用户名: 密码: 验证码:
新疆野扁桃繁殖生物学特性及种质资源遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆野扁桃(Amygdalus ledebouriana Schlecht.)为蔷薇科李亚科桃属扁桃亚属植物,是一种十分珍贵而古老的树种,属新生代第三纪孑遗的物种,在当今世界上已十分稀少,被誉为“活化石”。
     本文在对新疆野生扁桃资源普查、生长发育状况调查的基础上,开展了该野生种植物的繁殖生物学特性及其种质资源群体遗传多样性的研究。同时,还对包括新疆野扁桃在内的扁桃属中的不同种与新疆栽培扁桃品种间的亲缘关系进行了初步研究。希望通过本文的研究,以便掌握新疆野扁桃繁殖特性及不同分布群体的遗传变异情况,为扁桃杂交育种和选育优良品种提供理论依据和遗传学背景资料,也为下一步新疆野扁桃及其近缘栽培种遗传图谱的构建和功能基因定位奠定基础。主要研究结果如下:
     1.新疆野扁桃花芽形态分化的研究结果
     采用石蜡切片法对裕民野扁桃自然保护区群体的新疆野扁桃花芽分化过程进行观察研究,结果表明:新疆野扁桃花芽形态分化可分为未分化期、花蕾原基分化期、萼片原基分化期、花瓣原基分化期、雄蕊原基分化期和雌蕊原基分化期6个时期。6月中旬开始进入花芽形态分化期,从花芽形态分化开始到雌蕊原基分化形成各分化时期有重叠现象,整个分化时期集中在6月下旬至9月上旬。完成花芽形态分化所需时间为90~100d。
     2.新疆野扁桃授粉特性的研究结果
     新疆野扁桃完成授粉试验15d后,异花授粉平均坐果率较高,达到65.3%、而自花授粉率为19.7%;自然授粉率很低,仅为5.3%。整体的坐果率相对较低,为30%。
     3.新疆野扁桃实生繁殖的研究结果
     新疆野扁桃种子选择合适的秋播深度尤为重要。播种时覆土以4~5 cm较为适宜,出苗率极高,播后注意镇压保证种子与土壤密接,恢复土壤毛细管作用,有利于水分的吸收。
     4.新疆野扁桃组织培养繁殖的研究结果
     以生长在新疆北部塔城地区裕民县巴尔鲁克山的新疆野扁桃树上当年结的种子为试材,采用赤霉素24h处理打破休眠,之后使用常规法消毒后接种于诱导培养基上。生长约一个月后,将由试管中种子培养长成的小植株剪切成长约1cm的单芽茎段,接入增殖培养基进行培养。新疆野扁桃自然条件下进行实生及根蘖繁殖,而在组织培养离体繁殖条件下非常难生根,本试验采用100mg.L-1IBA进行浸渍处理60min后,再接入1/2MS培养基中培养,初期暗处理2周后置于白炽光下培养生根率可达100%。而后生根的试管苗在珍珠岩基质中培养,进行有效的移栽驯化管理,获得了较理想的移栽成活率。
     5.新疆野扁桃表型多样性的研究结果
     为了从数量上分析新疆野扁桃天然群体表型性状的变异,我们调查了新疆野扁桃在新疆全部5个不同天然分布群体。每个群体选取30个个体为试材,针对新疆野扁桃15个表型性状指标进行了系统比较分析研究,讨论了群体间和群体内的表型多样性,结果表明:新疆野扁桃种内表型性状在群体间和群体内均存在着丰富的遗传差异,其天然分布群体内的变异大于群体间的变异,群体间的分化相对较小;利用群体间欧氏距离进行UPGMA聚类分析表明,新疆野扁桃天然群体可以划分为3类,表型性状的欧式距离与地理距离相关不显著。主成分分析结果显示叶片长度/叶片宽度比值、果核横径、果核长度/果核宽度比值、叶片长度、叶片宽度、果核千粒重等6个表型性状指标是反映新疆野扁桃形态差异的主要因素。
     6.新疆野扁桃遗传多样性SSR分子标记研究结果
     采用10对SSR引物对新疆野扁桃5个不同天然分布群体的150个叶片样本进行群体遗传多样性标记的研究。结果表明:10对SSR引物在5个居群中可平均扩增出9.2条带,其中裕民县群体多态性带数百分比最高为92.77%,各位点平均Nei’s基因多样度为0.262;5个群体共扩增出92个位点,总的种级水平及布尔津县、哈巴河县、塔城市郊、托里县和裕民县5个群体水平多态性位点百分比分别为100%、88.04%、85.87%、85.87%、90.21%、92.39%,种级水平Nei基因多样度(H = 0.2971)和Shannon信息指数(I=0.4421)大于种下群体,5个种下群体Nei基因多样度和Shannon信息指数比较:裕民县>托里县>哈巴河县>塔城市郊>布尔津县。
     SSR谱带频率方差分析(AMOVA)表明,遗传多样性主要分布在群体内,群体内方差分量的贡献率占63.56%,而群体间方差分量的贡献率占36.44%,表明具有丰富的群体内变异。UPGMA聚类分析结果表明:在一定的遗传距离基础上,5个分布群体分为3个类群,表型性状的欧式距离与地理距离相关不显著。塔城市郊群体和哈巴河群体遗传关系最近,而裕民县群体与托里县群体的遗传关系也很近,布尔津县群体远离其他4个群体,根据基因分化系数值(GST =0.0598),测得的基因流Nm为0.9197,证明种群间遗传交换较小,这与环境适应性和高山阻隔有一定的关系。所有参数分析表明,裕民县群体遗传多样性最丰富,故在制定原位种质保护计划时应优先考虑裕民县群体。
     7.新疆野扁桃遗传多样性不同研究分析方法结果的比较与评价
     表型与DNA二种水平的遗传标记方法揭示的遗传多样性水平有差异,表型性状比DNA分子标记具有更大的变异性;其受到环境的影响较大,也即对环境更敏感。2种水平的遗传标记聚类结果将野扁桃5个不同分布群体均可分为3个大类群,但是出现有个别不同的群体排序位置,反映了2种标记在分析种群间关系上的异同性,从本研究结果来看,说明表型与DNA标记有一定的耦合性和相关性,但也存在差异,在研究上可以互为补充。
     8.扁桃属植物种质资源鉴定的SSR分子标记研究
     利用SSR分子标记技术对扁桃属植物中的国内外55份扁桃材料的亲缘关系进行了鉴定,使用12对选择性引物组合共扩增出75条扩增条带,并对其进行聚类分析,结果表明:不同种以及不同品种间的遗传距离不同,在相似系数小于0.68时,大多数栽培品种聚为一类,栽培品种中,同一种源区的大多数栽培品种能聚类在一起。从聚类图上看,普通栽培扁桃与新疆野扁桃间的亲缘关系比长柄扁桃、蒙古扁桃、西康扁桃以及榆叶梅间的亲缘关系更近。这个结果也表明了扁桃属植物种质资源的演化关系和遗传多样性水平。
Amygdalus ledebouriana Schlecht. (wild Almond) belong to Rosaceae, Prunoideae, Amygdalus, A. ledebouriana Schlecht. It is a very primitive tree species, precious, ancient and very scarce in the world today. Botanists call it "living fossil plants".
     On the basis of preliminary investigation of Germplasm Resources in A. ledebouriana Schlecht., growth and development of the situation, we carried out A study on propagate biological characteristics and genetic diversity of germplasm resources in A. ledebouriana Schlecht. and identification of genetic relationship of Amygdalus plants by SSR, including the different species and cultivation of different varieties, in order to grasp propagate biological characteristics, different groups genetic variation of A. ledebouriana Schlecht.. and genetic relationship of Amygdalus plants. This would provide a theoretical basis and genetics background information for hybrid breeding and breeding improved varieties, and lay the foundation for the genetic gene mapping of the cultivated species and their relative construction in Amygdalus. The main research results were as follows.
