Mineralogy and Petrology,2012,164(5):757-772.
    Sun J, Zhu X K, Tang S H, et al. Investigation of matrix effects in theMC-ICP-MS induced by Nb, W, and Cu: isotopic case studies of iron and copper.Chinese Journal of Geochemistry,2013,32:1-6.
    Teng F Z, Wadhwa M and Helz R T. Investigation of magnesium isotopefractionation during basalt differentiation: Implications for a chondritic compositionof the terrestrial mantle. Earth and Planetary Science Letters,2007,261(1-2):84-92.
    Teng F Z, Li W-Y, Ke S, et al. Magnesium isotopic composition of the Earth andchondrites. Geochimica et Cosmochimica Acta,2010a,74(14):4150-4166.
    Teng F Z, Li W Y, Rudnick R L, et al. Contrasting lithium and magnesiumisotope fractionation during continental weathering. Earth and Planetary ScienceLetters,2010b,300(1-2):63-71.
    Teng F, Dauphas N, Huang S, et al. Iron isotopic systematics of oceanic basalts.Geochimica Et Cosmochimica Acta,2013,107:12-26.
    Teng F Z, Dauphas N and Helz R T. Iron isotope fractionation during magmaticdifferentiation in Kilauea Iki lava lake. Science,2008,320(5883):1620.
    Tipper E T, Galy A and Bickle M J. Riverine evidence for a fractionated reservoirof Ca and Mg on the continents: Implications for the oceanic Ca cycle. Earth andPlanetary Science Letters,2006a,247(3-4):267-279.
    Tipper E T, Galy A, Gaillardet J, et al. The magnesium isotope budget of themodem ocean: Constraints from riverine magnesium isotope ratios. Earth andPlanetary Science Letters,2006b,250(1-2):241-253.
    Tipper E T, Galy A and Bickle M J. Calcium and magnesium isotope systematicsin rivers draining the Himalaya-Tibetan-Plateau region: Lithological or fractionationcontrol? Geochimica et Cosmochimica Acta,2008a,72(4):1057-1075.
    Tipper E T, Louvat P, Capmas F, et al. Accuracy of stable Mg and Ca isotope dataobtained by MC-ICP-MS using the standard addition method. Chemical Geology,2008b,257(1-2):65-75.
    Toomey D and Finks R (1969). Middle Ordovician (Chazyan) mounds, southernQuebec, Canada: a summary report. NY State Geological Association, Guidebook toField Excursions.41st Annual Meeting.
    Toomey D F and Ham W E. Pulchrilamina, a new mound-building organismfrom Lower Ordovician rocks of west Texas and southern Oklahoma. Journal ofPaleontology,1967:981-987.
    von Blanckenburg F, Mamberti M, Schoenberg R, et al. The iron isotopecomposition of microbial carbonate. Chemical Geology,2008,249:1-2.
    Walczyk T, von Blanckenburg F, Natural iron isotope variations in humanblood[J]. Science2002,295(5562):2065-2066.
    Walczyk T, von Blanckenburg F, Deciphering the iron isotope message of thehuman body[J]. International Journal of Mass Spectrometry,2005,242(2):117-134.
    Welch S A, Beard B L, Johnson C M, Braterman P S, Kinetic and equilibrium Feisotope fractionation between aqueous Fe(II) and Fe(III)[J]. Geochimica etCosmochimica Acta,2003,67(22):4231-4250.
    Wang J, Tatsumoto M, Li X, et al. A precise232Th-208Pb chronology offine-grained monazite; age of the Bayan Obo REE-Fe-Nb ore deposit, China.Geochimica et Cosmochimica Acta,1994,58(15):3155-3169.
    Wang K Y, Fan H R, Yang K F, et al. Bayan Obo carbonatites: testure evidencefrom polyphase intrusive and extrusive carbonatites. Acta Geologica Sinica,2010,84:1365-1376.
    Wang S J, Teng F Z, Williams H M, et al. Magnesium isotopic variations incratonic eclogites: Origins and implications. Earth and Planetary Science Letters,2012,359:219-226.
    Wang Y, Zhu X, Mao J, et al. Iron isotope fractionation during skarn-typemetallogeny: A case study of Xinqiao Cu–S–Fe–Au deposit in the Middle–LowerYangtze valley. Ore Geology Reviews,2011,43(1):194-202.
    Welch S A, Beard B L, Johnson C M, et al. Kinetic and equilibrium Fe isotopefractionation between aqueous Fe (II) and Fe (III). Geochimica et cosmochimica acta,2003,67(22):4231-4250.