     1. Research results of flower bud differentiation in A. ledebouriana Schlecht.
     In this experiment, the paraffin section method is adapted to observe the developing process of flower bud differentiation of A. ledebouriana Schlecht. in TaCheng, Xingjiang. The results indicated that the floral morphodifferentiaion can be divided into five development stages: flower initial stage, sepal differentiation stage, petal differentiation stage, stamen differentiation stage and pistil differentiation stage. The floral morphological differentiation occurred at the mid ten-day period of June. There was intersectional phenomenon in each differentiation stage. From the starting of the flower bud differentiation to the pistil primordial differentiation, the whole process appeared intently between the last ten-day period of June and the first ten-day period of September. It took 90~100 days to finish morphodifferentiation.
     2. Research results of fertilization pollination biology in A. ledebouriana Schlecht.
     15 days after pollination on A. ledebouriana Schlecht., cross-pollination has higher average fruit setting rate than self-pollination and natural-pollination. 65.3% for the cross-pollination, 19.7% for self-pollination, 5.3% for natural-pollination. Overall fruit setting rate was the relatively low, It was 30%.
     3. Research results of seed multiplication in A. ledebouriana Schlecht.
     It is especially important for autumn sowing seed multiplication of depth of A. ledebouriana Schlecht.This is more appropriate for planting a depth of 4 ~ 5 cm, and has very high germination rate, Attention to the suppression of soil after sowing seeds, restore capillary effect of the soil, this would conducive to the absorption of water.
     4. Research results of tissue culture and plantlet regeneration in A. ledebouriana Schlecht.
     The seed of precious tertiary carry-over species in low region of Baerluk mountainous of Tacheng district in Xinjiang were used to establish the system in vitro plant and develop a feasible and practicable micropropagation system of A. ledebouriana Schlecht. Seed was plunged into gibberellin to breaking dormancy, after sanitizing Planting in primary medium. One month later, single bug was cultured in elongation medium.twenty day later, 100% in rooting percentage was obtained with 100mg.L-1IBA dip in 60 min, initial dark incubating for two weeks and continuous naturally lighting treatment in room. Improvement in rooting percentage was obtained . In vitro plant was transplanted in the same time to reduce humidity gradually, in this way the survival rate was higher.
     5. Research results of morphological diversity in A. ledebouriana Schlecht.
     In order to analyses morphological characteristics of the pattern of variation of natural populations of A. ledebouriana Schlecht., we determined the morphological variation of natural populations of A. ledebouriana Schlecht. in Xinjiang to found out the relationship between morphological variation and distribution.We compared fiften phenotypic traits based on 30 trees from five populations. The results showed that there was rich genetic variation among populations and within individuals. The variation within the populations is greater than that among populations. Based on the UPGMA cluster analysis, the five populations could be divided into three groups. There was no significant relationship between geographic distances and Euclidean distance. Principal component analysis showed that Length of leaf /Maximal width of leaf index, Width of seed, Length of seed/width of seed index, Length of leaf, Maximal width of leaf, The weight of per 1000 seeds were the most important phenotypic traits which lead to the morphological variation of A. ledebouriana Schlecht.
     6. Research results of SSR genetic diversity in A. ledebouriana Schlecht.
     The genetic diversity and genetic structure as well as genetic differentiation of natural populations of A. ledebouriana Schlecht. were investigated with ten pair SSR primers for a total of 150 individuals from five populations sampled. The purpose of the study was to determine the genetic structure and diversity in these eco-geographical populations. The results indicated that: an average of 9.2 bands was detected in the five populations. The percentage of polymorphic bands in Yumin population (92.77%) was the highest in the five populations. The average Nei’s gene diversity index was 0.262 for all the loci. Totally, 92 polymorphic loci were detected and the percentage of polymorphic loci (P) was 100%、88.04%、85.87%、85.87%、90.21%、92.39%, respectively, at the species level and Burjin, Habahe, Tacheng, Tuoli and Yumin population levels. The Nei’s gene diversity index (H = 0.2971) and Shannon’s information index (I=0.4421) in the species level were higher than in the population level. The Nei’s gene diversity index and Shannon’s information index in the five populations were Yumin > Tuoli >Habahe > Tacheng>Burjin. The results of AMOVA had been indicated that the variance components of within populations and among populations contributing to total genetic variance were 63.56% and 36.44%, The results showed that there was rich genetic variation within individuals. The UPGMA cluster analysis indicated the five populations could be divided into three groups. There was no significant relationship between geographic distances and Euclidean distance.Tacheng population and Habahe population were the highest in genetic identity and the closest in genetic distance. Yumin population and Tuoli population were the close relations. Burjin population were relatively independent populations. Concurrently, Gene flow between the populations was 0.9197 based on genetic differentiation coefficient (GST= 0.0598). indicating that genetic recombination between populations is quite small , which probably is related to environmental adaptations of A. Ledebouriana Schlecht. and population isolation in their high mountain habitat. on the basis of the study of population genetic structure and the highest genetic diversity, Yumin population should be given a high priority consideration in A. ledebouriana Schlecht. population’s in situ germplasm conservation.
     7. A preliminary study on comparison and coupling of morphological and DNA markers in A. ledebouriana Schlecht.
     The diversity levels are different among morphological and DNA markers. Phenotypic characteristics had greater variability than the DNA molecular markers. The former was more sensitive to environment. Genetic cluster analysis is similar based on the results of morphological and DNA markers, the five populations could be divided into three groups. But there are different groups sort of individual locations, reflecting the similarities and difference about the analysis of the relationship between population with the two kinds of markers, It could be concluded that there was coupling and relevance to some extent in evaluating genetic diversity with the same experiment sampling by morphological and SSR marker variation. However, there was also differences. In research, the two can complement each other.
     8. Identification of Genetic Relationship of Amygdalus plants by SSR
     The genetic relationship among 55 Amygdalus plants collections, belonging to 6 species and collected from both homeland and abroad were identified via SSR molecular marker technique. 12 pairs of primers were selected out to amplify 75 polymorphism bands. The genetic distance between these collections were analyzed with cluster analysis based on these bands. The result showed that the genetic distance between them were different. And most of the cultivars were classified in the same group when the genetic similarity coefficient was less than 0.68. The cultivars from the same area were clustered in the same group. Compared the relationship among A. communis L., A.ledebouriana Schlecht. and A.pedunculata Pall., A.mongolica Moxim., A.tangutica Batal. and A.triloba (Lindl) Ricker., the relationship between A. communis L. and A.ledebouriana Schlecht. is closer than the relationship between A. communis L. and A.pedunculata Pall., A.mongolica Moxim., A.tangutica Batal. and A.triloba (Lindl) Ricker. This results gave a clearly outlook of the genetic relationship and genetic diversity level among Amygdalus plants germplasm.
引文
1.阿依先木.库热什,古丽巴哈尔.扁桃育苗技术试验[J].落叶果树,2003(2):59-60.
    2.宝音陶格涛,刘美玲,李晓兰.退化羊草草原在浅耕翻处理后植物群落演替动态研究[J].植物生态学报,2003,27(2):270–277.
    3.蔡永立.中国东部亚热带青冈果实形态变异的研究[J].生态学报,1999,19(4):581-584.
    4.蔡宇良,李珊,曹东伟等.利用DNA扩增片段序列对樱桃种质资源的遗传分析.园艺学报,2006,33(2):249-254.
    6.常永健,陈四维,马宝昆等.苹果茎尖培养中植物激素与不定根形成关系的研究[J].河北农业大学学报,1991,14(4):1-5.
    7.陈存及,代全,林谢芳等.乳源木莲天然林群落生物多样性研究[J].福建林学院学报,2001,21(4):316-319.
    8.陈芳,马显达,陆斌等.扁桃茎尖组织培养的研究[J].云南林业科技,2000(2):24-27.
    9.陈洁珍,欧良喜,吴洁芳.荔枝种质资源的研究及创新利用[J].广东农业科学,2003(4):24-26.
    10.陈世骤.进化论与分类学[M].北京:科学出版社,1978.
    11.陈晓峰,谭生江.遗传多样性研究的理论、方法及应用[M].见:陈灵芝、马克平主编,生物多样性科学原理与实践.上海:上海科学技术出版社,2001:93-125.
    12.陈小勇,陆慧萍,沈浪等.重要物种优先保护种群的确定[J].生物多样性,2002,10(3):332-338.
    13.成健红,谭敦炎,艾尔肯等.扁桃花物候学与形态学研究[J].西北植物学报,2001,21(2):339-344.
    14.程运江.柑橘体细胞胞质遗传及cpSSR引物开发研究[D].华中农业大学硕士学位论文,2003:79-103.
    15.费永俊,龚秀红.南方红豆杉表型多样性及变异[J].湖北农学院学报,2001,21(4):310-313.
    16.冯富娟.天然红松种群遗传生态学的研究[D].东北林业大学硕士学位论文,2003.
    17.高志红,章镇,韩振海.SSR技术及其在果树上的应用[J].果树学报,2002,19(5):281-285.
    18.高志红,章镇,韩振海.果梅SSR反应体系的优化[J].南京农业大学学报,2002,25(4): 19-22.
    19.高志红.果梅核心种质的构建与分子标记的研究[D].中国农业大学博士学位论文,2003:28-62.
    20.葛颂.植物群体遗传结构研究的回顾和展望[M].见:李承森主编,植物科学进展(第Ⅰ卷).北京:高等教育出版社,1997:1-15.
    21.葛颂,王明庥,陈岳武.用同工酶研究马尾松群体的遗传结构[J].林业科学,1988,24(11):399-409.
    22.葛颂,洪德元.生物多样性研究的原理与方法[M].北京:科学出版社,1994.
    23.顾万春.森林资源遗传学概论[M].北京:中国科学技术出版社,1998.
    24.顾万春.统计遗传学[M].北京:科学出版社,2004.
    25.郭春会,梅立新,张檀等.扁桃的园艺技术[M].北京:中国标准出版社, 2001:11-12.
    26.郭春会,梅立新,张檀等.扁桃引种研究初报[J].西北农林科技大学(自然科学版), 2001,30(6):89-92.
    27.郭春会,梅立新,张檀.美国扁桃栽培现状及发展特点[J].西北林学院学报,2003,18(4): 67-69.
    28.郭大龙,罗正荣.柿和君迁子SSR分析技术的建立[J].农业生物技术学报,2004,12(4):386-389.
    29.郭军战,陈铁山,彭少兵.秦岭山区黄果悬钩子种质资源分析与评价[J].西北林学院学报,2004,19(2):41-43.
    30.国家技术监督局.粮食和油料千粒重的测定法(GB/T5519-1988)[M].中国标准出版社1989.
    31.何德,谭晓风,胡芳名.AFLP分子标记技术及其在林木遗传育种上的应用[J].湖南林业科技,1999,26(4):8-17.
    32.何平.真核生物中的微卫星及其应用[J].遗传,1998,20(4):42-47.
    33.何天明,陈学森,高疆生.分子标记技术在核果类果树种质资源研究上的应用[J].塔里木大学学报,2005,17(3):38-43.
    34.何小弟,赵正兰,周魁等. 17种梅(桃)属观赏树木花粉生活力的比较[J].南京林业大学学报(自然科学版),2005(2):29-32.
    35.胡守荣,夏铭,郭长英等.林木遗传多样性研究方法概论[J].东北林业大学报,2001,29(3):72-75.
    36.黄海,乔宪生,曹尚银.关于苹果花芽生生理分化时期的研究[J].园艺学报,1986,13(3):181-186.
    37.黄培祐,张晓真,谢明玲.野巴旦杏群落生活型的研究[J].干旱区研究,1986(1):22-29.
    38.黄培祐,潘伟斌,李新平.野巴旦杏的生态学生物学特征研究[J].新疆大学学报(自然科学版),1985(2):65-71.
    39.黄秦军,苏晓华,张香华.SSR分子标记与林木遗传育种[J].世界林业研究,2002,15(3):14-21.
    40.黄卫东,彭宜本.温带果树结实生理[M].北京:中国农业大学出版社,1994.
    41.贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10.
    42.景士西主编,园艺植物育种学总论[M].北京:中国农业出版社,2000.
    43.金燕,卢宝荣.遗传多样性的取样策略[J].生物多样性,2003,11(2):155-161.
    44.康天兰,李国梁,吴震.果园覆盖预防扁桃抽条和促进开花坐果试验[J].山西果树,2002(4): 8-9.
    45.雷明山,沈军,孔维军.扁桃育苗技术[J].山西果树,2008(1):15-16.
    46.李斌,顾万春,卢宝明.白皮松天然群体种实性状表型多样性研究[J].生物多样性,2002,10(2):181-188.
    47.李春喜,姜丽娜,邵云等.生物统计学(第三版)[M],科学出版社,北京,2005.
    48.李疆,曾斌,罗淑萍等.我国野扁桃资源的保护及引种繁育[J].新疆农业科学,2006,4(1):61-63.
    49.李疆,胡芳名,张智俊等.扁桃主要生物学特性观测[J].经济林研究,2003,21(3):39-40.
    50.李疆,胡芳名,李文胜等.扁桃的栽培及研究概况[J].果树学报,2002,19(5): 346-350.
    51.李俊清.植物遗传多样性保护及其分子生物学研究方法[J].生态学杂志1994,13(6):27-33.
    52.李俊清.植物遗传多样性及保护研究进展[J] .植物研究,1998,18(2):227-242.
    53.李康,陈聚恒.扁桃组织培养和快速繁殖[J].植物生理学通讯,1990(6):46.
    54.李康.野扁桃组织培养(摘要)[M].全国植物组织和细胞培养学术讨论会论文摘要,1991.
    55.李林光.美国扁桃主要栽培品种及砧木[J].落叶果树,2000(3):59-60.
    56.李梅.辽东栎天然群体表型多样性研究[D].北京林业大学硕士学位论文,2005.
    57.李明芳,郑学勤.开发SSR引物方法之研究动态[J].遗传,2004,26(5):769-776.
    58.李明芳,郑学勤.荔枝SSR标记的研究[J].遗传,2004,26(6):911-916.
    59.李难.进化论教程[M].北京:高等教育出版社,1990:271
    60.李培环.不同灌水时期对旱地成龄扁桃抗旱和生长发育的影响[J].莱阳农学学报, 1993,10(2):116-120.
    61.李萍.青海云杉遗传结构的研究[D].甘肃农业大学硕士学位论文,2005.
    62.李胜,李唯,杨德龙等.扁桃花粉活力的测定及其提高坐果率研究[J].果树学报, 2004,21(1):79-81.
    63.李胜,杨德龙,武季玲等.扁桃花药培养初报[J].甘肃农业大报,2005,40(5):617-620.
    64.李天红.桃遗传资源核心种质的研究[J].中国农学通报,2005,21(8):296-298.
    65.李文胜,陈健红,艾尔肯等.扁桃坐果率低的原因调查与分析[J].落叶果树,2000(4):16-17.
    66.李文英,顾万春.蒙古栎天然群体表型多样性研究[J].林业科学,2005,41(1):49-56.
    67.李文英,顾万春,周世良.蒙古栎天然群休遗传多样性的AFLP分析[J].林业科刊学,2003,39(5):29-36.
    68.李文英,顾万春.栎属植物遗传多样性研究进展[J].世界林业研究.2002,15(2):42-49.
    69.李新军,潘惠新,邹惠渝等.用SSR研究拷树群体遗传结构[J].植物学报,2001,43(4):409-412.