    Wendt J, Kaufmann B and Belka Z. An exhumed Palaeozoic underwater scenery:the Visean mud mounds of the eastern Anti-Atlas (Morocco). Sedimentary Geology,2001,145(3):215-233.
    Weyer S, Anbar A D, Brey G P, et al. Iron isotope fractionation during planetarydifferentiation. Earth and Planetary Science Letters,2005,240(2):251-264.
    Weyer S and Ionov D A. Partial melting and melt percolation in the mantle: Themessage from Fe isotopes. Earth and Planetary Science Letters,2007,259(1-2):119-133.
    Whitehouse M J and Fedo C M. Microscale heterogeneity of Fe isotopes in>3.71Ga banded iron formation from the Isua Greenstone Belt, southwest Greenland.Geology,2007,35(8):719.
    Wiechert U and Halliday A N. Non-chondritic magnesium and the origins of theinner terrestrial planets. Earth and Planetary Science Letters,2007,256(3-4):360-371.
    Wombacher F, Eisenhauer A, Heuser A, et al. Separation of Mg, Ca and Fe fromgeological reference materials for stable isotope ratio analyses by MC-ICP-MS anddouble-spike TIMS. Journal of Analytical Atomic Spectrometry,2009,24(5):627-636.
    Woolley A R and Kempe D R C. Carbonatites: nomenclature, average chemicalcompositions, and element distribution. in: K. Bell, Eds. Carbonatites: Genesis andEvolution. London: Unwin Hyman,1989:1-14.
    Yamaguchi K E, Johnson C M, Beard B L, et al. Biogeochemical cycling of ironin the Archean-Paleoproterozoic Earth; constraints from iron isotope variations insedimentary rocks from the Kaapvaal and Pilbara cratons. Chemical Geology,2005,218:1-2.
    Yang K F, Fan H R, Santosh M, et al. Mesoproterozoic carbonatitic magmatismin the Bayan Obo deposit, Inner Mongolia, North China: Constraints for themechanism of super accumulation of rare earth elements. Ore Geology Reviews,2011a,40:122-131.
    Yang K F, Fan H R, Santosh M, et al. Mesoproterozoic mafic and carbonatiticdykes from the northern margin of the North China Craton: implications for the finalbreakup of Columbia supercontinent. Tectonophysics,2011b,498(1):1-10.
    Yang W, Teng F-Z and Zhang H-F. Chondritic magnesium isotopic compositionof the terrestrial mantle: A case study of peridotite xenoliths from the North Chinacraton. Earth and Planetary Science Letters,2009a,288(3-4):475-482.
    Yang W, Teng F-Z, Zhang H-F, et al. Magnesium isotopic systematics ofcontinental basalts from the North China craton: Implications for tracing subductedcarbonate in the mantle. Chemical Geology,2012,328:185-194.
    Yang X Y, Sun W D, Zhang Y X, et al. Geochemical constraints on the genesis ofthe Bayan Obo Fe–Nb–REE deposit in Inner Mongolia, China. Geochimica etCosmochimica Acta,2009b,73(5):1417-1435.
    Young E D, Galy A and Nagahara H. Kinetic and equilibrium mass-dependentisotope fractionation laws in nature and their geochemical and cosmochemicalsignificance. Geochimica et Cosmochimica Acta,2002,66(6):1095-1104.
    Young E D and Galy A. The isotope geochemistry and cosmochemistry ofmagnesium. Reviews in mineralogy and geochemistry,2004,55(1):197-230.
    Young E D, Tonui E, Manning C E, et al. Spinel-olivine magnesium isotopethermometry in the mantle and implications for the Mg isotopic composition of Earth.Earth and Planetary Science Letters,2009,288(3-4):524-533.
    Yuan Z, Bai G, Wu C, et al. Geological features and genesis of the Bayan OboREE ore deposit, Inner Mongolia, China. Applied Geochemistry,1992,7(5):429-442.
    Zhao X M, Zhang H F, Zhu X K, et al. Iron isotope variations in spinel peridotitexenoliths from North China Craton: implications for mantle metasomatism.Contributions to Mineralogy and Petrology,2010,160(1):1-14.
    Zhao X M, Zhang H F, Zhu X K, et al. Iron isotope evidence for multistagemelt–peridotite interactions in the lithospheric mantle of eastern China. Chemicalgeology,2012,292–293:127-139.
    Zhu X K, O'Nions R K, Guo Y, et al. Secular variation of iron isotopes in NorthAtlantic Deep Water. Science,2000,287(5460):2000-2002.
    Zhu X K, Guo Y, O'Nions R K, et al. Isotopic homogeneity of iron in the earlysolar nebula. Nature,2001,412(6844):311-313.
    Zhu X K, Guo Y, Williams R J P, et al. Mass fractionation processes of transitionmetal isotopes. Earth and Planetary Science Letters,2002,200:1-2.
    白鸽,袁忠信.白云鄂博矿床成因分析.中国地质科学院矿床地质研究所所刊,1983,(4):1-15.
    白鸽,吴澄宇,袁忠信,等.白云鄂博矿床地质特征和成因论证:地质出版社,1996.
    曹荣龙,朱寿华,王俊文.白云鄂博铁—稀土矿床的物质来源和成因理论问题.中国科学: B辑,1994,24(12):1298-1307.
    陈辉,邵济安.白云鄂博地区碳酸岩的形成方式及构造背景.见:地质矿产部沈阳地质矿产研究所, Eds.中国北方板块构造论文集,第2集.北京:地质出版社,1987:73-79.
    丁悌平,蒋少涌,田世洪,等.白云鄂博矿区赋矿“白云质大理岩”成因的稳定同位素证据.地球学报,2003,24(6):535-542.
    范宏瑞,陈福坤,王凯怡,等.白云鄂博REE—Fe—Nb矿床酸岩墙锆石U—Pb年龄及其地质意义.岩石学报,2002,18(3):363-368.
    范宏瑞,胡芳芳,陈福坤,等.白云鄂博超大型REE-Nb-Fe矿区碳酸岩墙的侵位年龄——兼答Le Bas博士的质疑.岩石学报,2006,22(2):519-520.
    范宏瑞,杨奎锋,胡芳芳,等.内蒙古白云鄂博地区基底岩石锆石年代学及对构造背景的指示岩石学报,2010,26(5):1342-1350.
    方涛,裘愉卓,裘秀华.白云鄂博矿床烯土氟碳酸盐矿物碳,氧同位素特征及其成因意义.科学通报,1994,39(21):1982-1985.
    方涛,裘愉卓.白云鄂博矿床稀土矿物稳定同位素特征及其意义.矿床地质,1997,16(1):31-40.
    房楠.镁同位素分析测试方法及其在白云鄂博矿床研究中的应用[硕士论文].北京,中国地质大学(北京),2011.
    高计元,王一先,裘愉卓,等.白云鄂博矿床含矿白云岩的成因探讨.沉积学报,1999,17(A12):675-680.
    葛璐,蒋少涌.镁同位素地球化学研究进展.岩石矿物学杂志,2008,27(4):367r374.
    郝梓国,王希斌,肖国望,等.白云鄂博碳酸岩型REE—Ne—Fe矿床——一个罕见的中元古代破火山机构成岩成矿实例.地质学报,2002,76(4):525-540.
    何学贤,朱祥坤,李世珍,等.多接收器等离子体质谱(MC-ICP-MS)测定Mg同位素方法研究.岩石矿物学杂志,2008a,27(5):441-448.
    何学贤,李世珍,唐索寒. Mg同位素应用研究进展.岩石矿物学杂志,2008b,27(5):472-476.
    何作霖.绥远白云鄂博稀土类矿物初步研究.中国地质学会会志,1935,2:279-282.
    柯珊,刘盛遨,李王晔,等.镁同位素地球化学研究新进展及其应用.岩石学报,2011,27(2):383-397.
    李津,朱祥坤,唐索寒,低温环境下铁同位素分馏的若干重要过程[J].岩石矿物学杂志,2008,27(004):305-316.
    李世珍,铜锌铁在植物吸收及运输过程中同位素分馏研究[D],2011:北京.
    李世珍,房楠,孙剑,等.高REE-Nb-Fe-Mn样品Mg同位素测定的化学分离方法.吉林大学学报,201343(1):142-148.
    李世珍,朱祥坤,何学贤,等.用于多接收器等离子质谱Mg同位素测定的分离方法研究.岩石矿物学杂志,2008,27(5):449-456.
    李毓英.白云鄂博铁矿地质与勘探.北京:地质出版社,1959.
    李志红.辽宁省鞍山-本溪条带状铁建造的Fe同位素地球化学研究[博士论文].中国地质科学院,2007.
    李志红,朱祥坤,唐索寒.鞍山-本溪地区条带状铁建造的铁同位素与稀土元素特征及其对成矿物质来源的指示.岩石矿物学杂志,2008a,27(4):285-290.
    李志红,朱祥坤,唐索寒.鞍山-本溪地区条带状铁矿的Fe同位素特征及其对成矿机理和地球早期海洋环境的制约.岩石学报,2012,28(11):3545-3558.