    70.李毅.东祁连山高寒地区柳灌丛群落及其优势种群结构与动态的研究[D].甘肃农业大学硕士学位论文,2002.
    71.李银霞,李天红.桃SSR反应体系的优化[J].中国农业大学学报,2005,10(6):57-61.
    72.李玉珍,王清湖.普通扁桃种胚试管实生苗茎尖组织培养研究[J].甘肃林业科技.1987,1:96-101.
    73.李悦,张春晓.油松育种系统遗传多样性研究[J].北京林业大学学报,2000,22(1):12-19.
    74.李正才,傅兹毅,姜景民等.毛竹天然林表型特征的地理变异研究[J].林业科学研究,2002,15(6):654-659.
    75.栗琪,李作洲,黄宏文.猕猴桃野生居群的SSR分析初报[J].武汉植物学研究,2004,22(2):175-178.
    76.郎萍,黄宏文.栗属中国特有种居群的遗传多样性及地域差异[J].植物学报.1999,41 (6):451-457.
    77.梁凤山,赵悦,孟凡忠等.云杉遗传多样性研究进展[J].林业科技,2000,25(3):8-10.
    78.梁海永,刘彩霞,刘兴菊等.杨树品种的SSR分析及鉴定[J].河北农业大学学报,2005,28(4):27-31.
    79.梁远强,王建友,努力曼.巴旦杏树大面积低产的原因及今后发展的一些认识[J].新疆林业, 1997(5):17-18.
    80.廖康,许正,王磊等.野生樱桃李的形态多样性调查研究[J].新疆农业科学,2007,44(1):18-22.
    81.林培钧,崔乃然.天山野果林资源[M].北京:中国林业出版社,2000.
    82.刘进平,曹孜义,李唯等. 5个美国扁桃品种的微繁殖[J].北方果树,2003(6):1-3.
    83.刘静,周庆和,孙海伟等.新疆野生苹果表型多样性研究[J].果树学报,2004,21(4):285-288
    84.刘穆.种子植物形态解剖学导论[M].北京:科学出版社, 2004:273-275.
    85.刘勇,吴波,刘德春.江西柑橘地方品种资源及野生近缘种SSR分子标记[J],江西农业大学学报,2005,27(4):486-490.
    86.刘志刚,李疆,曾斌等.不同处理对巴旦杏坐果的影响[J].经济林研究,2006,24(4):9-13
    87.陆婷,李疆,李文胜等.调控扁桃花芽形成试验[J].山西果树,2003,92(2):3-4.
    88.陆婷.巴旦杏成花生物学的研究[D].新疆农业大学硕士学位论文,2000.
    89.卢欣石,何琪.种群遗传变异及基因多样度分析[J].草业学报,1999,8(3):76-82.
    90.罗建勋,顾万春.云杉天然群体表型多样性研究[J].林业科学2005,41(2):66-73.
    91.罗建勋.云衫天然群体遗传多样性研究[D].中国林科院林业研究所博士学位论文,2004.
    92.罗建勋,李晓清,孙鹏等.云杉天然群体的表型变异[J].东北林业大学学报,2003,31(1):9-11.
    93.罗建勋,顾万春.云杉天然群体种实性状变异研究[J].西北农林科技大学学报(自然科学版),2004,32(8):60-66.
    94.罗羽洧,解卫华,马凯.花果花芽分化与营养物质含量的关系.江西农业大学学报,2008,30(1):40-43.
    95.马克平,钱迎倩,王晨.生物多样性研究的现状及发展趋势[M].中国科学院生物多样性研究委员会编.生物多样性研究的原理与方法.北京:中国科学技术出版社,1994.
    96.马艳,马荣才.扁桃种质资源的AFLP分析[J].果树学报,2004,21(6):552-555.
    97.马艳,马荣才,徐锡增.扁桃基因组DNA的制备和AFLP技术体系的建立[J].南京林业大学学报(自然科学版), 2003,27(3):35-38.
    98.毛娟,赵长增,赵丽娟.扁桃基因组DNA提取及RAPD扩增体系的建立[J].甘肃农业大学学报2005,40(1):17-21.
    99.牟洪香,侯新村,刘巧哲.木本能源植物文冠果的表型多样性研究[J].林业科学研究.2007,20(3):350-355.
    100.庞晓明,胡春根,邓秀新.用SSR标记研究柑橘属及其近缘属的亲缘关系[J].遗传学报,2003,30 (1):81-871.
    101.乔进春,朱梅玲,杨敏生等.扁桃开花结实特性[J].果树学报,2002,19(3): 167-170.
    102.乔玉山,章镇,沈志军等.中国李简单重复序列(SSR)反应体系的建立[J].植物生理学通讯,2004,40(1):83-87.
    103.乔玉山,章镇,房经贵等.种质资源ISSR反应体系的建立[J].果树学报,2003,20(4):270-574.
    104.任华东,姚小华.樟树种子性状产地表型变异研究[J].江西农业大学学报,2000,22(3):370-375.
    105.斯琴巴特尔,满良,王振兴等.珍稀濒危植物蒙古扁桃的组织培养及植株再生[J].西北植物学报,2002,22(6):1479-1481.
    106.苏贵兴.我国的扁桃种质资源[J].中国种业,1987,2:51-52
    107.孙升.李属资源若干数量性状评价标准探讨[J].园艺学报, 1999,26(1):7-12.
    108.沈永宝,施季森.银杏、板栗不同组织DNA的提取[J].南京林业大学学报,2001,25(6): 80-84.
    109.唐娟娟,范义荣,朱睦元.黄山松群体遗传多样性研究[J].浙江林学院学报,2003,20(1):23-26.
    110.吴翠云,高疆生,张崎等.巴旦杏结果枝成花规律研究[J].北方园艺,2000(4):23-24.
    111.吴俊,束怀瑞,张开春等.桃分子连锁图谱构建与分析[J].园艺学报,2004,31(5):593-597.
    112.吴若菁.天然马尾松群体遗传结构的研究[J].林业科学,2002,38(5):160-165.
    113.吴燕民,武延安,吴彦祥等.扁桃研究新进展[J].甘肃农业大学学报,1996,31(1):86-92.
    114.王爱德,李天忠,许雪峰等.苹果品种的SSR分析[J].园艺学报,2005,32(5):875-877.
    115.王彩虹,田义轲,赵静等.来自苹果的SSRs在蔷薇科植物资源上的通用性分析[J].园艺学报,2005,32(3):500-502.
    116.王大平.分子标记技术及其在果树种质资源研究中的应用[J].渝西学院学报(自然科学版),2004,3(4):62-65.
    117.王力荣,孙升,朱更瑞.桃种质资源若干植物学数量性状描述指标探讨[J].中国农业科学,2005,38(4):770-776.
    118.王明庥.林木遗传育种学[M].北京:中国林业出版社,2001.
    119.王森,杜红岩,杨绍彬等.扁桃生殖生物学特性的研究进展[J].经济林研究,2005,23(4):79-83.
    120.王慎喜.普瑞斯扁桃在甘肃天水的表现[J].西北园艺,2003(6):28-29.
    121.王中仁.植物等位酶分析[M].北京:科学出版社,1996,145-163.
    122.王赞,高洪文,韩建国等.柠条锦鸡儿不同居群形态变异研究[J].西北植物学报),2005,25(1):0118-0123.
    123.王志泰,马彦军.东祁连山高寒阴湿地区山生柳种群结构研究[J].甘肃农业大学学报,2001,36(2):123-129.
    124.吴国凯,秦德智.生态遗传学[M].北京:农村读物出版社,1972:97-98.
    125.西安植物园.扁桃[M].西安:陕西科学技术出版社,1983:12-28.
    126.郗荣庭,刘孟军主编,中国干果[M].北京:中国林业出版社,2005.