    李志红,朱祥坤,唐索寒,等.绿片岩-低角闪岩相变质条件下磁铁矿与黄铁矿间的Fe同位素分馏.岩石矿物学杂志,2008b,27(4):291-297.
    李志红,朱祥坤.河北省宣龙式铁矿的地球化学特征及其地质意义.岩石学报,2012,28(9):2903-2911.
    刘兰笙,高翔,杜安道,等.白云鄂博稀土矿床中辉钼矿的铼—锇同位素年龄.矿床地质,1996,15(2):188-191.
    刘铁庚.白云鄂博白云碳酸岩的地质和地球化学特征.岩石学报,1985,1(3):15-28.
    刘铁庚.白云鄂博白云岩氧,碳同位素组成及其成因讨论.地质论评,1986,32(2):150-159.
    刘玉龙,彭谷洋,张巽,等.白云鄂博赋矿地层H8白云岩的U-Pb和Pb-Pb定年.矿物岩石地球化学通报,2001,20(4):274-277.
    刘玉龙,杨刚,陈江峰,等.白云鄂博超大型稀土-铌-铁矿床黄铁矿Re-Os定年.科学通报,2005a,50(2):172-175.
    刘玉龙,陈江峰,李惠民,等.白云鄂博矿床白云石型矿石中独居石单颗粒U-Th-Pb-Sm-Nd定年.岩石学报,2005b,21(3):881-888.
    刘玉龙,陈江峰,李惠民,等.白云鄂博矿田碳酸岩墙年代学再研究.地质论评,2006,52(3):415-422.
    孟庆昌.白云鄂博碳酸岩矿床的成因特征.地质与勘探,1981,(3):10-17.
    孟庆润, Drew L J.内蒙白云鄂博“H8含矿白云岩”氧,碳同位素研究及其成因.地质找矿论丛,1992,7(2):46-54.
    孟庆润.论白云鄂博铁矿含矿围岩——白云岩的沉积成因及其沉积环境分析.地质论评,1982,28(5):481-488.
    内蒙古自治区地质矿产局.内蒙古自治区区域地质志.北京:地质出版社,1991.
    乔秀夫,章雨旭.内蒙古腮林忽洞群综合地层和白云鄂博矿床赋矿微晶丘.地质学报,1997,71(3):202-211.
    裘愉卓,王中刚,赵振华.试论稀土铁建造.地球化学,1981,(3):220-231.
    裘愉卓.白云鄂博独居石SHRIMP定年的思考.地球学报:中国地质科学院院报,1997,18(增刊):211-213.
    任英忱,张英臣,张宗清.白云鄂博稀土超大型矿床的成矿时代及其主要地质热事件.地球学报,1994,15(1):95-101.
    孙剑,朱祥坤,陈岳龙.碳酸盐矿物铁同位素测试的选择性溶解方法研究——以白云鄂博矿床赋矿白云岩为例.岩矿测试,2013,31(1):28-34.
    孙剑,朱祥坤,唐索寒,等. AG MP-1阴离子交换树脂元素分离方法再研究.现代地质,2010,24(5):866-869.
    唐索寒,朱祥坤. AG MP-1阴离子交换树脂元素分离方法研究.高校地质学报,2006,12(3):398-403.
    唐索寒,朱祥坤,蔡俊军,等.用于多接收器等离子体质谱铜铁锌同位素测定的离子交换分离方法.岩矿测试,2006,25(1):5-8.
    唐索寒,朱祥坤,李津,等.地质样品铜、铁、锌同位素标准物质的研制.岩石矿物学杂志,2008,27(4):279-284.
    唐索寒,闫斌,朱祥坤,等.玄武岩标准样品铁铜锌同位素组成.岩矿测试,2012,31(2):218-224.
    陶克捷,杨主明,张培善,等.白云鄂博矿区周围火成碳酸岩岩墙地质特征.地质科学,1998,33(1):73-83.
    涂光炽.白云鄂博矿床和石碌矿床.中国科学,1980,(10):983-989.
    王楫,李双庆,王保良,等.狼山-白云鄂博裂谷系.北京:北京大学出版社,1992.
    王凯怡,范宏瑞,谢奕汉.白云鄂博碳酸岩墙的稀土和微量元素地球化学及对其成因的启示.岩石学报,2002,18(3):340-348.
    王凯怡,范宏瑞,谢奕汉,等.白云鄂博超大型REE—Fe—Nb矿床基底杂岩的锆石U—Pb年龄.科学通报,2001,46(16):1390-1394.
    王凯怡,杨奎锋,范宏瑞,等.白云鄂博矿床研究若干问题的探讨.地质学报,2012,86(5):687-699.