    127.谢中稳,葛颂,洪德元.从普通野生稻硅胶干燥的小量叶片中制备DNA用于RAPD分析和总DNA库的建立[J] .植物学报,1999 ,41(8):807-812.
    128.徐六一,高景斌,蔡卫兵等.黄山松外部形态特征变异的研究[J].安徽农业科学,2004,32(5):960-962.
    129.徐启发,王静波.分子系统学研究进展[J].生态学杂志,2001,20(3):41-46.
    130.徐小林.栓皮栎群体遗传结构的研究[D].南京林业大学硕士学位论文,2003.
    131.徐兴兴,梁海永,甄志先等,苹果SSR反应体系的建立[J].果树学报,2006,23(2):161-164.
    132.阎国荣,张立运,许正.天山野果林生态系统受损现状及其保护[J].干旱区研究,1999,16(4):1-4.
    133.阎国荣.新疆天山野生果树研究及保护[J].中国野生植物资源,2001,20(4):13-14.
    134.严华军,吴乃虎. DNA分子标记技术及其在植物遗传多样性研究中的应用[J].生命科学,1996,8(3):32-36.
    135.杨红花,冯宝春,陈学森.核果类果树DNA分子标记研究进展[J].生物技术学通报,2002,5:17-25.
    136.杨宁,孙坤,张娟.利用正交试验对扁桃砧木组织培养的研究[J].西北师范大学学报(自然科学版), 2002,38(3):64-65.
    137.杨宁,李胜,曹孜义等.扁桃优良砧木离体快繁[J].西北植物学报,2004, 24(2):324-328.
    138.杨荣萍,李文祥,武绍波.石榴种质资源研究概况[J].福建果树,2004,(2):16-19.
    139.杨一平,尹瑞雪,张军利.红皮云杉自然群体遗传多样性及遗传分化的研究[J].植物学报,1993,35(6):458-465.
    140.易能君,施季森,王明庥.林木群体遗传多样性和多位点遗传结构[J].生物多样性,1996,4(3):153-159.
    141.易能君,王明庥等.林木群体遗传分化的多元分析[J].南京林业大学学报,1995,19(4):7-13.
    142.尹佟明,韩正敏,黄敏仁等.林木RAPD分析及实验条件的优化[J].南京林业大学学报,1999,23(4):7-12.
    143.俞明亮,马瑞娟,许建兰等.桃种间亲缘关系的SSR鉴定[J].果树学报,2004,21(2):106-112.
    144.俞明亮.桃性状遗传评价和分子标记技术研究[D].南京农业大学博士学位论文,2004:77-90.
    145.曾斌,克热木.伊力,郑华云等.巴旦杏砧木组织培养及植株再生[J],经济林研究,2005,23(2):21-23.
    146.曾斌,李疆,克热木.伊力.扁桃品种"Nonpareil, Mission"离体繁殖技术研究[J].中国农学通报,2005,21(9):34-36.
    147.曾杰,郑海水.广西西南桦天然居群的表型变异[J].林业科学,2005,41(2):59-65.
    148.曾莉娟,郑成木.SSR技术及其应用[J].热带农业科学,2001,91(3):56-59.
    149.曾骧.果树生理学[M].北京:北京农业大学出版社,1992,5.
    150.张大勇,姜新华.遗传多样性与濒危植物保护生物学研究进展[J].生物多样性1999,7: 31-37.
    151.张含国.红皮云杉遗传多样性的研究[D].东北林业大学博士学位论文,2000.
    152.张华锋,季彪俊.植物种质资源研究概论[J].宜春学院学报,2005,27(2):92-95.
    153.张惠娟,贾昆峰.林木遗传多样性与现代林业[J].内蒙古科技与经济,2003,(3):26-28.
    154.张富民.群体遗传学研究中的数据处理方法Ⅰ:RAPD数据的AMOVA分析[J].生物多样性,2002,10(4):438-444.
    155.张洁夫,戚存扣,浦惠明等.甘蓝型油菜SSR检测体系的优化[J].江苏农业学报. 2004, 20(4):225-229.
    156.张利彩,郭春会,孙占育等.普通扁桃试管苗生根培养研究[J].西北农业学报,2008,17 (2):188-192.
    157.张敏,帕哈提,晏佩霞.新疆巴旦杏氨基酸组分分析[J].特产研究,1995(4):47-48.
    158.张崎,王大伟.扁桃花芽形态分化观察[J].塔里木农业大学学报,1997,9(2):38-40.
    159.张日清,谭晓风,吕芳德.林木RAPD标记技术研究进展[J].吉首大学学报(自然科学版),2001,22(3):16-50.
    160.张顺妮,闫振立,过国南.扁桃的生物学特性及栽培要求[J].果农之友,2001(3):20-21.
    161.张世红,郭丽娜,王世兰等.扁桃枝条对低温的反应[J].河北林果研究,2002,17(1):38-41.
    162.张文越.扁桃特性及丰产栽培技术[J].河北林果研究,2002,19(4):337-339.
    163.张文越,刘福权,马玉敏等.意大利扁桃及其良种栽培技术[J].山东林业科技,2002(2):31-33.
    164.张文越,马玉敏,孙海伟等.扁桃花粉形态观察及人工授粉试验[J].落叶果树,2000(6):17-18.
    165.张泽.巢式设计的多元分析[M].生物数学学报,1996,11(4):83-87.
    166.赵冰,张启翔.蜡梅种质资源表型多样性[J].东北林业大学学报,2007,35(5):10-13,35.
    167.赵秀梅,刘芬,董铁.扁桃离体快繁技术研究[J].甘肃农业科技,1998,(5):26-27.
    168.赵翾 ,赵树进.白木香群体的表型多样性分析[J].华南理工大学学报(自然科学版),2007,35(4):117-122.
    169.赵越.蒙古扁桃引种育苗技术[J]青海农林科技.2006(3):50-51.
    170.郑国昌,谷祝平.生物显微技术(第二版)[M].北京:高等教育出版社,1999.
    171.郑开文等.北方果树[M].北京:科学普及出版社.1984.
    172.郑仁华,黄德龙,李金良等.福建柏优树选择及种实表型变异研究[J].福建林业科技,2004,31(增刊):1-10.
    173.周立伟,吴乃虎.分子生物学技术在濒危植物遗传多样性研究中的应用[J].生物工程进展,1995,15(4):22-25.
    174.朱京琳.新疆巴旦杏[M],新疆乌鲁木齐:新疆人民出版社,1983.
    175.朱京琳.扁桃花芽分化初步研究[J].新疆农业科学,1982(4):27.
    176.朱其慧.栲树群体遗传结构的研究[D].南京林业大学硕士论文,2002.
    177.竺利波,顾万春,李斌.紫荆群体表型性状多样性研究[J].中国农学通报,2007,23(3):138-145.
    178.Antonovics, J., Bradshaw, A. D. et al. Heavy metal tolerance in plants[J]. Adv. Ecol. Res.1971,7:1-58.
    179.Aranzana, M.J., García-Mas, J., Carbo & Arus, P. Development and variability analysis of microsatellite markers in peach [J]. Plant Breed, 2002, 121: 87-92.
    180.Aranzana, M. J., Ascaibar, J., Garcia-Mas & Arus, P. Development and Mapping of a Set of SSR Markers Covering Most of the Prunus Genome [M]. Plant & Animal Genome IX Conference, San Diego, USA, January 2001.
    181.Aranzana, M. J. A set of simple-sequence repeat (SSR) markers covering the Prunus genome [J]. Theor Appl Genet , 2003, 106(5): 819-825.
    182.Arnold, M. L. Emms S K. Molecular markers , gene flow , and natural selection. In : Soltis D E , Soltis P S. Doyle J J (eds) Molecular systematics of plantsⅡ[M]. Boston : Kluwer Academic Publishers , 1998 : 442-457.
    183.Avise, J. C. Molecular markers natural and evolution [M]. New York:Chapman &Hall.Inc, 1994.
    184.Bagchi, S. K., Jishi, D.N. and Rrwat, D. S. Variation in seed size of A cacia spp.[J].Silvae Gentics, 1990, 39 (3-4): 107-110.
    185.Ballard, R. E., Abbott, A. G. Characterization of microsatellite markers in peach (Prunus persica (L) Basch) [J]. Theor Appl Genet, 2000, 101: 421–428.
    186.Barghchi, M. , Alderson, P. G. in vitro propagation of Pistacia veral.species [J].Acta Hortic, 1983, 131: 49-60.
    187.Barrett, S. C. H., Eckert, C. G. Variation, evolution of mating systems in seed plants [M].In: Kawano S (ed.)1990.
    188.Bartolozzi, F., Warburton, S., Arulsekar, T. M. Genetic characterization among California almond cultivars and breeding lines detected by randomly amplified polymorphic DNA (RAPD) analysis [J]. J Amer Soc Hort Sci., 1998, 123: 381–387.
    189.Bhatt, G. M. Comparison of various methods of selecting Parents for hybridization In common bread wheat(Triticum aestivum) [J].Aust J Agri Res, 1993, 24: 457-484.
    190.Botta, R., Scott, N. S., Eynard, I. Evaluation of microsatellite sequence-tagged site markers for characterizing Vitis vinifera cultivars [J]. Vitis, 1995, 34 (2): 99-102.
    191.Bowers, J. E., Meredith, C. P. The parentage of a classic wine grape, Cabernet sauvignon [J]. Nature-Genetics,1997,16 (1): 84-87.
    192.Boxus, P. D., Ruart, P. Mass propagation of fruit trees, In: Schafe-Menuhr A (Ed). In Vitro Techniques, Propagation and Long Term Storage [M]. Martinus Nijhoff/Dr W Junbk, Dordrecht, 1985: 29-33.
    193.Brochmann, C., Soitis, P. S. Recurrent formation and polyphly of Nordic polyploids in Draba (Brassicaceae) [J]. Amer J Bot, 1992, 79 (6): 673-688.
    194.Brown, A. H. D. Isozymes, plant population genetic structure, genetic conservation [J].Theor Appl. Genet, 1978, 52: 145-157.
    195.Buso, G. S. C., Rangel, P. H., Ferrira, M. E. A nalysis of genetic variability of south Amrican wild rice (oryza glumaepatula) population with isozymes and RAPD markers [J]. Molecular Ecology, 1987, 7(1): 107-115.
    196.Cantini, C., Iezzoni, A. F., Lamboy, W. F. DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats [J]. J Amer Soc Hort Sci,2001, 126: 205-209.
    197.Carlos, R., Breto, M. P., Asins, M. J. A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers [J]. Euphtica, 2000, 112(1): 89-94.
    198.Chase, M. W., Hill, S. H., Silicag, E. H. An ideal material for field preservation of leaf samples for DNA studies[J]. Taxon , 1991 ,40 : 215-220.
    199.Chaudhury, R., Chandel, K. P. S. Cryopreservation of embryonic axes of almond (Prunus amygdalus Batsch.) seeds.Cryo-Letters[J]. Cambridge: The Journal. Jan/Feb, 1995, 16 (1): 51-56.
    200.Chechowitz, N. and Chappell, D. M., et al. Morphological, elecrtophoretic and ecological analysis of Quercus macrocatpa population in the Black Hills of South Dakota and Wyoming [J].Can J Bot, 1990,68: 2185-2194.
    201.Cheng, F. S., Brown, S. K., Weeden, N. F. A. DNA extraction protocol from Various tissues in woody species [J].Hort Sci, 1997, 35 (2): 921-922.
    202.Ciptiani, G., Lot, G., Huang, W.C., et al. AC/GT and AG/CT microsatellites repeats in peach [Prunus persica (L.) Batsch]:Isolation, characterisation and cross-species amplication in prunus [J].Theor Appl Genet, 1999, 99: 65-72.
    203.Dachler, C. C., Yorkston, M.., et al. Genetic variation in morphology and growth characters of Acacia koa in the Hawaiian Islands [J].International Joumal of Pland Science ,1999,160 (4): 767-773.
    204.Dalbo, M.A., Ye, G. N., Weeden, N. F., et al. A gene controlling sex in grapevines placed on a molecular marker-based genetic map [J]. Genome, 2003, 45: 333-340.
    205.Dayanandan, S., Rajora, O. P., Bawa, K. S. Isolation and characterization of microsatellite in trembling aspen (Populus tremuloides) [J]. Theor Appl Genet, 1998, 9: 950-956.
    206.Dilworth, E., Frey, J. E. A rapid method for high throughput DNA extraction from plant material for PCR amplification[J]. Plant Mol Biol Rep, 2000, 18: 61-64.
    207.Dirlewanger, E., Cosson, P., Tavaud, M., et al. Development of microsatellite markers in peach [ Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry ( Prunus aviumL.) [J].Theor Appl Genet, 2002, 105: 127-138.
    208.Excoffier, L. A nalysis of Molecular Variance (AMOVA) Version 1.55. Genetics and Biometry [M]Laboratory. University of Geneva, Switzerland, 1993.
    209.Fang, D.Q., Roose, M. I. Identification of closely related citrus cultivars with inter-simple sequence repeat markers [J]. Theor Appl Genet, 1997, 95: 408-417.
    210.Fisher, R. A. The correlation between relative sonth esupposition of Mendelian in heritance [J].TransRoy Soc. Edinburgh, 1918, 52: 399-433.
    211.George, E. F., Sherrington, P. D. Plant Propagation by Tissue Culture Exxgetics Ltd [M]. Eversley. Basingstoke, 1984: 448-468.
    212.Ghandelian, P. A., Barseghian, M. A. The history and use of wild almond in Armenia [J]. Acta. Horticultrurae, 1998, 470: 34-37.
    213.Gianfranceschi, L. N., Seglias, R. Tarchini. Simple sequence repeats for genetic analysis of apple [J].Theor Appl Genet 1998, 96: 1069-1076.
    214.Godini, A., Palasciano, M. Growth and yield of four self-fruitful and four self-fruitful almond on three rootstock: a thirteen year study [J]. Acta Horticultrurae, 1998, 470: 200-207.
    215.Goncharenko, G. G., Potenko, V. V. Genetics structure variation and differentiation of Sakhalin spruce(picea glehnii Mast.)on Sakhalin [J]. Doklady-Biology-Sciences, 1992, 321: 684-689.
    216.Gottlieb, L. D. Evolutionary relationships in the out crossing diploid annual species of stepha-nameria (compositae) [J]. Evolution,1971b, 25: 312-329.
    217.Grant, V. The evolutionary Process: A Critical Study of Evolutionary Theory. 2nd ed [M]. New York: Columbia University Press, 1991.
    218.Hammerschlag, F. A. Temperate fruits and nuts. In: Zimmerman, R. H., Griesbach, R. J., Hammerschlag, F. A., Lawson, R. H.(Eds). Tissue Culture as a Plant Production System for Horticultural Crops [M]. Martinus Nijhoff , Dordrecht. 1986: 221-236.
    219.Hamrick, J. L. Gene flow, distribution of genetic variation in plant populations [J]. In: Urbanska, K. (ed.)Differentiation Patterns in Higher Plants. New York:Academic Press, 1987: 53-67.
    220.Hamrick, J. L. Isozymes ananysis of genetic structure of plant population [M]. In: Soltis, D., Soltis, P.(eds)Isozymes in Plant Biology. Washington: Dioscorides Press, 1989, 87-105.
    221.Hamrick, J. L, Godt, M. J.W. Allozyme diversity in plant species [M].Brown, A. H. D., Clegg, M. T., Kahler, A. L. Plant population genetics, breeding and genetic resources [M]. Sunderland, Mass: Sinauer, 1990 : 43-63.