    王世霞,朱祥坤,李世珍,华南地区玄武岩风化壳的Fe同位素初步研究[J].矿物岩石地球化学通报,2011,30(S):512.
    王世霞,朱祥坤,宋谢炎,攀枝花钒钛磁铁矿Fe同位素分布特征及其意义[J].矿物学报,2011(S1):1020-1021.
    王世霞,朱祥坤,宋谢炎,等.四川攀枝花钒钛磁铁矿床Fe同位素特征及其成因指示意义.地球学报,2012.
    王希斌,郝梓国.白云鄂博——一个典型的碱性—碳酸岩杂岩的厘定.地质学报,2002,76(4):501-524.
    王跃,朱祥坤.铁同位素体系及其在矿床学中的应用.岩石学报,2012,28(11):3638-3654.
    王中刚,李绍柄,苏贤泽.沉积变质-热液交代型稀土铁矿床的地球化学.地球化学,1973,(1):5-11.
    魏菊英,上官志冠, Eds.白云鄂博铁矿围岩白云岩的氧,碳同位素组成及其成因.岩石学研究(第二辑).北京,地质出版社,1983b.
    魏菊英,上官志冠.内蒙白云鄂博铁矿床中磁铁矿和赤铁矿的氧同位素组成.地质科学,(3),1983a:217-224.
    魏菊英,蒋少勇,万德芳.内蒙白云鄂博稀土,铁矿床的硅同位素组成.地球学报,1994,1-2:102-110.
    肖荣阁,费红彩,安国英,等.内蒙古白云鄂博矿区白云岩岩石学及其成因研究.现代地质,2003,17(3):287-293.
    肖荣阁,费红彩,王安建,等.白云鄂博含矿碱性火山岩建造及其地球化学.地质学报,2012,86(5):735-752.
    闫斌.陡山沱组盖帽白云岩和黑色页岩的铁同位素特征及其古海洋意义[硕士论文].北京,中国地质科学院,2009.
    闫斌,朱祥坤,唐索寒,等.广西新元古代BIF的铁同位素特征及其地质意义.地质学报,2010,84(7):1080-1086.
    杨奎锋,范宏瑞,胡芳芳,等.白云鄂博地区碳酸岩脉侵位序列与稀土元素富集机制.岩石学报,2010,26(5):1523-1539.
    杨学明,杨晓勇,郑永飞,等.白云鄂博富稀土元素碳酸岩墙的碳和氧同位素特征.高校地质学报,2000,6(2):205-209.
    杨岳衡,孙金凤,谢烈文,等.地质样品Nd同位素激光原位等离子体质谱(LA-MC-ICPMS)测定.科学通报,2008,53(5):568-576.
    袁忠信,张宗清.内蒙白云鄂博铌,稀土,铁矿床的成矿时代和矿床成因.矿床地质,1991,10(1):59-70.
    张培善,陶克捷.白云鄂博矿物学.北京:科学出版社,1986.
    张宗清,袁忠信,唐索寒,等.白云鄂博矿床年龄和地球化学.北京:地质出版社,2003.
    章雨旭,吕洪波,张绮玲,等.微晶丘成因新认识.地球科学进展,2005,20(6):693-700.
    章雨旭,彭阳,乔秀夫,等.白云鄂博矿床赋矿白云岩成因新认识.地质论评,1998,44(1):70-70.
    章雨旭,杨占峰,张绮玲,等.白云鄂博矿床及北京西山微晶丘地质、地球化学研究.北京:地质出版社,2009.
    赵景德,任英忱.以多种证据建立的白云鄂博稀土矿床成矿矿物的生成顺序.地质找矿论丛,1991,6(4):1-17.
    赵新苗,朱祥坤,张宏福,等. Fe同位素在地幔地球化学研究中的应用及进展.岩石矿物学杂志,2008,27(5):435-440.
    赵振华.条带状铁建造(BIF)与地球大氧化事件.地学前缘2010,17(2):1-12.
    中国科学院地球化学研究所.白云鄂博矿床地球化学.北京:科学出版社,1988.
    周振玲,李功元,宋同云,等.内蒙古白云石碳酸岩的地质特征及其成因探讨.地质论评,1980,26(1):35-41.
    朱祥坤,李志红,唐索寒,等.早前寒武纪硫铁矿矿床Fe同位素特征及其地质意义——以山东石河庄和河北大川为例.岩石矿物学杂志,2008a,27(5):429-434.
    朱祥坤,李志红,赵新苗,等.铁同位素的MC-ICP-MS测定方法与地质标准物质的铁同位素组成.岩石矿物学杂志,2008b,27(4):263-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700