    222.Hamrick, J. L., Godt, M. J.W. and Sherman-Broyes, S. L. Factors influencing levels diversity in woody plant species[J]. New Forest, 1992, 6: 95-124.
    223.Hansman, D., Owensy, D. E., Nova, C. Micropropagation of tempetate nut trees [J]. Hort Abstr 1986, 56: 403-416.
    224.Harris, H. Enzyme polymorphism in man [J]. Proc. Royal Soc, 1966, 164: 298-310.
    225.Hastings, A. The interaction between selection and linkage in plant populations[M]. In: Plant Population Genetics, Breeding and Genetics Conservation. Sinauser, Sunderland. 1989.
    226.Hawley, G. J., Dehayws, D. H. Genetic diversity and population structure of red spruce (picea rubens) [J]. Canadian Journal of Botany, 1994, 72: 1778-1786.
    227.Hormaza, J. I. Molecular characterization and similarity relationships among apricot (Prunns armeniaca L.) genotypes using simple sequence repeats [J]. Theor Appl Genet, 2002, 104: 321-328.
    228.Hua Xie, Yi Sui, Feng-Qi, et al. SSR allelic variation in almond ( Prunus dulcisMill.) [J]. Theor Appl Genet, 2006, 112: 366-372.
    229.Huang. J., Ge, X., Sun, M. Modified CTAB protocol using a silica matrix for isolation of plant genomic DNA [J]. BioTechniques 2000, 28: 432-434.
    230.Hutchinson, J.F., Zimmerman, R.H. Tissue culture of temperate fruit and nut trees [J]. Hort Rev 1987, 9: 273-349.
    231 . Jianxun Luo, Runguo Zang, Chunyang Li. Physiological and morphological variations of Piceaasperata populations originating from different altitudes in the mountains of southwestern . China [J]. Forest Ecology and Management, 2005, 2: 568–574.
    232.Jones, O. P. In vitro propagation of tree crops.In: Mantell S H, Smith H (Eds) Plant Biotechnology [M].Cambridge Univ Press, Canbridge, 1983: 139-159.
    233.Joobeur, T., Pexiam, N., Vicente, M. C., et al. Development of a second generation linkage map for almond using RAPD and SSR markers [J].Genome, 2000, 43: 649-655.
    234.Joobeur, T., Viruel, M. A., Vicente, M.C., et al. Construction of a saturated linkage map for Prunnus using an almond×peach F2 progeny [J]. Theor Appl Genet, 1998, 97: 1034-1041.
    235.Joolka, N.K. Effect of grow th regulators, urea and tree spray oil on bloom delay and productivity of almonds [J]. Indian Journal of Horticulture, 1991, 48 (3): 217-221.
    236.Kao. T. H., Tsukamoto. T. The molecular and genetic bases of S-RNase-based self-incompatibility[J]. Plant Cell, 2004, 16 ( Supp l. ) : 72-83.
    237.Kester, D. E., Liu, L., Fenton, C. L., Durzan, D. J. Almond (Prunus dulcis (Miller) Webb, D. A.). In: Bajaj, Y. P. S. (ED) Biotechnology in Agriculture and Forestry-tree Springer-Verlag [M]. Berlin. 1986: 414-430.
    238.Kijas, J. M. H., Fowler, J. C. S., Thmas, M. R. An evaluation of sequence tagged micmsatellite site markers for genetic analysis within citrus and related species [J].Genome, 1995, 38: 349-355.
    239.Kijas, J. M. H., Thomas, M. R., Fowsler, J. C. S., et al. Integration of trinuleotide microsatellites into a linkage map of citrus [J]. Theor Appl Genet, 1997, 94: 701-706.
    240.King, J. N., Yeh, F. C., Heaman, J. C. Selection of growth and yield triats in controlled crosses of coastal Douglas-fir [J]. Silvae Gentics, 1998, 37(4): 158-164.
    241.Kumar, K., Kumar, U. Evidence of self-comparitibility in indigenous almond selections from India [J]. Joumal of American Pomological Society, 2000, 54 (2):68-71.
    242.Lambert, P., Hangen, L. S., Arus, P., et al. Genetic linkage maps of two apriot cultivars (Prunnus armeniaca L.) compared with the almond Texas×peach Earlygold reference map for Prunnus [J]. Theor Appl Genet, 2004, 108: 1120-1130.
    243.Lan, W. D. Tissue culture and in vitro propagation of deciduous fruit and nut species. in:Tomes, D. T., Ellis, B. E., Harney, P. M., Kasha, K. J., Peterson, R. L. (Eds) [J]. Application of Plant Cell and Tissue Culture to Agriculturae and Industry, 1982: 163-186.
    244.Levin, D. A., Kerster, H. W. Gene flow in seed plants [J]. Evol. Biol, 1974, 7:139-220.
    245.Lewontin, R. C. The apportionment of human diversity [J]. Evol Biol, 1972, 6: 381-398.
    246.Loveless, M. P., Hamrick, J. L. Ecological determinant of genetic structure in plant population [J]. Ann.Rev . Ecol. Syst, 1984, 15: 65-95.
    247.Lumaret, R., Yacine, A. Mating system and genetic diversity in Holm Oak (Quercus ilex L.Fagaceae). Biochemical markers in the plpulation genetics of forest trees [J]. Can. J. Bot.1991, 5: 149-153.
    248.Martins, M., Tenreiro, R., Oliveira, M. Genetic relatedness of Portuguese almond cultivars assessed by RAPD and ISSR markers [J], Plant Cell Rep, 2003, 22: 71-78.
    249.Mart′nez-G′omez, P., Arulsekar, S., Gradziel, T. M. An extended interspecific gene pool available to peach and almond breeding as characterized using simple sequence repeat (SSR) markers [J], Euphytica, 2003,131: 313-322.
    250.Mart′nez-G′omez, P., Arulsekar, S., Gradziel, T.M. An extended interspecific gene pool available to peach and almond breeding as characterized using simple sequence repeat (SSR) markers [J]. Euphytica, 2003, 131: 313-322.
    251.McCubbin. A. G., Kao. T.-h.. Molecular recognition and response in pollen and pistil interactions[J]. Annual. Review of Cell and Developmental Biology, 2000, 16: 333-364.
    252.McDermott, J. M., McDonald, B. A. Gene flow in plant pathosystems [J]. Ann Rev Phytopathol 1993, 31:353-373.
    253.Miguel, C. M., Druart, P., Oliveira, M. M. Shoot regeneration from adventitious buds induced on juvenile and adult almond (Prunus dulcis Mill.) explants. In-vitro-cell-dev-biol-Plant. Columbia, M. D. [J].Society for In Vitro Biology. July/Sept, 1996, 32 (3): 148-153.
    254.Moore, S. S., Sargeant, L.L., King, T. J., et al. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pair in closely related species [J].1991, 10: 654-660.
    255.Napolione, I. Result of micropropagation of subtropical trees and shrubs. Rivista di Agricoltura Subtropicale e Tropicale [J].Universita di Firenze , Italy. 1984, 78 (1): 139-151.
    256.Negueroles, P. J. Micropropagation of fruit crop species [J]. ITEA (Informacion Tecuica Economica Agraria). 1978, 9 (33): 58-64.
    257.Nei, M. Analysis of gene diversity in subdivided populations [J]. Proc Natl Acad Sci USA, 1973, (12): 3321-3323.
    258.Pncaldi, M., Kacar, Y., Kuden, A. B, et al. Using microsatellite sequence from peach for fingerprinting and genealogical analysis of almond [J]. Rivista di Frulticoltura ediort loricoltura, 1999, 61(11): 70-73.
    259.Primmr, C. R., Moller, A. P., Ellegren, H. A wide-range survey of cross species microsatellitcamplification in birds [J]. MoL Ecol, 1996, 5: 365-378.
    260.Ralbo, M. A., Ye, G. N., Weeden, N. F., et al. A gene controlling sex ingrapevines placed on a molecular marker-based genetic map [J]. Genome, 2000, 45: 333-340.
    261.Rohlf, F. J. NTSYS-PC. Numerical taxonomy and multivariate analysis system.Version 2.10c, Department of Ecology and Evolution [M]. State University of New York, Stony Brool, N Y. 2000
    262.Rugini, E. Almond, I., Evans, D. A., Sharp, W. R., Ammirato, P. V. (Eds) . Handbook of Plant Cell Culture Vol. 4 [M]. Techniques and ApplicationsMacmillan, New York, 1986: 574-611.
    263.Schltterer, C. Microsatellites. In : Hoelzel, A. R. (ed. ) Molecular genetic analysis of population [M]. Oxford University Press ,1998.
    264.Sesinski, B., Cannavarpu, M., Hager, L. C., et al.Characterization of microsatellite repeat in peach (Prunus persica (L.) Batsch) [J]. Theor Appl Genet, 2000, 101: 241-248.
    265.Sehoen, D. J.,Brown, H. D. IntrasPecific variation in PoPulation gene diversity and Effective Population size correlates with the mating system in Plants [J].proc Natl Acad Sci USA, 1991, 88: 4494-4497.
    266.Shaanker, R. U.,Ganeshaiah, K. N. MaPPing genetic diversity of Phyllanthus emblica: Forest genebanks as a new approach for in situ eonservationo of genetic resources [J].Curr. sci, 1997, 73 (2): 163-165.
    267.Sharma, R., John, S. J., Damgaard, D. M., McAllister, T. A. Extraction of PCR-quality plant and microbial DNA from total rumen contents[J]. Biotechniques, 2003, 34: 92-97.
    268.Sheldon, I., Gunman, L. A. Morphological,electrophoretic, and ecological analysis of Quercus macrocarpa population in the Black Hills of South Dakota and Wyoming [J].Can.J. Bot. 1990, 68: 2185-2194.
    269.Shibli, R. A., Ereifej, K. I., Karam, N. S. Response of in vitro cultures of potato, tomato, apple rootstock, and bitter almond to a culture medium supplemented with municipal solid waste. J-plant-nutr [J]. Monticello, N. Y. : Marcel Dekker Inc, 1999, 22 (10): 1519-1527.
    270.Skirvin, R. M. fruit crops, in: Cloning Agricultural Plants via in vitro Techinques (B.V.Conger,ed.) [M]. CRC Press: Boca Raton FL, 1981: 51-140.
    271.Skirvin, R. M. Stone fruit. In: Ammirato, P. V., Evans, D. A.,Sharp, W. R.,Yamada, Y. (Eds) Handbook of Plant Cell Culture Vol. 3. [M]. Crop Species. Macmillan, New York. 1984: 402-452.
    272.Slatkin, M. Rare alleles as indicators of gene flow [J]. Evolution, 1985, 39: 53-65.
    273.Smonse, P. E., Long, J. C., Sokaal, R. R. Multiple regression and correlation estensions of the Mantel test of matrix correspondence [J]. Systematic Zoology, 1986, 35: 627-632.
    274.Solits, D. E., Haufler, C. H., Darrow, D. C., Gastony, G. J. Starch Gel Electrophores is Ferns: Acomplication Grinding Buffers, Geland Electrode Buffers, and Staining Schedules [J].Amer. J. Bot, 1983, 73: 908-913.
    275.Sun, C. Q., Wang, X. K., Yoshimura, A., et a1. RFLP analysis of nuclear DNA in common wild rice (O.RufipoQon Griff.) and cultivated rice (O. Sativa L.) [J]. Scientia Agricultura Sinica, 1997, 30 (4): 37-44.
    276.Suzannr, L. D., Amy, F. Z. Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach and sour cherry [J].J Amer Soc Hort Sci, 2000, 125 (1): 76-80.
    277.Szewc-MoFadden, Kresvich, A. S., Blick, S. M., et al. ldentification of polymorphic,conserved simple sequence repeals (SSRs) in cultlvated Brassica species [J].Theor Appl Genet, 1996, 93: 534-538.
    278.Uta, P., Zngo, S. Midprep method for isolation of DNA from plants with a high content of polypholics [J]. Nucliec Acids Res, 1993, 21 (14): 3328-3330.
    279.Vanovereek, J., Conklin, M. E., Blakeslee, A. F. Factor in coconut milk essential for growth and development of very young Datura embruos [J]. Science, 1981, 94: 350-351.
    280.Volis, S., Mendlinger, S., Whittaker, L. O., et al . Phenotypic variation and stress resistance in core and peripheral populations of Hordeum spontaneum [J]. Biodiversity and Conservation, 1998, 7: 799-813.
    281.Wang, Z. M., Nagasaka. Allozyme variation in natural populations of picea glehnii in Hokkaido Japan [J]. Heredity, 1997, 78 (5): 470-475.
    282.Weising, K. R., Fung, W. M., Kelling, D. J. Characterization of microsatellites from Actinidia chinensis [J]. Molecular Breeding, 1996, 2: 117-131.
    283.Williams, J. G. K., Kubelik, A. R., Livak, K. J., et al. DNA polymorphism amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acids Research, 1990, 18: 6531-6535.
    284.Wright, S. Evolution mendelian population [J]. Genetics, 1931, 16: 97.
    285.Wright, S. The genetical structure of populations [J]. Ann. Eugen, 1951, 15: 323-354.
    286.Wright, S. Evolution and genetics of populations [J].Variability Within and Among Populations, 1978, 444.
    287.Yamamoto, T. SSRs isolated from apple can identify polymorphism and genetic diversity in pear [J].Theor Appl Genet, 2001, 102: 865-870.
    288.Yeh, F. C., et al. Population differentiation in lodgepole pine. Pinus contorta spp. Latifolia: A discriminant analysis of allozyme variation [J]. Can. J. Genet. Cytol., 1985, 27: 210-218.
    289.Yeh, F. C., Yang, R. C., Boyle, T. POPGENE version 1.32 edition. Software Microsoft window-based freeware for population genetic analysis [M]. University of Alberta, Edmonton, Alta.1997.
    290.Xie, C. Y., Ying, C. C. Genetic architeeture and adaptixe landscape of interior lodgepole Pine (P inus contorta ssp.1atifolia) in Canada [J].Canadian Joumal of Forest Reserch, 1995, 25: 2010-2021.
    291.Yu, H., Kiang, Y. T. Genetic variation in south korean natural population of wild soybean (Glycine soja) [J].Euphytica, 1993, 68: 213-221.
    292.Yu, Y. G., Saghaim, M. A., Buss, G. R. Divergence and allelomorphic relationship of a soybean virus resistance gene based on tightly linked DNA microsatellite and RFLP markers [J]. Theor Appl Genet, 1996, 92: 64-69.
    293.Zhebentyayeva, T. N., Reighard, G. L., Gorina, V. M. Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm [J].Theor Appl Genet, 2003, 106: 435-444.
    294.Zimmerman, R. H. Propagation of fruit, nut, and vegetable crop-ovreview. In: Zimmerman, R. H., Griesbach, R. J., Hammerschlag, F. A., Lawson, R. H (Eds)Tisseus Culture as a Plant Production System for Horticultural Crops [M]. Martinus Nijhoff, Dordrecht. 1986: 183-200.
    295.Zimmerman, R. H. Micropropagation of temperate zone fruit and nut crops. in : Micropropagation (Debergh, P. C. and Zimmerman, R. H. (eds.)) [M]. Kluwer Academic Publishers, Netherlands, 1990: 231-246.
    296.Zimmerman, R. H., Fordham, I. Simplified method for rooting apple cultivars in vitro [J]. J. Am. Soc. Hortic. Sci., 1985, 110: 34-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700